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Abstract

In this paper, we studied that a linear space, which is the
complement of a linear space having points are not on a tri-
lateral or a quadrilateral in a projective subplane of order m,
is embeddable in a unique way in a projective plane of order
n. In addition, we showed that this linear space is the comple-
ment of certain regular hyperbolic plane in the sense of Graves
[5] with respect to a finite projective plane.

AMS Subject Classification : 05B25 , 51520 , 51A45.

Keywords : Linear spaces , projective planes, hyperbolic
planes.

1 Introduction

The complementation problem with respect to a projective plane is the fol-
lowing: Remove a certain configuration of points and lines from the plane,
determine the parameters of the resulting space. Complementation prob-
lems have been considered by various authors ([1},[2],[3],[4],[11],[12],[13],[18]
). In 1970, Dickey solved the problem for the case where the configuration
removed was a unital [20] . ( The one exceptional case here was completed
by de Witte in 1977 [3] ). Totten in 1976 considered the complement of
two lines [2]. In 1987, L.M. Batten characterized linear spaces which are
the complements of affine or projective subplanes of finite projective planes
and showed that these spaces can be embeddable in a unique way in a pro-
jective plane of order n [4]. A generalization of Batten’s Theorem [4] was
given by Giinaltih and Olgun [13].
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After then, the problem of embedding the ” complements * of various
configuration in projective planes has arised and this problem has been
studied by various authors ( [1},(2],[3],[4},[11},[12] ).

In this paper, we showed that a linear space, which is the complement
of a linear space having points are not on a trilateral or a quadrilateral
in a projective subplane of order m, is embeddable in a unique way in a
projective plane of order n. In addition, we determined that this linear
space is the complement of certain regular hyperbolic plane in the sense of
Graves (5] with respect to a finite projective plane.

Now, we give some definitions required.

Definition 1.1 : Let P be a set of points and £ be a subset of the
power set of P . Then S = (P, £) is called a linear space if :

L1. Any two points belong to a unique line.

L2. Every line contains at least two points.

While in talking about finite linear spaces we shall use a rather easy-
going terminology borrowed from classical geometry; for example, we shall
use words such as ”collinear,” ” concurrent,” "meeting,” ”joining,” and ex-
pressions such as ” a line (passing) through a point” or ”a point (lying) on
a line”.

If v = |P| and b = || are finite then S is called finite. The total
number of lines through P is denoted by b(P), and the total number of
points on ! is denoted by v{l). Thus, if b(P) = k and v{l) = & then P is
called a k—point and ! is called a k—line. Furthermore, the total number
of k—lines is denoted by b, and the parameters km, kar,7m and rps are
defined as stated below:

kn=min{v(l)|l € L}

kv =max{v(l)|l e L}

rm = min {b(P) |P € P} and
rym = max {b(P) |P € P}

If every point of S lies on exactly ¢ lines of S then S is called t—regular.
(t>21,teZ).

The order of a non-trivial finite linear space is defined as one less than
the highest degree of both points and lines.

A finite projective plane of order n» > 2 is a finite linear space with
n? +n + 1 points in which v(l) = b(P) = n + 1 for every line ! and every
point P.

Definition 1.2 : A linear space S = (P, L) is said to be embeddable
in a linear space &' = (P’, £’) if &’ can be obtained from S by addition of
some points called as ideal points and some lines called as ideal lines.
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Definition 1.3 : A finite (m + 1)—regular hyperbolic plane (P, £), in
the sense of Graves, is a non-trivial (m + 1)—regular linear space such that

H1 : There are four points, no three of which are collinear.

H2 : If P is a point not on a line [, then there exist at least two
lines , not meeting ! and through P .

H3 : If a subset P’ of the points of P contains three non-collinear
points and contains all points on the lines through pairs of distinct points
of P/, then the subset P’ contains all points of P.

Examples of hyperbolic planes have been constructed by Graves (5],
Sandler [6], Crowe [15],{16],{17] and Kaya-Olgun [8].
Proposition 1.1 : ( Bumcrot, 10 ) Any finite linear space satisfying
the following conditions:
l. 7 2k +2
2. km(km - 1) 2™
is a hyperbolic plane in the sense of Graves [5].

