The Weighted Integrity Problem is
Polynomial for Interval Graphs

Sibabrata Ray Rajgopal Kannan

Assistant Professor Assistant Professor

Dept. of Computer Science  Dept. of Computer Science
University of Alabama Louisiana State University
Tuscaloosa, AL 35487 Baton Rouge, LA 70803

USA USA

Danyang Zhang Hong Jiang

Assistant Professor Professor

Communications Technology Computer Science and Engineering
York College University of Nebraska—Lincoln

City University of New York Lincoln, NE 68588
Jamaica, NY 11451 USA USA :

Keywords: graph algorithms, interval graph, computational
complexity, weighted integrity problem, graph vulnerability

Abstract

Network reliability is an important issue in the area of distributed computing.
Most of the early work in this area takes a probabilistic approach to the problem.
However, sometimes it is important to incorporate subjective reliability
estimates into the measure. To serve this goal, we propose the use of the
weighted mtegnty, a measure of graph vulnerability. The weighted integrity
problem is known to be NP-complete for most df the common network
topologies including tree, mesh, hypercube etc. It is known to be NP-complete
even for most perfect graphs, including comparability graphs and chordal graphs.
However, the computational complexity of the problem is not known for one
class of perfect graphs, namely, co-comparability graphs. In this paper we give a
polynomial time algorithm to compute the weighted integrity of interval graphs,
a subclass of co-comparability graphs.

ARS COMBINATORIA 79(2006), pp. 77-95



1 Introduction

The advent of affordable but powerful workstations and the improved network
cost-performance ratio have meant that much more powerful computing systems
can now be constructed by interconnecting a large number of such units in a
distributed working environment, Of paramount importance in the design and
maintenance of such system is the knowledge of and the ability to maintain a
certain level of sustainable computational power. Thus the study of system
reliability in general and network reliability in particular is critical to achieving
performance goals. Previous work in this area has been mostly on a probabilistic
basis. However, sometimes it is important to take subjective reliability estimates
into consideration. Among the relevant issue of importance we are particularly
interested in one of vulnerabilities. That is, in an unfriendly external
environment, how vulnerable is such a distributed system to certain external
destruction and how much computing power can be sustained in the face of
destruction. A graph theoretic approach is taken in addressing this problem in
this paper. ‘

The concept of network vulnerability is motivated by the design and analysis
of networks under a hostile environment. Several graph theoretic models under
various assumptions have been proposed for the study and assessment of
network vulnerability. Graph integrity, introduced by Barefoot et al. [1, 2], is
one of these models that has received wide attention [6, 7, 11, 14]. Barefoot et al.
studied two measures of network vulnerability, the integrity and the edge
integrity of a graph. Bagga et al. has introduced a similar measure called pure
edge integrity [4].

In the integrity model, the basic assumption is that some intelligent enemy is
trying to disrupt the network by destroying its elements. The cost on his part is
measured by the number of elements he would destroy, and his success in
incapacitating the network is measured by the order (i.e. number of nodes) of the
largest connected component in the remaining network. The enemy of course
wants both to be small. Therefore, the minimum attainable sum of these two
quantities is considered as a measure of vulnerability of the network. This
measure is called graph integrity.

The integrity /(G) of a graph G is defined as

1(6)= min )ﬂs| +m(G-S)}
where m(G-S) denotes the order (the number of vertices) of a largest
component of G- S . The edge-integrity 1’(G) of a graph G is defined as
I'(G)= min ){]s| +m(G-S)}-
Both /(G) and 1(G) turn out to have interesting properties.

The above definitions have led to a number of interesting results. It is to be
noted that all nodes are of equal importance in determining the integrity of a

78



graph. In a distributed computing system, however, it is usually the case that
different components of the system assume different importance, by virtue of
difference in computing power, cost, jobs being executed, protection mechanism,
etc. Therefore, assigning equal importance to all nodes is neither desirable nor
realistic. In this paper, we develop a weighted system. This gives rise to the
following definition of weighted integrity.

Definition 1.1 The weighted integrity of a graph G = (V, E) is defined as
1,(G)=min{w(X )+ m, (G- X)}

where w:V — R20 is vertex weight function. m, (G~ X) is the maximum

sum of the vertex weights of the connected components of G- X . Note that

o(X)=3  ov)-

Clearly, this weighted model reduces to the original integrity model when all
nodes have equal weight. While the weighted integrity problem in its generality
is NP-complete, as shown in the next section, we have identified a particular
class of graphs, namely the interval graphs, whose integrity can be found in
polynomial time. As can be seen, the proposed model, the first of its type to the
best of our knowledge, is of theoretical as well as practical significance.

