Orientable embedding distributions by genus for certain type of non-planar graphs (I)

Liangxia Wan wanliangxia@126.com Yanpei Liu*

ypliu@center.njtu.edu.cn
Department of Mathematics
Beijing Jiaotong University, Beijing 100044, P.R.China

Abstract—We introduce certain type of surfaces M_j^n , for j = 1, 2, ..., 11 and determine their genus distributions. At the basis of joint trees introduced by Liu, we develop the *surface sorting method* to calculate the embedding distribution by genus.

Keywords- Embedding distribution; joint tree; surface; genus.

1. Introduction

Graphs considered in this paper are connected graphs with a cycle. Surfaces are closed 2-dimensional manifolds without a boundary. Embeddings of a graph considered are always assumed to be orientable.

Let G be a graph and T be a spanning tree of G. For each non-tree edge e, a joint tree \tilde{T} is obtained by splitting the edge e into two semi-edges with letters e^+ and e^- . For notational convenience, when there is no confusion arises in the context, we shall use e for e^+ throughout this paper. For a rotation σ of G, let G_{σ} be an

^{*}Partially supported by NNSFC under Grants No. 60373030 & No. 10571013

embedding determined by σ . As shown in [2], there is a joint tree \tilde{T}_{σ} corresponding to G_{σ} . Then,

Lemma 1.1 [2] For any $\sigma_1 \neq \sigma_2$, the embeddings G_{σ_1} and G_{σ_2} , as well as \tilde{T}_{σ_1} and \tilde{T}_{σ_2} are not homeomorphic.

Lemma 1.2 [2] Let T and T' be two distinct spanning trees of a graph G, Σ the rotation set of G. There exists a bijection between (Σ, \widetilde{T}) and $(\Sigma, \widetilde{T'})$ where $(\Sigma, \widetilde{T}) = \{\widetilde{T}_{\sigma} | \sigma \in \Sigma\}$ and $(\Sigma, \widetilde{T'}) = \{\widetilde{T'}_{\sigma} | \sigma \in \Sigma\}$.

For a joint tree \widetilde{T}_{σ} of G, $\mathcal{P}_{\widetilde{T}}^{\sigma}$ induced by all semi-edges of \widetilde{T}_{σ} is regarded as the *embedding surface* of \widetilde{T}_{σ} . Let S be a collection of surfaces. For a surface S, let o(S) be the genus of S. In order to determine o(S), an equivalence \sim defined on S is introduced. It can be determined by the following operations:

 $OP1. AB \sim (Ae)(e^-B)$ where $e \notin AB$;

OP2. $Ae_1e_2Be_2^-e_1^- \sim AeBe^- = Ae^-Be$ where $e \notin AB$;

 $OP3. Aee^-B \sim AB$ where $AB \neq \emptyset$.

Further, it is seen that each embedding surface is equivalent to one, and only one, of the following canonical forms ([1]) of surfaces:

$$O_{i} = \begin{cases} a_{0}a_{0}^{-}, & \text{if } i = 0; \\ \prod_{k=1}^{i} a_{k}b_{k}a_{k}^{-}b_{k}^{-}, & \text{if } i \geq 1 \end{cases}$$

which are the sphere (i = 0), torus (i = 1) and orientable surfaces of genus i $(i \ge 2)$. For the detailed information about the background, see [1, 2].

For a graph G, let $g_i(G)$ be the number of embeddings with genus i. Then the embedding polynomial of G is as follows:

$$f_G(x) = \sum_{i=0}^{\infty} g_i(G)x^i.$$

Gross and Furst [3] introduced the embedding distributions of graphs by genus. Later, orientable embedding distributions of circular ladders and Möbius ladders [4], closed-end ladders and cobblestone paths [5], bouquets of circles [6] and Ringel ladders [7] were

introduced and studied. The total embedding distributions of neck-laces, closed-end ladders and cobblestone paths [8] and bouquets of circles [9] were also defined and investigated. In this paper, the genus distributions of M_j^n are calculated for a positive integer n and $j=1,2,3,\cdots,24$ (See Section 3). In Section 4, the following theorem is proved.

Theorem 4.1 $g_i(G_n)$ is a linear combination $g_{m_j}(n)$'s for $j = 1, 6, 0 \le m \le i$ and $n \ge 1$.