2 MAIN RESULTS

Proposition 2.1 : Any (m + 1)—regular linear space satisfying the fol-
lowing conditions for every k € {3,4} is a hyperbolic plane in the sense
of Graves [5] ( this hyperbolic plane is called as a hyperbolic plane of

(k, m)—type) :

i)b=m?4+m+1-kv=m?+1+4(5)—k—(k-1)m and
2

(i) =21, foreveryie {m—1,m—-2,m+1—k}.

Proof : Let S be a linear space satisfying the conditions (i) and (ii).
It is clear that rp, > kpr +2 and km(km —1) = (m+1-k)(m—-k) > m+1
,sincek € {3,4} ,km=m+1—k,ky =m—-1landr, =7y =m+1. By
the Proposition 1.1 , S is a hyperbolic plane which is called (k, m)—type.

Examples of hyperbolic planes of (k, m)—type are obtained by removing
all points of k lines such that any three of which are not concurrent for
k € {8,4} from projective planes of order m. ( See [6],[8],(9]).

Proposition 2.2 : Let S be hyperbolic plane of (3, m)—type. If
bm—1 =3(m —1) and m > 7 then S is a real complement of a triangle in a
projective plane of order m.

Proof : By the Proposition 2.1, S is (m4-1)—regular linear space with
(m — 1)2 points, (m? 4+ m — 2) lines and every line has degree m — 2 or
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m — 1. Thus, S is a real complement of a triangle in a projective plane of
order m, m > 7 in according to Raltson ([11]).

Proposition 2.3 : Let S be a hyperbolic plane of (4, m)—type. If
bm—1 > 3 and m > 23 then S is a real complement of a quadrilateral in a
projective plane of order m.

Proof : Due to the Proposition 2.1, S is (m + 1)~regular linear space
with (m2 — 3m + 8) points, (m? + m — 3) lines and every line has degree
m—1,m —2 or m — 3. Thus § is a real complement of a quadrilateral in
projective plane of order m in according to Montakhab [12].

Theorem 2.1 : Let § = (P, L) be an (n + 1)—regular linear space
such that :

(i) b=n?+n+lv=n2+n—-m2+2m,2<m<n
(ii) bp+2—m = 3(m —1)
(iii) every line hasn+ 1,7,n+ 2 — m,n + 3 — m points.

If m lines of degree n + 2 — m are not mutually parallel, then § is
embeddable in a unique way in a projective plane of order n and it is the
complement of a hyperbolic plane of (3, m)—type.

Proof :

Let P;; be the set of points of S such that there are 7 lines of degree

n+ 2 —m, 7 lines of degree n + 3 — m, k lines of degree n and h lines of
degree n + 1 through every point of it. Then;

(n+l-m)yi+(n+2-m)j+(n—-1k+nh=v-1
i+i+k+h=n+1
YIPj]l = v, Yobe=b, te{n+ln,n+2-—mn+3-m}
< -

Also, by simple counting methods,

=(m-1)?-i(m -1) +j(m -2),
h=n+1-(m—1)%+i(m - 2) +j(m — 3),
ZlPaalt—3(n+2 m)(m - 1),

Z IP1_7|.7 = (n +3- m)bn+3-m
> |Pijl k = nb, and
i'j
2 NPl h = (n+ 1bnyr.
tIJ
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Thus,

b = (m —1)*(n —m)
bpy1 = n® —n(m? — 2m) + (m? —5m — 1)
bp43-m = (m — 1) and
bni2-m = 3(m —1).

It is easily shown that there is an n—line misses a given line of degree
n 4+ 2 — m by using all of the assumptions of theorem.

Let ! be an n—line . The number of lines not meeting ! is n, since S is
(n + 1) regular linear space with n2 +n + 1 lines. Therefore, every n—line
induces a parallel class of n + 1 lines none of which is an (n + 1)-line.

Let ¢ and d be the numbers of (n + 2 —m)—line and (n + 3 — m)—line
in a fixed class, respectively. Then

cn+2-m)+d(n+3-m)+(n+l-—c—dn=n?+n-m?+2m
. c—3
impliesthat d=m+1—-c+ ——t

Since ¢ < m, by hypothesis ¢ = 3, d = m — 2. Thus, the number of
n—lines in a parallel class is n — m. And the number of different parallel
classes is (m — 1)2, since b, = (m — 1)%(n — m).