The rest of this paper is organized as follows. In the next section we present a
brief literature survey about weighted integrity problem. A polynomial time
algorithm for computing the weighted integrity of interval graphs is described in
section 3. Section 4 presents a subroutine used in section 3. Finally, concluding

remarks are given in section 5. ‘

2. Background and NP-Completeness of the Problem

A number of researchers have investigated various integrity related problems [6,
7, 13]. It is known that the mtegnty problem is NP-complete on planar graphs
[7]. However, the problem is known to be polynomial on several common
families of graphs [6].

It can be easily seen that integrity is monotonic under subgraph containment
(if H is a subgraph of G, then the integrity of H is less than or equal to that of G).
Further, the integrity is always bounded by the edge, mtegnty [6]. Among the
connected graphs of g:ven order, the star graph has the maximum possible edge
integrity and the minimum possible integrity [8].

The common graphs on which the explicit expression for the integrity is
known include complete graphs, stars, paths, cycles, comets, complete bipartite
graphs, complete multipartite graphs, etc. Though there exists an explicit
expression for the edge integrity of hypercube, computing the integrity of
hypercube is an open problem [6, 2, 5].

The relation between edge integrity, integrity and other graph parameters is

79



well investigated [6, 14, 1, 13]. There are results available connecting integrity,
edge integrity, maximum degree, size of a graph, connectivity etc.

Some extremal graph theoretic results are also known about integrity. Results
about extremal graphs with maximum edge integrity are well known [6].

However, very few algorithmic and complexity theoretic results are known
about integrity. Bagga et al. gave a nice polynomial time algorithm for
computing the edge integrity of a tree [9]. That algorithm can be extended very
easily to compute the integrity of a tree. To the best of our knowledge, no other
algorithmic result is known about integrity. Interested researchers may refer to
the survey paper [6] for more information on integrity.

The concept of the weighted integrity was introduced by Ray and Deogun [3).
They gave a set of sufficient conditions for the weighted integrity problem to be
NP-complete on a class of graphs. The results in [3] are relevant to our work and
we describe those here briefly. To state the results we need the following
definition.

Definition 2.1 Dense set. Lef n, <n, <--- be an infinite sorted list of positive
integers. The set {n, |i=0,),...} is called dense if there exists a positive real

a such that n,,, < nSforalli.
The main result in [3] is the following theorem.

Theorem 2.1 Let S be an infinite class of graphs such that {G|:Ge S} isa

dense set. If for all Ge€ S, there exists an induced subgraph H’ of G satisfying
the following conditions, then the weighted (vertex) integrity problem is NP-
complete on S.

1. There exists an independent set {y,,---,v,} of H' such that

deg,.(v,)=1/or i=0,....k and k 2|G|".
2. For each v, there exists a distinct u, € H' adjacent to v; for i =0,...,k.
3. All v; in the set {Vl lig I }belong to the same connected component of

W, ljet})forall 1c,... k).

The proof of the theorem is by reduction to the 0-1 knapsack problem.
Theorem 2.1 may be described informally as follows. Let S be an infinite class
of graphs. If every Ge § has a “big enough” Type 1 induced subgraph (see
Figure 1), then the weighted integrity problem is NP-complete on the class S.

From Theorem 2.1 it may be seen that the weighted integrity problem is NP-

complete for most of the common graphs including trees, meshes, hypercubes,
bipartite graphs, series parallel graphs, regular graphs etc. It may be noted that

80



Theorem 2.1 is not applicable to the class of cocomparability graphs (refer to
Definition 2.2). This is simply because cocomparability graph can not have a
Type 1 induced subgraph with more than two leaves. Let G ={V,E}be a

cocomparability graph where¥ ={v,,...,v, }. Further,

Connected Component ‘

Figure 1. Type 1 induced subgraph

let us assume that v,,...,v, is a linear extension of some orientation of the
comparability graph G ={V,E} . Note that, if (v,,v,)e E then either
(vi,ve)e E or {4,,v,)e E for k=i+1,...,j~1. Choose p, and p, such that
both v, and v are not adjacent to v; and p, <i, p, >i. If {y, JUN(v,)is
removed from G, v, and Yy will belong to different connected components. If

possible, let G have a Type 1 induced subgraph with more than three leaves. Let
Vi Ve Y, be three of the leaves. Without loss of generality, i, < i, < i,. Now,

if {v, JUN(v,) is removed, v, and v, will belong to different connected
components. But that cannot happen for a Type 1 subgraph.