By sorting the embedding surfaces of G_n and using the genus distribution of M_j^n the embedding distribution of G_n is computed, which is the *surface sorting method*.

2. Lemmas

Lemma 2.1 [1] Let A, B, C, D and E be linear sequences ([1]). Then $AxByCx^-Dy^-E \sim ADCBExyx^-y^-$.

Lemma 2.2 [2] Let S and S' be surfaces. If $S \sim S'xyx^-y^-$ (of course, $x, y, x^-, y^- \notin S'$), then o(S) = o(S') + 1.

Lemma 2.3 Let A, B, C and D be linear sequences. Then $xABx^-CD \sim xBAx^-CD \sim xABx^-DC$ where $x, x^- \notin ABCD$.

Proof. It follows by applying OP1, OP2 and OP3, as well as their inverses.

Corollary 2.4 Let A, B, C and D be linear sequences. Then, $AxBx^-yCy^-zDz^- \sim xBx^-AyCy^-zDz^- \sim xBx^-yCy^-AzDz^-$ where $x \neq y \neq z$ and $x, y, z, x^-, y^-, z^- \notin ABCD$.

Proof. This follows from Lemma 2.3.

Lemma 2.5 Let A,B,C and D be linear sequences. Then, $AxBx^-yCy^-zDz^- \sim BxAx^-yCy^-zDz^- \sim CxAx^-yBy^-zDz^- \sim DxAx^-yBy^-zCz^-$

where $x \neq y \neq z$ and $x, y, z, x^-, y^-, z^- \notin ABCD$.

Proof. By applying Lemma 2.3 three times and Corollary 2.4,

$$\begin{split} AxBx^-yCy^-zDz^- \sim Bx^-yCy^-AxzDz^- &= yCy^-AxzDz^-Bx^-\\ \sim yCy^-x^-AxzDz^-B &= ByCy^-x^-AxzDz^-\\ \sim x^-AxByCy^-zDz^- \sim Bx^-AxyCy^-zDz^-. \end{split}$$

By Corollary 2.4, the foregoing conclusion and Lemma 2.3,

$$AxBx^{-}yCy^{-}zDz^{-} \sim xBx^{-}AyCy^{-}zDz^{-} = AyCy^{-}zDz^{-}xBx^{-}$$
$$\sim CyAy^{-}zDz^{-}xBx^{-} = xBx^{-}CyAy^{-}zDz^{-}$$
$$\sim CyAy^{-}xR_{2}x^{-}zDz^{-}.$$

Similarly, $AxBx^-yCy^-zDz^- \sim DxAx^-yBy^-zCz^-$.

Fig. 1: G_0 and its joint trees

For example, let G_0 be a graph in Fig. 1. Let a_1, a_2 be non-tree edges. Let each vertex have a clockwise rotation in joint trees of G_0 . Then, four joint trees of G_0 are shown in Fig. 1 (1), (2), (3) and (4). Their embedding surfaces are $a_1a_2a_1^-a_2^-$, $a_1a_1^-a_2^-a_2$, $a_1a_2a_2^-a_1^-$ and $a_1a_2^-a_1^-a_2$ in correspondence. Then, $f_{G_0}(x) = 2 + 2x$.

3. Genus Distributions of Some Types of Surfaces

For a set of surfaces M, let $g_i(M)$ be the number of surfaces with genus i in M. The genus distribution of M is the sequence: $g_0(M), g_1(M), g_2(M), \cdots$. The genus polynomial of M is as follows:

$$f_M(x) = \sum_{i=0}^{\infty} g_i(M) x^i.$$

Given a positive integer n, let y_1, y_2, \dots, y_n denote n distinct letters. Let $Y_1 = y_{k_1} y_{k_2} y_{k_3} \cdots y_{k_r}$, $Y_2 = y_{k_{r+1}} y_{k_{r+2}} y_{k_{r+3}} \cdots y_{k_n}$, $Y_3 = y_{k_r} y_{k_r$

 $o(aY_{1}a^{-}Y_{2}Y_{4}Y_{3}) = o(aY_{3}^{"}a^{-}Y_{1}^{"}Y_{4}^{"}Y_{2}^{"}).$ Since $o(aX_1a^{-}X_2X_4X_3) = o(aX_3^3a^{-}X_4^4X_1^8X_1^8)$, $aX_{11}^{3}a^{-}X_{11}^{11}X_{11}^{4}X_{21}^{5} \sim aX_{11}^{3}a^{-}X_{11}^{4}X_{11}^{5}X_{11}^{5}$