Consider the structure S* = (P*,£*) where P* is P along with the
parallel classes and L£* consisting of the lines of £ extended by those parallel
classes to which they belong. We shall prove that S* is a linear space. It
is clear that two old points (points of P) or an old and a new point are on
a unique line of £*, since S = (P, L) is a linear space.

Let X and Y be two new different points. We must show that they
determine a unique line of £*.Let [x and !y be n-lines which determine
the parallel classes corresponding to X and Y, respectively . If Ix and ly
do not meet, then X = Y which is a contradiction. So {x and ly meet.
Each point of ly is on a unique line of the parallel class determined by {x.
Thus, Iy does not meet precisely one line of the parallel class determined
by Ix. This leaves precisely one line parallel to both Ix and ly. Thus S* is
a linear space with n2+n+1 points and n?2+n+1 lines. S* is a projective
plane of order n, by [18].

Consider the complement of § in 8*. The lines of §*\ &S are sets of
(m — 1) or (m — 2) points, the extensions of the (n + 2 — m)—lines or
(n + 3 — m)—lines of S, respectively. It is clear that S*\ S is a linear space
and there is at least one point not on a given line in §*\ S. It is known
that there are exactly three lines of degree m —1 and (m —2) lines of degree

209



m — 2 through any new point added to § (any point of S*\ § ). Thus S*\
S is a (m + 1)~—regular linear space with (m — 1)2 points and m2 + m — 2
lines such that every line has degree m — 2 or m — 1. Therefore; S*\ S is a
(m + 1)—regular hyperbolic plane of (3, m)—type, by the Proposition 2.1.

Theorem 2.2 : Let S = (P, L) be an (n + 1)—regular linear space,
with satisfying the following conditions :

() b=n’+n+l,v=n+n-—m?+3m -2, 2<m<n,
(ii) bn+2—m =3 and bn+3._m = 6(m - 2)
(iii) every line hasn+1,n,n+2 —m,n+ 3 —m,n + 4 — m points.

If m lines of degree (n + 3 — m) are not mutually parallel, S is embed-
dable in a unique way in a projective plane of order n and is complement
of a hyperbolic plane of (4, n)—type.

Proof :

Let P;;i be the set of points such that there are exactly i lines of degree
n+ 2 — m, j lines of degree n 4+ 3 — m, k lines of degreen +4 — m, h lines
of degree n and w lines of degree n + 1 through every point P of it. Then;

n+l-mhi+(n+2-m)j+(n+3—mk+(n-1h+nw=v-1,
i+j+k+ht+w=n+1l,

Y |Pyjkl=v, Y b =b te{n+lnn+2-mn+3-mn+4-—m}.
ik T

Also, by simple counting methods,

h=(m?-3m+3)—i(m-1)—-j(m—2)—k(m-3),
w=n+1-(m?2=-3m+3)+i(m—-1)+j(m—2)+ k(m - 3),
3 Pgili =3(n+2 - m),
t'-7,
2 |Pijkli = 6(m —2)(n+3 —m),
t'J'

Y |Pijklk=(n+4—m)bpia—m,

i’jlk
Z |Pijk| h= nb,, and
ilj’k
2 Pkl w = (n+1)bns1.
i.5.k

and the following results are obtained.
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bn = (m? — 3m + 3)(n — m),
bnt1 =n? — (m = 2)(m — )n+m(m? — 4m + 2) +4,
bﬂ+2—‘m = 31
bn+3—m = 6(m —2),
bnta—m = (m — 3)(m - 2).

It is easily shown that there is an n—line misses a given line of degree
n+ 2 — m by using all of the assumptions of theorem.

Let ! be an n-line and n (I) be a parallel class corresponding to I.
w(l) contains at most three (n 4+ 2 — m)—lines, since the total number of
(n + 2 — m)-lines of S is exactly three. Thus, there are four cases which
are needed to examine for =(l).

Case 1: w(l) contains none of (n + 2 — m)—lines. Let ¢ and d be the
number of (n+ 3 — m)—lines and (n + 4 — m)—lines, respectively, in 7 ().

c(n+3-m)+dn+4d-m)+(n+l—c-dn=n*+n-m?>+3m-2

implies that d=m +1—-c¢ - ;—i

Since ¢ < m, by hypothesis, ¢ = 6 and d = m — 5. Thus, the number of
n—lines, in w(l), is n — m.