Definition 2.2 (Cocomparability graph) Cocomparability graph is the
complement graph of the comparability graph. A simple graph G is a
comparability graph if it has a transitive orietation, which is an orientation such
that if x— y and y—z, then also x—z, where x— y means there is an edge from x

0y
3. Algorithm

The NP-completeness result described in the previous section shows that the
weighted integrity problem is NP-complete for a simple and very basic graph
structure. That leads to the NP-completeness of the problem for many common
classes of graphs including trees, meshes and hypercubes. However, the
computational complexity issue for cocomparability graphs remains unresolved.
To our knowledge, the class of cocomparability grapﬁs is the only well-known

81 |



class of graph such that no graph in the class contains a large type 1 subgraph as
an induced subgraph. In this section we describe a polynomial time algorithm
for solving the weighted integrity problem for interval graphs. It is known that
the interval graphs constitute a subclass of cocomparability graphs. More
precisely, interval graphs are chordal cocomparability graphs [10].

Some definitions are given below in preparation for our algorithm.

Definition 3.1 (Achieving (vertex) cut) For a graph G and weight function o,
XcV(G) is called an achieving (vertex) cut of G if
1,(G)= &{X )+ m, (G~ X)-

In other words, an achieving (vertex) cut is a set of vertices for which the
weighted integrity measure is obtained. From now on, an achieving (vertex) cut
will be called an achieving cut throughout the rest of the paper.

Definition 3.2 (Achieving component) For a graph G and achieving cut X, an
achieving component is a connected component of G — X with maximum weight.

Therefore, if G, is an achieving component for the achieving‘cut X, the sum
of the vertex weights of G, is "’w(G‘ X ) Note that, neither an achieving cut

nor an achieving component needs to be unique. An example of an achieving
cute and an achieving component is shown in figure 2 where {v} is the achieving

cut and {u} is the achieving component.

The number of possible vertex cuts for a graph can be exponentially large.
Therefore, no enumerative scheme could possibly lead to a polynomial time
algorithm. However, for an interval graph one need not consider all vertex cuts
exhaustively to compute the weighted edge integrity. The following definitions
and lemmas help us to reduce the size of the search space.

1

1
Figure 2. An example of an achieving cut and an achieving component

Definition 3.3 (Strongly minimal (vertex) cut) For a graph G, X cV(G) is
called a strongly minimal (vertex) cut of G if for everyY c X, the number of

82



connected components in G- X is strictly more than the number of connected
components in G-Y .

Note that the definition of strongly minimal (vertex) cut differs from the
standard definition of minimal (vertex) cut. A subset of a strongly minimal
(vertex) cut may still remain a vertex cut, but the number of connected
components is less. From now on, a strongly minimal (vertex) cut will be
referred to as a strong cut.

Lemma 3.1 For any graph G there is an achieving cut X c V(G) such that X
is a strong cut.

Proof. Let Y be an achieving cut of the graph G that is not a strong cut, Let
u e Y be a vertex such that the number of connected components in G-Y is
same as the number of connected components inG -Y +{u}. Let¥, =¥ —{u}.

Now, m,(G-Y,)<m,(G-Y)+w() - Moreover, w(f;)+alu)=alY) .
Therefore, w(Y)+m,(G-Y)2 w(Y,)+m,(G-Y,).

If ¥, is a strong cut, then the theorem is proved. If not, the same construction
may be repeated on ¥, until a strong cut is obtained. Obtaining a strong cut is
guaranteed because any vertex cut consisting of one vertex is a strong cut.

Definition 3.4 (Interval Graphs) Given intervals, [a,,b,]. i=1,...,n, an
intersection graph G=(V,E) is constructed with V ={\,...,n} and
E= {(i, jl[ai ,b,1N [aj b, ] # ¢}. An undirected graph is an interval graph if it is

isomorphic to some intersection graph constructed from the intervals following
the procedure described.