Obviously, ψ is a bijection. By Lemma 2.3,

function ψ from M_1^n to M_{17}^n such that $\psi(\alpha Y_1\alpha^{-}Y_2Y_4Y_3) = \alpha Y_3^n\alpha^{-}Y_1^nY_4^nY_2^n$. $Y_3'' = y_{k_7}^- \cdots y_{k_2}^- y_{k_2}^- y_{k_1}^-$ and $Y_4'' = y_{k_1}^- \cdots y_{k_{r+3}}^- y_{k_{r+2}}^- y_{k_{r+1}}^-$. Define a $\text{Let } X_1'' \; = \; y_{m_s} \cdots y_{m_3} y_{m_2} y_{m_1}, \; X_2'' \; = \; y_{m_n} \cdots y_{m_{s+3}} y_{m_{s+2}} y_{m_{s+1}},$ it follows that $f_{M_T^n}(x) = f_{M_{16}^n}(x)$.

Obviously, ϕ is a bijection. Since $o(aY_1a^-Y_2Y_4Y_3) = o(aY_1^*a^-Y_1^*Y_3^*Y_4^*)$, $\phi(\alpha Y_1 \alpha^- Y_2 Y_4 Y_3) = \alpha Y_1^{\prime} \alpha^- Y_1^{\prime} Y_3^{\prime} Y_4^{\prime}.$

to M_{16}^n as follows:

 $y_{n+1-m_1}^-y_{n+1-m_2}^-y_{n+1-m_3}^-\cdots y_{n+1-m_s}^-$. Define a function ϕ from M_1^n $y_{n+1-k_{r+2}}y_{n+1-k_{r+3}}\cdots y_{n+1-k_n}$ $Y_1'=y_{n+1-k_1}y_{n+1-k_2}y_{n+1-k_3}\cdots y_{n+1-k_2}y_{n+1-k_3}\cdots y_{n+1-k_2}y_{n+1-$

Proof. For Y_1, Y_2, Y_3 and Y_4 defined above, denote $Y_1' = y_{n+1-k_{r+1}}$ $M_{2q}^{n}(x)$

 $=(x)_{22}^{n}Ml=(x)_{22}^{n}Ml=(x)_{21}^{n}Ml$ pur $(x)_{12}^{n}Ml=(x)_{01}^{n}Ml$ $(x)_{02}^{n}Ml$ $=(x)_{0}^{m}Wf'(x)_{0}^{m}Wf=(x)_{0}^{m}Wf'(x)_{0}^{m}Wf=(x)_{0}^{m}Wf=(x)_{0}^{m}Wf=(x)_{0}^{m}Wf$ Lemma 3.1 $f_{M_1^n}(x) = f_{M_{13}^n}(x)$, $f_{M_2^n}(x) = f_{M_{14}^n}(x)$, $f_{M_3^n}(x) = f_{M_{15}^n}(x)$,

