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Abstract

The basis number of a graph G is defined to be the least integer
k such that G has a k-fold basis for its cycle space. We investigate
the basis number of the composition of theta graphs, a theta graph
and a path, a theta graph and a cycle, a path a.nd a theta graph, and
a cycle and a theta graph.
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1 Introduction.

The first important use of the basis number occurred in 1937 by MacLane
(8] who proved that a graph is planar if and only if its basis number does not
exceed 2. In 1981 Schmeichel [9] investigated the basis number of certain
important classes of non-planar graphs, specifically, complete graphs and
complete bipartite graphs. Then Banks and Schmeichel [4) proved that for
n 2> 7, the basis number of Q, is 4 , where Q,, is the n-cube. Thereafter
many papers investigated the basis number of special types of graphs, in
particular most of these papers focused on studying the basis number of
graphs which obtained by special types of product$ on graphs such as carte-
sian product, direct product, strong product, semi-strong product, and the
lexicographic product(or the composition of graphs), see [1], [2], [3], [4],[6].
In 1994 Hailat and Alzoubi [6] investigated the basis number of the
composition of two paths, two cycles, a path and a cycle, a path and a star,
a path and a wheel, a cycle and a star, a cycle and a wheel, a star and a
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path, a star and a cycle, a wheel and a path, a wheel and a cycle, a star
and a wheel, and a star and a star.

The purpose of this paper is to investigate the basis number of the
composition of two theta graphs, a theta graph and a path, a theta graph
and a cycle, a path and a theta graph, and a cycle and a theta graph.

2 Notations and Preliminaries

In this paper, we consider only finite connected undirected graphs without
loops and multiple edges. The terminology and notations will be standard
except as indicated. For undefined terms we refer the reader to [5].

Let G=(V,E) be a graph where V and E are the vertex and the edge sets
of G, respectively. If ey, e, ..., eq is an ordering of the edges in G, then any
subset S of edges corresponding to a (0, 1)-vector (ay,...,a,) in the usual
way, with a; =1 (a; = 0) ifand only ife; € S ( e; ¢ S). These vectors form
a g-dimensional vector space over the field Z5. Those vectors corresponding
to the cycles in G generate a subspace of (Z2)7 called the cycle space of G,
and denoted by C (G). In the sequel, we say the cycles themselves generate
the C (G), rather than saying that the vectors corresponding to the cycles
generate the C (G). It is well known that the dimension of C (G), denoted
by dim C (G), is ¢ — p + 1, where p and q denote, respectively, the number
of vertices and edges in G.

A basis of C(G) is called a k-fold basis if each edge of G occurs in at
most k of the cycles in the basis. The basis number of G, denoted by b (G),
is the smallest integer k such that C (G) has a k-fold basis. -

The following result of MacLane [8] will be used frequently in the sequel:

Theorem 2.1. Let G be graph. Then G is palnar if and only if b(G) < 2.

The following lemma due to Hailat and Alzoubi [6] will be of great use
in our results:

Lemma 2.1. Let G be a graph with p vertices and q edges. If |C| denotes
the length of the cycle C, and B = {C},C3,...,Cy} be a k-fold basis of

d

C(G), then rd < Y |Ci| < kq where d = dim C (G) and r is the girth of
i=1

G.

Definition 2.1. The composition of two graphs G (Wi, Ey) and Ga (Va, E»),
denoted by G [G2], is the graph with vertez-set V(G [Gs]) = V1 x V2 and
edge-set E (Gy[Ga]) = {(u1,v1) (u2, v2) : either ujus € E; or u; = uz and
v1v2 € Ep}.

It is worth mentioning that G, [G2] and G2 [G,] are not isomorphic
graphs for being |E (G1 [G2])| = p1g2+p3q: and |E (G2 [G1))| = p2q1+p2ga.
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In this paper, we use the additive group Z, of positive integers residue
modulo n to denote the vertex-set of the graphs P,,, C,, and 6,, , and thier
edge sets are defined as follows:

E(P)={i(i+1):0<i<n-2},B(Cp)={i(i+1):0<i<n—-1},
E(8,)={i(i+1):0 <i < n—1}U{st} where s,t € Z, are non-consecative
number. Note that the degree of every vertix of 8, is of degree 2 except s
and ¢ which have degree 3.

We denote by P, the path 012---(n — 1), C, the cycle 012---(n —1)0
and 6, to be Cy, union an edge that connects a non adjacent vertices .