We mentioned earlier that the class of interval graphs is precisely the class of
chordal cocomparability graphs. For the rest of the paper we shall adopt the
following notation. Given an interval graph G =(V,E) where ¥ ={y,,...,v, }»

and G is isomorphic to the intersection graph of ;the intervals [a,,5,] for
i=1,...,nThe interval [g,,5,] will be called the interval attached to the vertex
v;for i =1,...,n and g; will be called the left end point and b; the right end point.
Further, we shall assume that no two of these intervals have same end points, i.e.,
a,#a; b #b, for j# j and a;#b, for all i, j . For a detailed discussion about
interval graphs, the interested reader may refer to [10].

Given an interval graph G = (V, E), consider a point x on the part of the real
line covered by the intervals attached to the wvertices of G. Let
C(x)= {v,. |xe [a,,5, ]} Obviously, if min, b, < x < max, a;, then C(x) defines a

83 i
|



vertex cut of G. The following definition and lemma establish a relation between
strong cuts and C(x)’s for an interval graph.

Definition 3.5 (Minimal local (vertex) cut) Let G be an interval graph
withV ={v,,...,v,} . Consider a point x such that min, b, < x <max, a, . If the

end point immediately to the left of x is a right end point and the end point
immediately to the right of x is a left end point, then C(x) is called a minimal
local (vertex) cut.

Figure 3 gives examples of minimal local (vertex) cuts.

012345678910111213141516
a c d g

b e

Local cuts are C(4.5)={b}, C(7.5)={b}, C(10)={d, f}
Figure 3. An example of an interval graph and minimal local (vertex) cuts

In the rest of the paper, minimal local (vertex) cuts will be called local cuts.

It is to be noted that minimal cuts are not dependent on the particular interval
representation of G. However, this fact has no bearing on our problem. The
following lemma and discussion will show that.

Lemma 3.2 Any strong cut for an interval graph can be expressed as a union of
local cuts.
Proof. Let C be a local cut. Let v, e C. There exist v,,v, both adjacent to v,

that belongs to different components of G —C . Without loss of generality, it
may be assumed that all intervals intersecting (b,,a ,) belong to C. Choose

v,,v, such that

84



1. v,,v, areeither v, v, or they intersect (bna})'

2. No interval begins or ends in (b, .a, )
Construct a cut C, by taking vertices represented by intervals
intersecting (b,,,aq)- Then C; contains v, and is a strong cut. Note that

C=U:ECCS’

Let CC be the class of all possible subsets of vertex set of the graph G. Note
that the integrity of graph G is the minimum of @(X)+m, (G- X) where X
belongs to C°. Let CY be the class of all minimal local cuts of G.

Let CF be the class of all minimal vertex cuts of the interval graph G. Let
C? be the class of all vertex cuts which can be expressed as a union of minimal
local cuts and C? be class of all possible vertex cuts of G. From Lemma 3.2 we
know that C¢ ¢ C§ < C$ . Further, it follows from Lemma 3.1 that

migla(X)+m, (G- X)}= minfa(X)+ m, (G- X}

Therefore,
minfol(xX)+my (G- X)}= minfa(x)+ m, (G- X)}

Therefore we shall try to compute min{a(X )+ m, (G- X)}-
XeC?

Algorithm 3.1 computes all local cuts of an interval graph G. It is to be noted
that a naive implementation of Algorithm 3.1 executes it in O(n?) time.

Algorithm 3.1

Algorithm Locally-minimal-cuts(G);

Input: An interval graph G in its interval representation.
Let ¥(G) ={v,,...,v, }with v; represented by
la,8] fori=1,...,n.
Further, let all a;’s and b;’s be distinct.

Output: Local cuts C(a,),---,C(a,)

Data structure: end-points of type record containing two fields,
value: real and att € {left, right}
Step 1: Construct records of type end-points x,,...,x,, as follows,

fori=1,...,n do
Xy value « a;; x,, , att « left;
x,, value « b; x,,.att « right;

enddo
Step 2: Sort x,,...,x,, in non-decreasing order using value as key.

8



Let the sorted form be y,,...,y,,
Step3: k «0; i Min, gy J5 V € Y, value
Step 4: for i « 2 to 2ndo
if y,.att =leftand y,_ att = right and y, value > v then
ke—=k+1;

value+ y,_, value
o « Yi Yi .

