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Abstract— We introduce certain type of surfaces M. tforj=1,2,.,11
and determine their genus distributions. At the basis of joint trees in-
troduced by Liu, we develop the surface sorting method to calculate the
embedding distribution by genus.
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1. Introduction

Graphs considered in this paper are connected graphs with a
cycle. Surfaces are closed 2-dimensional manifolds without a bound-
ary. Embeddings of a graph considered are always assumed to be
orientable.

Let G be a graph and T be a spanning tree of G. For each non-
tree edge e, a joint tree T is obtained by splitting the edge e into
two semi-edges with letters et and e~. For notational convenience,
when there is no confusion arises in the contéxt, we shall use e for
et throughout this paper. For a rotation 0' of G, let G, be an
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embedding determined by . As shown in [2], there is a joint tree Ty
corresponding to G,. Then,

Lemma 1.1 [2] For any o, # 02, the embeddings G,, and G,,, as
well as T,,, and Taz are not homeomorphic.

Lemma 1.2 [2] Let T and T” be two distinct spanning trees of a graph
G, T the rotation set of G. There exists a bijection between (I, T
and (Z,T") where (Z,T) = {Ty|o € T} and (E,T") = {T',|o € £}.

For a joint tree T, of G, 'P% induced by all semi-edges of T, is
regarded as the embedding surface of T,. Let S be a collection of
surfaces. For a surface S, let o(S) be the genus of S. In order to
determine o(S), an equivalence ~ defined on S is introduced. It can
be determined by the following operations:

OP1. AB ~ (Ae)(e~ B) where e ¢ AB;

OP2. AejepBeye; ~ AeBe™ = Ae” Be where e ¢ AB,;

OP3. Aee"B ~ AB where AB # 0.

Further, it is seen that each embedding surface is equivalent to
one, and only one, of the following canonical forms ([1]) of surfaces:
aoag , if i =0;

i = kﬁl axbragby, if i > 1
which are the sphere (i = 0), torus (¢ = 1) and orientable surfaces of
genus ¢ (¢ > 2). For the detailed information about the background,
see [1,2].

For a graph G, let g;(G) be the number of embeddings with genus
i. Then the embedding polynomial of G is as follows:

o0
fe(z) =Y a(G)z'.
i=0
Gross and Furst [3] introduced the embedding distributions of
graphs by genus. Later, orientable embedding distributions of cir-

cular ladders and M&bius ladders [4], closed-end ladders and cobble-
stone paths {5], bouquets of circles [6] and Ringel ladders (7] were
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introduced and studied. The total embedding distributions of neck-
laces, closed-end ladders and cobblestone paths [8] and bouquets of
circles [9] were also defined and investigated. In this paper, the
genus distributions of M are calculated for a positive integer n and
7=1,2,3,---,24 (See Section 3). In Section 4, the following theorem
is proved.

Theorem 4.1 g;(G,) is a linear combination gn,;(n)’s for j = 1,86,
0<m<iandn>1. _ . 7

By sorting the embedding surfaces of G, and using the genus
distribution of MJ" the embedding distribution of G, is computed,

which is the surface sorting method.

2. Lemmas

Lemma 2.1 (1] Let A, B,C, D and E be linear sequences ([1]). Then
AzByCz~ Dy~ E ~ ADCBEzyxz~y~.

Lemma 2.2 [2] Let S and S be surfaces. If S ~ $'zyz~y~(of course,
z,y,2,y~ € §'), then o(S) = o(S') + 1.

Lemma 2.3 Let A, B,C and D be linear sequences. Then
2ABz~CD ~ zBAz~CD ~ zABx—DC
where z,2~ ¢ ABCD.

Proof. It follows by applying OP1, OP2 and OP3, as well as their in-
verses. ' O

Corollary 2.4 Let A, B,C and D be linear sequences. Then,
AzBz~yCy~ 2Dz~ ~ 2Bz~ AyCy~ 2Dz~ ~ zBz~yCy~ AzDz"~

where ¢ # y # z and z,y,2,27,y~,2~ ¢ ABCD.
Proof. This follows from Lemma 2.3. ‘ m]