 $M_{20}^{n} = \{Y_2Y_4aY_1a^{-}bY_3b^{-}\}, M_{21}^{n} = \{Y_2Y_3aY_1a^{-}bY_4b^{-}\}, M_{22}^{n} = \{aY_1\}, M_{22}^{n} = \{aY_2\}, M_{22}^{n} = \{aY_1\}, M_{22}^{n} = \{aY_2\}, M_{22}^{n$ $\{a\chi_3a^-\chi_1\chi_4\chi_2\},\ M_{18}^n=\{a\chi_4a^-\chi_1\chi_2\chi_3\},\ M_{19}^n=\{\chi_3\chi_4a\chi_1a^-b\chi_2b^-\},$ $\{\chi_1\chi_3\chi_4\chi_2\},\ M_{15}^n=\{\chi_1\chi_4\chi_2\chi_3\},\ M_{16}^n=\{\alpha\chi_2\alpha^-\chi_1\chi_3\chi_4\},\ M_{17}^n=\{\chi_1\chi_3\chi_4\chi_5\},\ M_{17}^n=\{\chi_1\chi_3\chi_5\},\ M_{17}^n=\{\chi_1\chi_3\chi_5\},\ M_{17}^n=\{\chi_1\chi_3\chi_5\},\ M_{17}^n=\{\chi_1\chi_3\chi_5\},\ M_{17}^n=\{\chi_1\chi_3\chi_5\},\ M_{17}^n=\{\chi_1\chi_3\chi_5\},\ M_{17}^n=\{\chi_1$ $a^{-b}Y_{3}b^{-c}Y_{4}c^{-}\}$, $M_{12}^{n} = \{aY_{2}a^{-}Y_{3}Y_{1}Y_{4}\}$, $M_{13}^{n} = \{Y_{1}Y_{4}Y_{3}Y_{2}\}$, $M_{14}^{n} = \{Y_{1}Y_{4}Y_{3}Y_{2}\}$, $M_{14}^{n} = \{Y_{1}Y_{4}Y_{3}Y_{2}\}$ $M_0^n = \{Y_1 Y_3 a Y_2 a^- b Y_4 b^-\}, M_{10}^n = \{Y_1 Y_4 a Y_2 a^- b Y_3 b^-\}, M_{11}^n = \{Y_1 a Y_2 a^- b Y_3 b^-\}, M_{11}^n = \{Y_1 a Y_2 a^- b Y_3 b^-\}, M_{12}^n = \{Y_1 a Y_2 a^- b Y_2 a^- b Y_3 b^-\}, M_{13}^n = \{Y_1 a Y_2 a^- b Y_3 b^-\}, M_{14}^n = \{Y_1 a Y_2 a^- b Y_3 b^-\}, M_{15}^n = \{Y_1 a Y_2 a^- b Y_3 a^- b Y_3 a^-\}, M_{15}^n = \{Y_1 a Y_2 a^- b Y_3 a^- b Y_3 a^-\}, M_{15}^n = \{Y_1 a Y_2 a^- b Y_3 a^- b Y_3 a^-\}, M_{15}^n = \{Y_1 a Y_2 a^- b Y_3 a^- b Y_3 a^-\}, M_{15}^n = \{Y_1 a Y_2 a^- b Y_3 a^- b Y_3 a^-\}, M_{15}^n = \{Y_1 a Y_2 a^- b Y_3 a^- b Y_3 a^-\}, M_{15}^n = \{Y_1 a Y_2 a^- b Y_3 a^- b Y_3 a^-\}, M_{15}^n = \{Y_1 a Y_2 a^- b Y_3 a^- b Y_3 a^-\}, M_{15}^n = \{Y_1 a Y_2 a^- b Y_3 a^- b Y_3 a^-\}, M_{15}^n = \{Y_1 a Y_2 a^- b Y_3 a^- b Y_3 a^-\}, M_{15}^n = \{Y_1 a Y_2 a^- b Y_3 a^- b Y_3 a^-\}, M_{15}^n = \{Y_1 a Y_2 a^- b Y_3 a^- b Y_3 a^-\}, M_{15}^n = \{Y_1 a Y_2 a^- b Y_3 a^- b Y_3 a^-\}, M_{15}^n = \{Y_1 a Y_2 a^- b Y_3 a^- b Y_3 a^-\}, M_{15}^n = \{Y_1 a Y_2 a^- b$ $\{aY_1X_4a^-Y_2Y_3\}, M_1^n = \{aY_1a^-Y_2Y_4Y_3\}, M_8^n = \{Y_1Y_2aY_3a^-bY_4b^-\},$ $\{Y_1Y_3Y_2Y_4\},\ M_n^n=\{aY_1Y_2a^-Y_3Y_4\},\ M_5^n=\{aY_1Y_3a^-Y_2Y_4\},\ M_6^n=\{aY_1Y_3a^-Y_2Y_4\},\ M_7^n=\{aY_1Y_3a^-Y_2Y_4\},\ M_7^n=\{aY_1Y_2a^-Y_2Y_4\},\ M_7^n=\{aY_1Y_2a^-Y_2Y_4\},\ M_7^n=\{aY_1Y_2a^-Y_2X_4\},\ M_7^n=\{aY_1Y_2a^-Y_2A^-Y_2X_4\},\ M_7^n=\{aY_1Y_2a^-Y_2A^$ for $p \neq q$. Let $M_1^n = \{Y_1 Y_2 Y_3 Y_4\}$, $M_2^n = \{Y_1 Y_2 Y_4 Y_3\}$, $M_3^n = \{Y_1 Y_2 Y_4 Y_3\}$ $pm \neq qm$, $pk \neq qk$, $n \geq s$, $r \geq 0$ and $0 \leq r$, $pk \neq kq$, $pk \neq mq$ $k_n \le n$, $1 \le m_1 < m_2 < m \le n$, $n \ge m$, $n \ge m$, $n \ge m$ $> \cdots > y^2 > y^3 > \cdots > y^4 >$ $y_{m_1}^{m_1}y_{m_2}^{m_2}y_{m_3}^{m_3}\cdots y_{m_s}^{m_s}$ and $y_4=y_{m_{s+1}}^{m_{s+1}}y_{m_{s+2}}^{m_{s+2}}y_{m_{s+3}}^{m_{s+3}}\cdots y_{m_n}^{m_n}$ where $y_4=y_{m_s}^{m_1}y_{m_s}^{m_2}y_{m_s}^{m_s}y_{m_s}^{m_2}y_{$