Cla,) « {vp|y,.va1uee (ap,bp]}
endif
enddo

Now the problem of finding the weighted vertex integrity of an interval graph
G reduces to finding a vertex cut X of G such that
1. X can be expressed as union of local cuts generated by Algorithm 3.1,
and

2. a(X)+m, (G- X) is minimum among all vertex cuts of G satisfying 1.

Note that, Algorithm 3.1 generates a linear order among the vertex cuts that it
computes. This order is important and will be used in our Algorithms later.
Let the cuts generated by Algorithm 3.1 be C(a,),--+,C(,) (in the order

they are generated). Note that o, ’s are sorted in non-decreasing order. Define
comp(i, j) = {vp Iap >a;,b, < a,-} . Note that any connected component
generated by a cut that can be expressed as the union of some of
C(a,),-+,C(a,) can be expressed in the form comp(i, j) for some i, j . Further,
note that C(a;) - C(a;,,) = Ce)) - (Cl@,, YU C(@,y,,)) forall ik, j.

To solve the weighted vertex integrity problem, we need to solve the
following problem first.

Definition 3.6 (Restricted weighted vertex integrity) Given an interval graph
G, C(a)), -, C(a,) cuts of G generated by Algorithm 3.1, weight function

@:V > R20and g,e R20 for i=1,...,k, find a vertex cut X of G such

that
1. X can be expressed as the union of some of C(g,),---,C(a,);

2. m(G-X)<K, and
3. forany X’ satisfying 1 and 2, o X)< ofX")

Let us consider two local cuts C(a;) and C(e,)- Let all intervals beginning
after @, and ending before , from a connected graph. If the weight of this

86



connected graph exceeds K, then at least one of Cle,,), . Cla,,) should be
a subset of the vertex cut X. Let 4, = {C(am ) Cl@,, )} . Further, if
4,;c 4, 7 then any local cut that is an element of 4, ; also belongs to A‘,,‘f.

Wy =

Therefore, we need to consider only those 4, ’s such that, no 4, is a subset of
another, Obviously, there exists only O(n) such A, ’s . Further, at most one
4, ; begins with C(a,), so we do not need two subscripts to describe 4, ;- We
denote 4, by 4,.

Clearly, the achieving cut X should be such that at least one local cut from
each A, should be a subset of X and the weight of X should be minimum,
Formally the problem is described as follows, Given a set V, a positive weight
function @ on V. C(e,),---,C(e,) subsets of ¥, 4,,...,4, classes of sets
C(,),--,C(a,), find a class of sets C(q,),--,C(,), 4, such that, AN 4, # ¢

and the weight of the union of all sets belonging to 4 is minimum. The
NGWHSP algorithm developed in the next section solves this problem.
Algorithm 3.2 describes how we use that subroutine to solve the restricted
weighted integrity problem.

Algorithm 3.2 j
Algorithm restricted-weighted-vertex-integrity(G, @, C,,---,C,, @,,-*,@,,K)
Input: G an interval graph;
Weight function @:V(G) > R20
Cuts C(a,),-+,C(a,) generated by Algorithm 3.1;
K e R 20, threshold;
Output: C c V(G), solution of restricted weighted vertex integrity problem.
Step 1: @, ¢~ ; @, & o}
C(a,) « 0; C(a,,,) « 0
pe0
Step 2: for i &1 to kdo \
Step 2a: for j i tokdo

Step 3: for p’ i tojdo _.
if Cle,)cC(a,,) UC(a 1) then
goto step 2a;
endif
enddo
Step 4: if w(comp(i-1,j+1))> K then
pep+l;

87



4, «{c@),-,Cleph

goto step 2;
endif
enddo
enddo
Step 5: return NGWHSP(C,,---,C,,,A,,--.,Ap,w)

Note that Step 1 can be computed in O(1) time. The amortized cost for Step 3
is O(n*logn) . For Step 4, the total cost isO(n*). Step 5 takes time O(n) .
Therefore, the time complexity of the algorithm is O(n* logn) .

To find the weighted vertex integrity, we consider all possible comp(i, j) as

a possible achieving component. Then the restricted weighted vertex integrity
algorithm is used to find a minimum weight cut such that the particular
comp(i, j) becomes the maximum weight component.