Lemma 2.5 Let A, B,C and D be linear sequences. Then,
AzBz~yCy~ 2Dz~ ~ BzAz~yCy~ 2Dz~ ~ CzAx"yBy 2Dz~
~ DzAz~yBy~zCz~
where ¢ # y # z and z,y,2,27,y~,2~ ¢ ABCD.
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Proof. By applying Lemma 2.3 three times and Corollary 2.4,
AzBz~yCy 2Dz~ ~ Bx~yCy~ AxzDz~ = yCy~ AzzDz" Bz~
~ yCy~z~ AzzDz2~B = ByCy z~ AzzDz~
~ - AzByCy 2Dz~ ~ Bz~ AzyCy~zDz".
By Corollary 2.4, the foregoing conclusion and Lemma 2.3,
AzBxz~yCy 2Dz~ ~ 2Bz~ AyCy~ 2Dz~ = AyCy~2Dz"zBz~
~ CyAy~zDz"zBzxr~ = 2Bz~ CyAy~zDz~
~ CyAy~zRox~2D2".

Similarly, ArBz~yCy~ 2Dz~ ~ DxAx"yBy 2Cz2". a
u2 'U.l u].‘..a,l u!..al ul.'..al u].'..al
a a1 UR-.-- A9 ag-..-quo UN-+++ A2 ag---eU2
M ...al_ V1 ...ai' al-.... V1 al_.... ]
Ibl v2 véooaz vz---a2 vz...az vz--oaz
Go (1) (2) 3 (4)

Fig. 1: Gp and its joint trees

For example, let Gg be a graph in Fig. 1. Let a;, a2 be non-tree
edges. Let each vertex have a clockwise rotation in joint trees of Gg.
Then, four joint trees of Gy are shown in Fig. 1 (1), (2), (3) and (4).
Their embedding surfaces are ajazaj ay, a1ay a5 az, aja2a; a; and
aja; ey az in correspondence. Then, fg,(x) = 2 + 2z.

3. Genus Distributions of Some Types of Surfaces

For a set of surfaces M, let g;(M) be the number of surfaces
with genus 7 in M. The genus distribution of M is the sequence:
go(M),g1(M), g2(M),---. The genus polynomial of M is as follows:

fu(z) = igi(M)zi.

=0

Given a positive integer n, let ¥1,y2, -, yn denote n distinct let-
ters. Let Y1 = Yk, YkoUks - Ykes Y2 = Yk 1 YkryoUkess " Yhns Y3 =
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Thus, fump(z) = fmp (2)-
All other equalities can be verified in a similar way. O

Theorem 3.2 Let g;;(n) be the number of surfaces with genus i in
Ml forn>0,i>20and1<j <1l Let fM?(a:) = 1. Then, for
n 21, gi(n) =
dgi,(n—1), fj=1and 0<i< [g]
2gi,(n—1)+2¢g;,(n—1), if j=2and 0<7 < [-121] ;
gis(n=1)+gis(n—1)+2g;,(n—1),if j=3and 0<i < [g] ;
dgi_1y,(n—1), ifj=4and 1<i < ["+ 1] :

2 1
29(i-1),(n — 1) +2gi;5(n— 1), f j=5and 0 <4 < [n;— l] ;
2g(i—1)s(n — 1) + 2gi)p(n— 1), if j=6and 1 <i < [n+ ] :

(-1 (n—-1)+ 9(i-1)2 (n—-1)+gi(n— )1+ gig(n — 1),
ifj=712and0<i< % ;

4g(;i_1),(n—1), if j=8and 1 <i < g] +1;

9G-1)s (n-1)+ 29(i-1)7(n —1) + gig(n — 1),
ifj=0and0<i< [g] +1;

9i-16(m — 1) + 2gi—1), (n — 1) + giyy (n — 1),
ifj=10and1<i< [g] +1;