3 Main Results.

In this section, we investigate the basis number of the graphs 0m [05] , 0m [Ch],
Om [Pa). Prm (0m],
Crn [0n] where m > 4 and n > 5. Throughout the paper we consider ! and
t (I < t) to be the vertices of 8,, of degree 3, and s and k are the vertices of
On of degree 3. One may see that 6, [0,] consists of (m + 1) edge-disjoint
copies of the complete bipartite graph K, ,. Note that m of these copies
occur in the form K, ) (r+1,n) for 7 € Zp, , taking into account that the
last of the m copies has the form K —1,5),(0,n),and the (m + 1) th copy has
the form K(; ),(¢,nyWhere ! and ¢ are nonconsecutive numbers from Z,,.
Also, 0., [0,] contains the following sets of edges:

E,={(4,7)(0,7+1):1€ Zpn,j € Zn_1},|E)| =(n-1)m,

Ey={(i,n-1)(3,0):i € Z,,}, |F2] =m,

E3={(i,k) (i,s) : i € Zp,}, |Es| = m.

Note that 6, [6,] has mn vertices and n? (m+ 1) + m(n+ 1) edges.
Therefore, dim C (0, [0a]) = (m +1) (n? +1).

The purpose of describing 6, [#] as above is to simplify the way we
choose the elements of the required basis.

Theorem 3.1. For every m > 4 and n > 5, we have 3 < b(0m [6n)) < 4.
Moreover, b(0p, [6,]) = 4 for each m > 4 and n > 23.

Proof. For each m > 4 and n > 5, the graph 0,, [0,] is non-planar since
it contains many copies of the non-planar K, n- Then by Theorem 2.1 of
Maclane’s we have b (0, [0,]) > 3.
To prove that b (0 [6,]) < 4, we exhibit a 4-fold basis for C (65 [fn]). For
each r € Z,,, we set B, = H, UK, ; |B;| = n? — 1, where H, and K, are
sets ol' cycles defined by
H = {(m)(r+1,1)(m+l)(r+1 J+1)(ri):0<4,j<n-2},

|H,| = (n—1)?,

K, = {(r,O)(r+ Li)(r+1,i+1)(r,0), (r+1,n—-1)(r,8)(r,i+1)

(r+1,n-1):0<i<n-2}
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also we consider the following sets of cycles:
= {(9) (5 ¢i+1)(i+1)(1):0<4,j <n-2},
;= {(lto)(ttz) (tri'*' 1) (llo)! (t:n’— 1)(1’7') (l,‘l-}- l) (t,ﬂ— 1) :
0<i<n-— 2v}
L={(i,k)(i+1,0)(,s)(i,k) : i € Z,},
M={G0G+1,n-1)(En—-1)(0):ie€ Zn}.
Let Q, = (0,0)(1,0)...(,0) (,0) (¢t +1,0)...(m — 1,0) (0,0) and
Q2 = (1,0) (1 +1,0)...(¢,0) (,0) be two cycles, then we define the fol-
lowing set:

m—1

B(0m[6a]) = (|J B)UTIUT: ULUM U{Q),Q2}

r=0

which we will prove that it is the required 4-fold basis for the cycle space
C (Om [6n])- Since

1B @ (6aD)] = | (Urs! Be)| + I3l + ITol + 10 + 1M + 2 = m (a2 = 1) +
(n-1)2+2(n—1)+m+m+2=(m+1)(n?+1) =dim C (b [0n)), it is
enough to prove that B (0,, [0,]) is linearly independent. By Theorem 2.4
of Schmeichel [9] , B, is a basis for the cycle subspace C (K(,.,,,)'(,.H,n)) for
every 7 € Zm, and Ty U T is a basis for the cycle subspace C (K(t,n),(,n))-
Then each of the sets T} U T and B, for r € Z,, is linearly independent.
Moreover, all of these sets are edge-disjoint, this implies that (U:";ol B,) U
T, U T is linearly independent. All the cycles in the set LU M are edge-
disjoint, then any linear combination of cycles from it is a union of edge-

disjoint cycles which ensures that LU M is linearly independent. Moreover,
every cycle in L U M contains an edge that does not occur in any cycle

of the set (U'"_l B,) U T UT,. Hence any linear combination of cycles

r=0
from (U:’:ol B,.) UTy UT, U LU M gives either a cycle or a union of
edge-disjoint cycles which guarantees that (U::él B,) UhuhLhULUM
is a linearly independent set of cycles. It is easy to see that Q1,Q> can

not be written as a linear combination of (Um_l B,) UThbuTbuLUM.

r=0

Thus B (0, [0,]) is linearly independent. Therefore, B (6m [0x]) is a basis
of the cycle space C (6, [0,]). Following the way we constructed B (6, [65])
one can see easily that the fold of any edge of Om [0n] in B (6 [65]) does
not exceeds 4. Therefore B (0 [0,]) is a 4-fold basis of the cycle space
C (0m [0a)).