Algorithm 3.3
Algorithm weighted —vertex-integrity(G, @, C,,---,C,, @,,---,@,)
Input: G is an interval graph;
Weight function @ : ¥ (G) » R20;
Cuts C,,---,C, generated by Algorithm 3.1;
Representatives of cuts g, ,---, @, ;
Output: C < V(G), an achieving cut;
Step 1: 4_cut « C,U---UC,;
maxv & m,(G—-A_cut);
int egrity « maxv+a(A4_cut);
Co ¢ Cy,, 9
Oy =00 ; @,  °;
Step 2: for i < 0 to kdo
Step 2a: for j ¢ i+1 tok+ldo

Step 3: for pe—i+1to j—1do
ifcp cC UC, then
goto step 2a;
endif
enddo v
Step 4: if w(comp(i, j)) 2 max v then

t_A_cut «CUC,U
restricted-weighted-vertex-integrity( G[— 0,2, ], @

C -C,....C,-C,ae,...,a,,, o(comp(i, /U

88



restricted-weighted-vertex-integrity( G ,.0«',- s ool o,
Cin—Cps.rs Gy =Cpay,,,...,a,, W(comp(i, j)));

if @)t _ A _cut) + a(comp(i, j)) < int egrity then
A _cute—t_A_cut;
integrity « a(t _ A_ cut) + w(comp(i, j));

endif

endif
enddo

enddo ,
Step 1 can be computed in O(n) time. The amortized cost of Step 3 is

O(n* logn) . Step 4 costs O(n® logn). Therefore, the time complexity of the
algorithm is O(n® logn).

4. NGWHSP algorithm

The hitting set problem is the problem of finding a minimum cardinality set
that has non-empty intersection with each of the sets in a given collection.
Formally, ‘

Definition 4.1 (Hitting Set Problem or HSP) Given a collection of sets
A,..., 4, cU,find aset satisfying following conditions,

().BNA #¢ forall i=1,....k,and
(2). For all C c U satisfying (1), |Bj<|c] -

The following theorem about HSP is taken from [12].

Theorem 4.1 Hitting set problem is NP-complete even when |,4..|52 Jor all

i=1...k.

In an attempt to generalize HSP, we replace the set of atomic elements in
HSP by a set of sets. The structure of a generalized HSP can be described as
follows. Let U be a set. A non-negative weight function w is defined on U. Let
B,,...,B, be subsets of U. Let {4,,..., 4, } be a collection of sets, each of which

is a subset of U. In other words, each 4, is a collection of some B,’s(1< j<n)
The weight of 4, is defined as the weight of the set obtained by taking the union
of all B ,’s belonging to 4,. The generalized weighted hitting set problem can
then be described as finding a minimum weight subset of {Bl,,,., B,.} such that
each has non-empty intersection with that set. ‘



The motivation behind this generalization is as follows. The sets B,,...,B,
are local cuts computed in section 3. The 4, ;'8 described in section 3 are 4,’s

here. Obviously, the solution to the problem will give a vertex cut X such that
there exists at least one local cut from each 4, ; which is a subset of X and

weight of X is minimum.
For convenience of further discussion, we have adopted index set notation,
An index set [ is subset of {1,...,n}. Thus I denotes a subset of {B,,..., B, }, viz.,

the set {B, |ie [}. Further, any subset of {B,,..., B, } has an index set. Define the
weight of an index set I as the weight of the union of the B,’s such that ie /. A
formal definition of generalized weighted hitting set problem is the following:

Definition 4.2 (Generalized weighted hitting set problem or GWHSP) Let U
beaset, w:U—->R20 4,...,4, c P(U), where P(U) is the power set of U,

and A=U4,=1{B,,...,B,} - Find Ic{,..,n} satisfing following two
conditions,
(D). ILNI#¢ forall i=\,....k,where | = {ilBJ € Az}’ and
(2). w(I)Sw(I’) for all I’ satisfying (1), where w(I) is defined by
w(l)= w(Ufel By).
An instance of GWHSP is denoted by GWHSP (4,,...,A,,A,U,w). Any I
satisfying property (1) is called a covering of 4,,..., 4, -

Clearly, GWHSP is NP-complete even when |4,|<2 and the 4, ’s are
mutually disjoint. However, in this paper a polynomial time algorithm is
presented fore a class of GWHSP, called Nice GWHDP or NGWHSP.
Definition 4.3 The collection of sets A,,...,A, C A is said to satisfy the

consecutive retrieval property if the members of A can be linearly ordered in
such a way that all members of A, occur consecutively in the linear order for

all i =1,...,k. The corresponding linear order is called a consecutive ordering
of A.