Thus, $f_{M_7^n}(x) = f_{M_{17}^n}(x)$.

All other equalities can be verified in a similar way.

Theorem 3.2 Let $g_{i_j}(n)$ be the number of surfaces with genus i in M_j^n for $n \geq 0$, $i \geq 0$ and $1 \leq j \leq 11$. Let $f_{M_j^0}(x) = 1$. Then, for $n \geq 1$, $g_{i_j}(n) =$

$$\begin{aligned} &4g_{i7}(n-1), \text{ if } j=1 \text{ and } 0 \leq i \leq \left[\frac{n}{2}\right]; \\ &2g_{i2}(n-1) + 2g_{i4}(n-1), \text{ if } j=2 \text{ and } 0 \leq i \leq \left[\frac{n}{2}\right]; \\ &g_{i3}(n-1) + g_{i5}(n-1) + 2g_{i7}(n-1), \text{ if } j=3 \text{ and } 0 \leq i \leq \left[\frac{n}{2}\right]; \\ &4g_{(i-1)_2}(n-1), \text{ if } j=4 \text{ and } 1 \leq i \leq \left[\frac{n+1}{2}\right]; \\ &2g_{(i-1)_2}(n-1) + 2g_{i5}(n-1), \text{ if } j=5 \text{ and } 0 \leq i \leq \left[\frac{n+1}{2}\right]; \\ &2g_{(i-1)_3}(n-1) + 2g_{i10}(n-1), \text{ if } j=6 \text{ and } 1 \leq i \leq \left[\frac{n+1}{2}\right]; \\ &g_{(i-1)_1}(n-1) + g_{(i-1)_2}(n-1) + g_{i7}(n-1) + g_{i8}(n-1), \\ &\text{ if } j=7,12 \text{ and } 0 \leq i \leq \left[\frac{n+1}{2}\right]; \\ &4g_{(i-1)_7}(n-1), \text{ if } j=8 \text{ and } 1 \leq i \leq \left[\frac{n}{2}\right]+1; \\ &g_{(i-1)_5}(n-1) + 2g_{(i-1)_7}(n-1) + g_{i9}(n-1), \\ &\text{ if } j=9 \text{ and } 0 \leq i \leq \left[\frac{n}{2}\right]+1; \\ &g_{(i-1)_6}(n-1) + 2g_{(i-1)_7}(n-1) + g_{i11}(n-1), \\ &\text{ if } j=10 \text{ and } 1 \leq i \leq \left[\frac{n}{2}\right]+1; \\ &2g_{(i-1)_9}(n-1) + 2g_{(i-1)_{10}}(n-1), \\ &\text{ if } j=11 \text{ and } 1 \leq i \leq \left[\frac{n+1}{2}\right]+1. \end{aligned}$$

Proof. Since the proof arguments for these equalities are similar, we shall only prove the typical cases when j=7,12 and $0 \le i \le [(n+1)/2]$, and leave the verifications of the other equalities to the readers. For $n \ge 1$, let $Z_1 = y_{k_1} y_{k_2} y_{k_3} \cdots y_{k_r}$, $Z_2 = y_{k_{r+1}} y_{k_{r+2}} y_{k_{r+3}} \cdots y_{k_{n-1}}$, $Z_3 = y_{m_1}^- y_{m_2}^- y_{m_3}^- \cdots y_{m_s}^-$ and $Z_4 = y_{m_{s+1}}^- y_{m_{s+2}}^- y_{m_{s+3}}^- \cdots y_{m_{n-1}}^-$ where