Case 2: =(l) contains exactly one (n + 2 — m)—line. Let ¢ and d be
the number of (n + 3 — m)—lines and (n + 4 — m)—lines, respectively, in

().
(n+2-m)+c(n+3—m)+d(n+d—m)+(n—c—dn =n*+n—m?+3m—-2
c—4

implies that d = m — ¢ —

Since ¢ < m, by hypoth&slsltc =4 and d = m — 4. Thus, the number of
n—lines in w(l) is n —m.

Case 3: m(l) contains exactly two (n + 2 — m)—lines. Let c and d be
the number of (n + 3 — m)—line and (n + 4 — m)—line, respectively, in 7.

2(n+2-m)+c(n+3—m)+d(n+4—m)+(n+1—c~d)n = n®+n—m2+3m-2
c—2

impliesthat d=m ~1—c¢c — p——
Since ¢ < m, by hypothesis ¢ = 2 and d = m — 3. Thus, the number of
n—lines in 7(l) is n — m.
Case 4: n(l) contains exactly three (n+2 — m)—lines. Let ¢ and d be
the number of (n+4 3 —m)—line and (n+4 —m)-line, respectively, in 7 (l).
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3(n+2—m)+c(n+3—m)+d(n+4—m)+(n—2—c—d)n = n+n-m?+43m—2

implies that d = m—2—%. d,m,c € Z* require both (m—3,m—4) =

1 and (m —4) | ¢. Thus, there is t > 0, £ € Z such that ¢ = t(m — 4). In
this case

0<d=(m—2)—t(m-3) (®))

From (1), t=0o0rt=1.

Ift = 1, thenit is easily calculated that the number of (n+3—m)—lines
and (n+4 —m)—lines in n(l) are 1 and m — 4, respectively. Thus the total
number of n—lines in 7(l) isn+1 - m.

Since the total number of (n+2—m)—lines of S is exactly three, parallel
classes of S which are different from () don’t contain (n + 2 — mn)—lines.
Let a be the total number of parallel classes of S. By the case 1, it is clear
that S contains exactly one parallel class which has n+ 1 — m (n)—lines
and a — 1 parallel classes which have n — m (n)—lines. Thus, the following
equality is valid.

m+l-m)+(@—1)n—m)=b,=(mM2-3m+3)n-m) ((2)

From (2), )

a=(m?-3m+3) - ——.
n—m
Since n > m, a ¢ Z. This contradicts a € Z. Thus, t = 0 and it is easily
shown that w(l) contains exactly n — m (n)—lines.

Consequently, the number of n—lines in any parallel class is (n — m).
Therefore; the number of different parallel classes of S is m? — 3m+3, since
bp = (m? — 3m + 3)(n — m).

Consider the structure $* = (P*, L*) defined above. It is easily shown that
S* is a projective plane of order n, by the similar technique in the proof
of Theorem 2.1.. Consider the complement of S in S*. The lines of S* \
S are sets of {m — 1},{m — 2} or {m — 3} points, which are extensions
of the (n + 2 — m)-lines, (n + 3 — m)—lines and (n + 4 — m)—lines of S,
respectively. It is clear that &* \ S is a linear space and there is at least
one point not on a given line in §* \ 8. It is known that there are at most
two (m — 1)—lines on any new point (any point of §* \ & ). If there are
two (m — 1)—lines on any new point, this point of S* \ & is exactly on
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two lines of degree m — 2 and m — 3 lines of degree (m — 3). If there is
one (m — 1)—line on any new point; this point of S* \ S is exactly on four
lines of degree m — 2 and m — 4 lines of degree (m — 3). If there is not any
(m —1)—lines on a new point, this point of S* \ § is exactly on six lines of
size m — 2 and m — 5 lines of size (m —3). Thus §* \ S is a (m +1)-regular
linear space with m2 — 3m + 3 points and m? + m — 3 lines in which a line
is degree of m — 1,m — 2 or m — 3. Therefore, S* \ S is a hyperbolic plane
of (4, m)-type , by the Proposition 2.1.
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