Definition 4.4 (Nice GWHSP or NGWHSP) GWHSP (4,,...,4,,A,U,w) is

called nice if
1. A,...,4, c A satisfies the consecutive retrieval property, and

2. ifB,,...,B, isaconsecutive ordering of A, then B, B, c B, for all
isks<j.

50



Without loss of generality, we assume that 4 d4 , for 1<i# j <k, because
if 4¢ 4, for some i j , then solving GWHSP over the class
{4,,....4,,,4,,,...,4,} is equivalent to solving GWHSP over the class
{4,...4,} |

Let us assume 'AI =n and B,,...,B, is the consecutive ordering of A. Let
left (4,) be the index of the first member of 4; in this ordering and right
right(4,) be the index of the last element of 4;. Without loss of generality, we
can assume that 4,,..., 4, are arranged in increasing order of left(4 4;)’s. In other
words, we assume that Jeft(4,)< - <Ieﬁ(Ak) . Further, define
be(B,) = X J
Definition 4.5 Given a NGWHSP (4,,..., A, A,U,w), a restriction of a set 4; by
B, € A is defined as

4,/B,={B-B|Be 4}

Definition 4.6 Given a NGWHSP(A,,...,4,,A4,U,w), a restricted NGWHSP is

defined by ‘
W(I/Bj)= w(UlelBl _B/)

Note that if ;> right(4;) then NGWHSP [j,i] is a nice GWHSP. Let
. = ¢ and let us extend NGWHSP (4,,..., A,,A,U,w) by replacing 4 with
AU{ .} - Let S/ be a solution of NGWHSP Ll (45...s 4, AU, W)
for j =right(4,)+1,...,n+1, for i=0,...,k . Then the following recursive
relation leads to a polynomial time algorithm for NGWHSP (4,,..., A, , 4,U,w).
S =¢ for j=0,..,n+1.
s/ ={P}Usbpe(s,)

where,
lefi(4)) < p <righi(4,)
and
wip}U Ska, /B ) menw({r}u Siuar /B )
for i=1,...,k and j=right(4,)+1,...,n+1.

91



Clearly S/ contains a solution of NGWHSP [j,0] (4,,...,4,,4,U,w).
Let us assume S,j contains the solution of NGWHSP|j,i] (4yyeer 4, AU, W)
for i=1,..., p and j = right(4,) +1,...,n+1. We need to show that same holds
for §., for j=right(4)+1,.,n+1 . Let I’ be a solution of
NGWHSP(j,p+1](4,,...,4,,4,U,w). Let B be the minimum index in I’ such
that Bﬂ €A o1

Need to show that w(I /B, )2 W(S,’;ﬂ / B, ) Note thatJ U{B} < I’. Therefore,

wlI’/B, )2 iy U{8YB,)
Further, O
wlyU{BY/B,) = wl8,UU.., B,)-B))
= W(( pes B, =By ‘BJ)U(Bﬂ ‘Bi».
= WU, B,-B,)U(8,-8,)
= w(U,., B, -B,)+wlB,-B,)
= wlJ/B,)+w(B,-B,) (3
Note that, J covers 4,..., et55) Therefore,
W18, WSt /8,) ®
Therefore,
wlJU{BYB,) = w(sts,, /B, )+w(B,~B,)
= W({:B}U Steen / B, )
> w(s’,/B,) @

To write the algorithm, the following variables are required besides those
already defined.

1. W, j) containing w{B,N B, )-
2. SW(, j) containing w(s/ /B, ).

Algorithm 4.1
Algorithm NGWHSP(B,,...,B,, 4,,..., 4,,w) ;

Input: B,,..., B, acollection of sets;
A,.... 4, c{B,,....B, };
(4,,..., 4,,{B.,-...B, UL B,,w)

92



forms an instance of nice GWHSP.

Output: §;*, a solution of
NGWHSP(4,,...,4,,{B,,..., B, UL, B,, w)-

Step 1: Initialize (i) for all i.j.
Initialize SW(0,j) by 0 for all j; ‘
Initialize S by ¢ for all j;

Step 2: for { <1 to kdo
for j « right(4,)+1 ton+1do
SW (i, ]) ¢ eo;
for r « lefi(4,) to right(4,) do
Step 3: t _weight < w(B,)—~W(r, j)+SW(be(B,),B,);
if 1 _ weight < SW (i, j) then
SW(i, j) ¢t _weight ;
Step 4: S; —{riUs;, )5
endif
enddo

enddo
enddo

Step 1 can be performed in o(lngl B,.In’) time. Under the assumption that

- B,|=0(n), step 1 can be performed in O(n*) time. Steps 3 and 4 can be

computed in O(I) time. Hence, the body of the algorithm can be performed in
O(kn?) time. If k = O(n), then the time complexity of the algorithm is O(r’).
For an example about NGWHSP algorithm, refer to our technical report [15].