 $n-1 \ge k_1 > k_2 > k_3 > \cdots > k_r \ge 1, \ 1 \le k_{r+1} < k_{r+2} < k_{r+3} < \cdots < k_{n-1} \le n-1, \ 1 \le m_1 < m_2 < m_3 < \cdots < m_s \le n-1, \ n-1 \ge m_{s+1} > m_{s+2} > m_{s+3} > \cdots > m_n \ge 1 \text{ and } 0 \le r, s \le n-1, \ k_p \ne k_q, m_p \ne m_q \text{ for } p \ne q. \text{ Then, } M_7^{n-1} = \{aZ_1a^-Z_2Z_4Z_3\} \text{ and } M_7^n = \{aa_nZ_1a^-Z_2Z_4Z_3a_n^-, aa_nZ_1a^-Z_2a_n^-Z_4Z_3, aZ_1a^-Z_2a_na_n^-Z_4Z_3, aZ_1a^-Z_2a_nZ_4Z_3a_n^-\}.$

By Lemma 2.1, $aa_nZ_1a^-Z_2Z_4Z_3a_n^- \sim Z_1Z_2Z_4Z_3aa_na^-a_n^-$ and $aa_nZ_1a^-Z_2a_n^-Z_4Z_3 \sim Z_2Z_1Z_4Z_3aa_na^-a_n^-$.

By OP3, $aZ_1a^-Z_2a_na_n^-Z_4Z_3 \sim aZ_1a^-Z_2Z_4Z_3$.

By Lemma 2.3 and OP2,

$$aZ_{1}a^{-}Z_{2}a_{n}Z_{4}Z_{3}a_{n}^{-} \sim aZ_{1}a^{-}Z_{2}a_{n}Z_{3}Z_{4}a_{n}^{-} \sim aZ_{1}a^{-}a_{n}^{-}Z_{2}a_{n}Z_{3}Z_{4}$$

$$= Z_{3}Z_{4}aZ_{1}a^{-}a_{n}^{-}Z_{2}a_{n} = Z_{3}Z_{4}aZ_{1}a^{-}bZ_{2}b^{-}.$$

Thus, for
$$0 \le i \le \left[\frac{n+1}{2}\right]$$
,

$$g_{i_7}(n) = g_{(i-1)_1}(n-1) + g_{(i-1)_2}(n-1) + g_{i_7}(n-1) + g_{i_8}(n-1).(1)$$

Similarly, for $0 \le i \le \left\lceil \frac{n+1}{2} \right\rceil$,

$$g_{i_{12}}(n) = g_{(i-1)_1}(n-1) + g_{(i-1)_2}(n-1) + g_{i_{12}}(n-1) + g_{i_{8}}(n-1).(2)$$

By using induction on n for (1) and (2), $g_{i_{7}}(n) = g_{i_{12}}(n)$.

4. Genus Distributions of G_n

Given a graph G. Let u_0v_0 be an edge on a cycle of G. For a positive integer n, add 2n vertices $u_1, u_2, u_3, \dots, u_n, v_1, v_2, v_3, \dots, v_n$ on e in sequence. Connect u_lv_l $(1 \le l \le n)$ by a new edge a_l to obtain a new graph G_n . Note that when $n \ge 3$, G_n is non-planar.

Theorem 4.1 $g_i(G_n)$ is a linear combination $g_{m_j}(n)$'s for $j = 1, 6, 0 \le m \le i$ and $n \ge 1$.

Proof. Let T_n be a spanning tree of G_n such that u_0u_1 , u_lu_{l+1} , u_nv_1 , v_lv_{l+1} and v_nv_0 are tree edges for $1 \le l \le n-1$. Let each vertex of joint trees have a clockwise rotation at u_l and v_l for $1 \le l \le n$. Let S be an embedding surface of G. Then, $S = Y_4Y_1A_0Y_2Y_3B_0$ such that A_0B_0 is an embedding surface of G_0 where Y_1, Y_2, Y_3 and Y_4 are referred above.