To complete the proof of our theorem, we proceed by eliminating any pos-
sibility for the cycle space C (6, [6,]) to have a 3-fold basis. Now, suppose
that B is a 3-fold basis of the cycle space C (6m [0n]). We consider the
following three cases:
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Case 1. B contains only 3-cycles. Since any 3-cycle in 6, [f,] must
contain an edge from the sets E;,E3,Fa, or from the set {({,1)(, 1), ({,1)(I+
1, %), (1 + 1,4)(t,%) : i € Z,} (if O contains a 3-cycle say I(l 4 1)¢l), the
number of 3-cycles in 6,, [#s] that can be in B is at most 3mn+3m+9n =
3m(n+ 1) + 9n, because the fold of any edge is at most 3. Thus |B| =
(m+1)(r?+1) < 3m(n+ 1)+ 9n. But this inequality does not hold for
any m > 4 and n > 5, a contradiction.

Case 2. B consists only of cycles of length greater than or equal to
4. Lemma 2.1 implies that 4 (m +1) (R +1) < 3(m+1)n? +m(n+1).
Then (m+1) (n? +1) < 3m(n+1). But this inequality cannot hold for
any m > 4 and n > 4, a contradiction.

Case 3. B contains s cycles of length 3 and ¢ cycles of length greater
than or equal to 4. Since the fold of every edge in 6,, [f,] is at most 3 in
B, at most 3s edges are used to form the s 3-cycles. Since |E (6., [0,])] =

n?(m+1)+m(n+1),we have t < [3@2(m+1)+:'("+1))_38

,where [z] is

the greatest integer less than or equal to z. Then (n®+1)(m+1) =

dimC (6 [6n]) = s+ < 3mn + 3m + 9n + 3‘”""‘“’*;"‘”“))‘3’] , thus
(R?+1)(m+1) <3mn+3m+9n+ i@(mﬂ)tm(n“))—a] since s > 1.

2 - 2 -
3(n (m+1)-:m(n+1)) 3 < 3(n (m+1)-i;m(n+1)) 3, and so (n2 + 1) (m+

3(1|2 (m+1)+m(n+ 1)) -3

But [

1) < 3mn+3m+9n+ . This implies that 4 (n2 + 1) (m
+1) < 12mn + 12m + 36n + 3n?(m+1) + 3m(n+ 1) — 3. Therefore,
n2(m+1)+ 7 < 15nm + 15m + 36n, thus, n? + 'm7_-l-l < 15n(;B5) +

1172+ 3%;‘1. Since m > 4, n? — 22n — 11 < 0. Solving the inequality

n? — 22n < 11 implies that n < 22, a contradiction.

Now we consider 0, [C,]. Note that 6,, [C,] is a subgraph of 6, [0x]
obtained by deleting the set E3. It is easy to see that 6, [C,] has mn
vertices and n? (m 4 1)+mn edges. Thus, dim C (8, [C,]) =n? (m + 1)+1.

Theorem 3.2. For every m > 4 and n > 5, we have 3 < b(0n [Ch]) < 4.
Moreover, b(0p [Cn]) = 4 for each m > 4 and n > 15.

Proof. It is clear that 8,, [Cy] is non-planar for each m > 4 and n > 5, so
by Theorem 2.1 of Maclane’s we have b (6, [C,]) > 3.

We define B (0, [Cr]) = B (0m [0n)) \L, where B (0, [0,]) and L are
the same sets as in Theorem 3.1. So |B (8 [Cp])] = (n?2+1) (m+1) —
m = n?(m+1)+1 =dim C(6m [Cr]). Since B (0m [0n]) is a basis of
the cycle space C (0 [0n]), then B (0, [Cy]) is a basis for the cycle sub-
space C (0 [Cn]). Also, since B (0m [6n]) is a 4-fold basis, then so is
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B (0m [05])-Hence 3 < b (0m [Cn]) < 4.

On the other hand. Suppose that B is a 3-fold basis of the cycle space
C (0m [Cn]). We consider the following three cases:

Casel. B consists only of 3-cycles. Then |B| < 3mn + 9n, because
any 3-cycle of 0, [C;] must contain an edge either from E;, E,, or from
the set (I,1)(¢,3)(L,2)( + 1,8)(1 + 1,i)(¢,%) : i € Z, (if On contains a 3-
cycle say I(l + 1)tl) and the fold of each of these edges is at most 3. Thus
IB| € 3mn +9n < n?2(m+1) + 1 =dim C (6, [Cp]) for each m > 4 and
n > 5, a contradiction.