5. Conclusion

The main contribution of this paper is a polynomial time algorithm for
computing the weighted integrity of interval graphs. We have discussed how the
algorithm may be used for computing the vulnerability of some real life
networks and how the weighted integrity may be useful in the area of soft real
time computation.

One of the important features of the weighted integrity is that the measure
may be used to incorporate the subjective measure of reliability of the nodes in a
measure of the network vulnerability. It happens too often that system managers
have some idea about the reliability of each system but neither any idea nor any

93



measure of the probability of failure. Yet most of the classical research on
reliability is based on the probabilities of failure of individual nodes.

However, a lot more work needs to be done in this area. One important
possible future direction of research is how to determine the weights of the
nodes effectively. Further, the weighted integrity problem is NP-complete for
most of the commonly known network topologies. Therefore, it is important to
find approximation algorithm. Though the weighted integrity problem is NP-
complete in strong sense for general graphs, it is not the case for trees and some
other commonly used network topologies. Therefore, it may be possible to find
pseudo-polynomial algorithms for those special classes.

Some interesting investigation may be carried out from graph theoretical
standpoint also. The discussion in Section 2 shows that the weighted integrity
problem may be polynomial for the class of cocomparability graphs. In this
paper we have shown that it is so for interval graphs, a subclass of that class.
However, the problem remains open for the whole class of cocomparability
graphs. Even if the problem is hard for this family, it may be answered relatively
easily for another important subclass, permutation graphs.

References

[I] C. A. Barefoot, R. C. Entringer and H. Swart, Integrity of trees and
powers of cycles. Congressus Numerantium 58(1987), 103-114.

(2] C. A. Barefoot, R. C. Entringer and H. Swart, Vulnerability in graphs — a
comparative survey, J. Combin. Math. Combin. Comput. 1(1987), 13-22.

[3] S. Ray and J. S. Deogun, Computational Complexity of Weighted
Integrity, J. Combin. Math. Combin. Comput. 16(1994) pp. 65-73.

(4] K. S. Bagga and J. S. Deogun, A variation on the edge integrity,
Congress. Numer. 91(1992), 207-211.

[5] L. W. Beineke et al., The integrity of the cube is small, J. Combin. Math.
Combin. Comput. 9(1991).

[6] K. S. Bagga, L. W. Beineke, W. D. Goddard, M. J. Lipman, and R. E.
Pippert, A survey of integrity, Discrete Appl. Math. 37/38(1992), 13-28.

[7] L.H. Clark, R. C. Entringer and M. R. fellows, Computational complexity
of integrity J. Combin. Math. Combin. Comput. 2(1987), 179-191

(8] K.S. Bagga et al., On the honesty of graph complements, Discrete Math.,
122(1993), no. 1-3, 1-6.

[9] K.S.Bagga et al., Some bounds and an algorithm for the edge-integrity of
trees, Ars Combinatoria 35(1993), A, 225-238.

[10] M.C. Golumbic, Algorithmic graph theory and perfect graphs, Academic
Press, New York. 1980.
(11] M.R. Fellows and S. Stueckle, The immersion order, forbidden subgraphs

and the complexity of network integrity, J. Combin. Math. Combin.

94



(12]
(13]
(14]

(15]

Computing. 6(1989), 22-32.

M. R. Garey and D. S. Johnson, Computers and Intractibility: A Guide to
the Theory of NP-Completeness, W. H. Freeman, San Fransisco, 1979.

W. Goddard, On the Vulnerability of Graphs, Ph.D. Thesis, Univ. of
Natal, Durban, South Africa, 1989.

W. Goddard and H. C. Swart, On the integrity of combinations of graphs,
J. Combin. Math. Combin. Computing. 4(1988), 3-18.

S. Ray, R. Kannan, D. Zhang and H. Jiang, The Weighted Integrity
Problem is Polynomial for Interval Graphs, Technical Report, Department
of Computer Science, University of Alabama, TR-2004-01.