Suppose that $o(A_0B_0) = t$. Then,

$$o(Y_4Y_1A_0Y_2Y_3B_0) = o(Y_4Y_1A_1Y_2Y_3A_1^-) + t.$$

If A_1 is an empty sequence, then $o(Y_4Y_1A_0Y_2Y_3B_0) = o(Y_4Y_1Y_2Y_3) + t$, otherwise we have $o(Y_4Y_1A_0Y_2Y_3B_0) = o(Y_4Y_1aY_2Y_3a^-) + t$.

Thus, the theorem is found.

In fact, let G be a connected graph and e be an edge of G, the Theorem 4.1 still holds.

Fig.2: R_0 , R_n and \widetilde{T}_n^{σ}

For example, let a, b and a_l ($1 \le l \le n$) be non-tree edges for the graph $R_n(\text{Fig.2})$. Let joint trees of R_n have a clockwise rotation at each vertex. Then, embedding surfaces of R_n have four types $Y_4Y_1baY_2Y_3a^-b^-$, $Y_4Y_1abY_2Y_3b^-a^-$, $Y_4Y_1abY_2Y_3a^-b^-$ and $Y_4Y_1baY_2Y_3$ b^-a^- where Y_1, Y_2, Y_3 and Y_4 are referred above. By OP2, OP3 and Lemma 2.3,

$$Y_4Y_1baY_2Y_3a^-b^- \sim Y_4Y_1aY_2Y_3a^- = a^-Y_4Y_1aY_2Y_3$$

= $aY_4Y_1a^-Y_2Y_3 \sim aY_1Y_4a^-Y_2Y_3$

and $Y_4Y_1abY_2Y_3b^-a^- \sim aY_1Y_4a^-Y_2Y_3$.

By Lemma 2.1, $Y_4Y_1abY_2Y_3a^-b^- \sim Y_4Y_1Y_2Y_3aba^-b^-$ and $Y_4Y_1baY_2Y_3b^-a^- \sim Y_4Y_1Y_2Y_3bab^-a^-$.

Thus, $g_i(R_n) = 2g_{i_6}(n) + 2g_{(i-1)_1}(n)$.

The distribution polynomials of R_n for $n=1,2,3,\cdots,7$ are as follows:

$$f_{R_1}(x) = 2^2(1+3x);$$

$$\begin{split} f_{R_2}(x) &= 2^2(1+11x+4x^2); \\ f_{R_3}(x) &= 2^5(3x+5x^2); \\ f_{R_4}(x) &= 2^6(2x+11x^2+3x^3); \\ f_{R_5}(x) &= 2^5(5x+57x^2+66x^3); \\ f_{R_6}(x) &= 2^4(15x+225x^2+656x^3+128x^4); \\ f_{R_7}(x) &= 2^6(6x+107x^2+519x^3+392x^4). \end{split}$$

References

- [1] Y. P. Liu, *Embeddability in Graphs*, Kluwer Academic Publisher, Dordrecht/Boston/London, 1995.
- [2] Y. P. Liu, Advances in Combinatorial Maps (in Chinese), Northern Jiaotong University Press, Beijing, 2003.
- [3] J. L. Gross and M. L. Furst, Hierarcy of imbedding distribution invariants of a graph, J. Graph Theory 11 (1987) 205-220.
- [4] L. A. McGeoch, Algorithms for two graph problems: computing maximum-genus imbeddings and the two-server problem, Ph.D Thesis, Computer Science Dept., Carnegie Mellon University, PA, 1987.
- [5] M. L. Furst, J. L. Gross and R. Statman, Genus distributions for two classes of graphs, J. Combin. Theory (B) 46 (1989) 22-36.
- [6] J. L. Gross, D. P. Robbins and T. W. Tucker, Genus distributions for bouquets of circles, J. Combin. Theory (B) 47 (1989) 292-306.
- [7] E. H. Tesar, Genus distribution of Ringel ladders, Discrete Math. 216 (2000) 235-252.
- [8] J. E. Chen, J. L. Gross and R. G. Rieper, Overlap matrices and total imbedding distributions, Discrete Math. 128 (1994) 73-94.
- [9] J. H. Kwak and S. H. Shim, Total embedding distributions for bouquets of circles, Discrete Math. 248 (2002) 93-108.