29-1)0 (7 — 1) + 2g(;-1),6(n — 1),
ifj=1land1<i< [”;1] +1

Proof. Since the proof arguments for these equalities are similar, we
shall only prove the typical cases when j = 7,12 and 0 < < [(n +
1)/2], and leave the verifications of the other equalities to the readers.
For n 2 1, let Z1 = Yk, Uky¥ks * * * Ykrr 22 = YkpsrYhrs2Vhris ** Yknoas
23 = Yy YmoYms " Ym, 80 24 = Y\ YUm, o Um,ys ** Ym,_, Where
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n—12k >ke>k3s> >k 21,1<kry) <kryo <krps<
<k <n-,1<mp<m<mg<---<my<n-1,n-12>
Mgl > Meg2 > Mey3 > - >Mmp 2 1land 0<r,s <n—1, kp # kg,
mp # mq for p # q. Then, M7?™! = {aZ1a~ 222473} and M} =
{eanZia=Z3Z4Z3a;; ,aanZy10~ 220, Z4Z3,aZ10~ Zaana, Z4Z3,aZ10~
ZganZ4Z3a,;}.
By Lemma 2.1, aa,Z1a~Z2 24230, ~ Z1Z2Z4Z30a,0"a,, and
aanZ10” Zoa, Z4Z3 ~ Z2Z1Z4Z3aana"a;. L
By OP3, aZ1a‘Z2ana;Z4Z3 ~aZya~292473.
By Lemma 2.3 and OP2,
aZla‘ZganZ4Z3a;{ ~ aZla‘ZganZ3Z4a; ~ aZi1a”a, ZoonZ3Zy
= Z3ZsaZa"a; Zoa, = Z3ZsaZ1a”bZsb™.
Thus, for 0 < < n-2|-1 ,
iz(n) = gi—1), (n = 1) + gi-1), (n — 1) + gir (n — 1) + gig(n — 1).(1)
Similarly, for 0 <7 < n _2|- ! ,
Gira(n) = 9(2—1)1( -1+ 9(i-1)2 (n = 1)+ gir, (n — 1) + gig(n — 1).(2)
By using induction on n for (1) and (2), gi,(n) = gi,,(n). a

4. Genus Distributions of G,

Given a graph G. Let ugug be an edge on a cycle of G. For a
positive integer n, add 2n vertices uj,ug, us, -+, Un, V1,V2,V3,*,Un
on e in sequence. Connect wv; (1 < ! < n) by a new edge q; to
obtain a new graph G,. Note that when n > 3, G,, is non-planar.

Theorem 4.1 g;(G,) is a linear combmatlon gm;(n)’s for j = 1,6,
0<m<iandn>1.

Proof. Let T, be a spanning tree of G, such tilat UOUL, UUL4+1, UnV],
vy and vpvp are tree edges for 1 <! < n — 1. Let each vertex of
joint trees have a clockwise rotation at u; and v for 1 <! < n. Let
S be an embedding surface of G. Then, S = Y,1Y1ApY2Y3 By such
that AgBy is an embedding surface of Go where Y}, Y3,Y3 and Yy are
referred above.
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Suppose that o(A49Bg) = t. Then,
o(Y3Y1AoY2Y3Bp) = o(Y3Y1A1Y2Y3A7) + t.
If A is an empty sequence, then o(Y;Y; AoY2Y3By) = o(Y3Y1Y2Y3)+t,
otherwise we have o(Y;Y1ApY2Y3B) = o(Y4Y1aY2Y3a™) +¢.
Thus, the theorem is found. D

In fact, let G be a connected graph and e be an edge of G, the
Theorem 4.1 still holds.

2. q
Ug u Uy up Ykgoor
w Y; "‘ykr+l
kl.nq Y2
b b »...ykn
e a v a Yt _
v ‘Y4L_ n he. lym‘
v mgii] _ Y
nuynl’
Py n’U b—a........a
0 0 20
Ro Rn Te

Fig.2: Ro, R, and T,‘{

For example, let a, b and a; (1 <! < n) be non-tree edges for
the graph R, (Fig.2). Let joint trees of R, have a clockwise rota-
tion at each vertex. Then, embedding surfaces of R,, have four types
YiYibaYoYsa™b, YaY1abYaY3b~a™, Y Y abYaYza~ b~ and Y YibaY,Ys
b~a~ where Y1,Y,Y3 and Y; are referred above. By OP2, OP3 and
Lemma 2.3,

Y4Y1baYoY3a7b™ ~ VyY10YoY3a™ = a~YyY1aY3Ys
= a¥Y1a7YeYs ~ aY1Y4a"YoY3
and Y3Y1abYoY3b~a™ ~ aY Y30~ Y5Y3.
By Lemma 2.1, Y3Y1abY3Y3a" b~ ~ Y;Y;Y5Y3aba~b~ and
Y Y1baYsYsb~a™ ~ Y Y YoY3bab~a™.

Thus, g;(Rn) = 2gis(n) + 29(;-1), (n).

The distribution polynomials of R, for n = 1,2,3,---,7 are as
follows:

fr(2) = 22(1 + 30);
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fRro(z) = 22(1 + 11z + 422);
fRs(z) = 25(3z + 522);
fra(z) = 26(2z + 1122 + 323);
frs(z) = 25(5z + 5722 + 6623);
Fre(z) = 24(15z + 22522 + 65623 + 12822);
fr,(z) = 28(6z + 10722 + 51923 + 392z%).
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