Case2. B consists only of cycles of length greater than or equal to
4. Then by Lemma 2.1 we have 4 (n? (m + 1) + 1) < 3 (n?(m +1) +mn).
But this inequality does not hold for any n,m > 1, a contradiction.

Case8. B contains s 3-cycles and ¢ cycle of length at least 4. Since
|E (8m [Cn))| = n% (m + 1) + mn and B is a 3-fold basis, the most number
of edges that can be used to form the s 3-cycles is 3s. So, the number
of edges left to form the other cycles counting folds is 3 (% (m + 1) + mn)

—3s, which implies that t < [3"2("”‘ 1):’3"‘"_3"] . Then n? (m +1)+1 =dim
COm[Cal) = IBl = s+t < 3mn+9n+ [ML“M] since s > 1.
But [3n’(m+1)+3mn—3] < 3n’(m+l)+3mn~—3 then n? (m+1)+ 1< 3mn+

9n + M Multiplying this inequality by 4 and rearranging
the terms leads to the mequahty n?(m+1) < 15mn + 36n — 7. Thus,

n? < 15n(;2) + 38 - 15 Since m > 4, “n? < 22n. It implies that
n < 22, a contradiction.

We consider the graph 0,, [P,] as a subgraph of 0, [0,] that can be
obtained by deleting the sets of edges E» and E3. Note that 6, [P, has mn
vertices and n2 (m + 1)+m (n — 1) edges, so dim C (O, [Py]) = n? (m + 1)—
m+1.

Theorem 3.3. For each m > 4 and n > 5, we have 3 < b(0m [Pn]) < 4.
Moreover, b(0m [Pr]) = 4 for each m > 4 and n > 24.

Proof. It is clear that 8,, [P,] is non-planar and that the set B (0, [Py]) =
B (0 [6n])\ (LU M) is a 4-fold subbasis of B (6 [0n]) for the cycle sub-
space C (0m, [Py]) of the cycle space C (6m [0n]). Hence 3 < b(0m [Pn]) < 4.
To prove that b (6, [Py]) = 4, we use the same arguments of Theorem 3.2
taking into account that any 3-cycle in 6y, [P,] must have an edge from the
set E,, or the set {(l,7) (t,3) :i € Z,}.

Now we consider the graph C,, [0,]). Note that Cn, [6,] is a subgraph
of 0, [0n] obtained by deleting the K n) (e,n) copy of Knyn. Also, this
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graph has mn vertices, n?m + m(n+1) edges, and dim C (Cp, [80]) =
m(n?+1) +1.

Theorem 3.4. For each m > 4 and n > 5, we have 3 < b(Cps [0n]) < 4.
Moreover, b(Cy, [0,]) =4 for each m >4 and n > 16.

Proof. It is easy to see that Cy, (0] is non-planar, and that B (Cp, [0,]) =
(B (6m [6n]) U{QI\ (T1 U T2 U {Q1, Q2}) is a 4-fold subbasis of B (8, [6x])
for the cycle subspace C (Cyn [0n]) of the cycle space C (6 [0n]), Where
Q = (0,0)(1,0)...(m —1,0)(0,0) and @,,Q,, T}, and T» are defined in
Theorem 3.1. Then 3 < b(Cp, [0x]) < 4. On the other hand, to prove that
b(6m [Pn]) = 4, we use the same arguments of Theorem 3.2 with the fact
that any 3-cycle in C, [,] must contain an edge from the set E; U EoU Ej.

Now we consider the graph P [0,]. Note that P, [6,] is a subgraph
of Cy [0,] obtained by deleting the mth copy of K, ,,, which has the form
K(m—1,n),(0m)- Also, Pp, [0n] has mn vertices and n2(m — 1) + m(n +1)
edges, and so dim C (P [0n]) =n? (m - 1)+ m+ 1.

Theorem 3.5. For each m > 4 and n > 5, we have 3 < b (P [0n)) < 4.
Moreover, b(Pp [0n]) = 4 for each m > 4 and n > 30.

Proof. It is obvious that the set B (P [0n]) = (B (Crm [0a])UM )\ (Bm—_1U
M U {Q}) is a 4-fold subbasis of B (Ci [0n)) for the cycle subspace C(Pr,[0n
]) of the cycle space C (Cy [05]) , where M and B, are defined in Theorem
31and M = {(3,0)(,1)...(3,n — 1)(0,0) : iU Zn}. Also, Py, [6] is non-
planar, so 3 < b(Pp[0s])) < 4 for each m > 4 and n > 5. To prove
that b(Pn, [6,]) = 4, we follow the same arguments of Theorem 3.2, just
considering that any 3-cycle in Py, [f,] must have an edge from the set E U
Es.
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