EXPANSION PROPERTIES OF LEVI GRAPHS
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ABSTRACT. The Levi graph of a balanced incomplete block design is the bi-
partite graph whose vertices are the points and blocks of the design, with each
block adjacent to those points it contains. We derive upper and lower bounds
on the isoperimetric numbers of such graphs, with particular attention to the
special cases of finite projective planes and Hadamard designs.

1. INTRODUCTION

Denote the number of elements of a finite set S by |S|. For a finite, simple graph
G we denote the vertex set and edge set by V(G) and E(G), respectively. Denote
the subgraph induced by S C V(G) by G[S].

The following terminology and notation is taken from [1]. Let X be a finite
set and let 4 be a collection of subsets of X. We refer to the elements of X as
points and the elements of A as blocks. We say the pair (X,.4) is a balanced
incomplete block design if there are nonnegative integers v,b,r,k and A with v >
k > 0 possessing the following properties: v = | X|, b = | 4|, every point appears
in r blocks, each block has k points, and every pair of points belongs to exactly
A blocks. For simplicity, we refer to balanced incomplete block designs as block
designs. The block design is said to be linked (with link number ) if |B) NB2| =u
for any pair of distinct blocks B;,B; € 4.

A block design is said to be symmetric if v = b, or equivalently if r = k. It is
well known (see [5]) that a block design is linked if and only if it is symmetric,
and in this case we have A = . A symmetric block design with A = 1 is called
a finite projective plane. For any finite projective plane with » points, there must
be a number g such that n = g* + g+ 1. The number g is referred to as the order
of the finite projective plane. It is also known that if ¢ = p” for p a prime, then
a finite projective plane of order g exists [12]. The existence of finite projective
planes of non-prime-power order is an open question.

A Hadamard design of dimension n is a symmetric block design in which v =
4n—1,k=2n—1and A = n— 1. The number 4x is called the order of the design.
The name derives from the fact that a Hadamard design of order 4n exists if and
only if a Hadamard matrix of order 4n exists (i.e. a 4n x 4n matrix H with +1
entries satisfying H'H = nl). See [12].
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It is possible to associate a bipartite graph G to an arbitrary block design as
follows: The vertices of G are the points and blocks of the design. A point vertex
is connected to a block vertex if the point lies in the block. The graph G is called
the Levi graph of the block design. See [7]. The Levi graph associated to the
Fano plane is shown in Figure One below. We note that among bipartite graphs
with no cycles of length four, the Levi graphs of finite projective planes maximize
the number of cycles of length six. See [2] and [6] for more information on the
extremal properties of these and other graphs.

Figure One: Fano Plane Graph

Let G be a finite graph with vertex set V(G). The boundary of S C V(G),
denoted 95, is the set of edges having exactly one endpoint in S. The isoperimetric
number of G, denoted i(G), is defined to be

. Jos]

i(G) = u;f Gk
where the infimum is taken over all sets S satisfying |S| < %IV(G)I. The isoperi-
metric number is sometimes referred to as the expansion constant, the Cheeger
constant, or the conductance of the graph. For § C V(G) with |S} < 3|V(G)|, we

refer to the quantity ‘f’-lssl as the isoperimetric quotient of S and denote it by is(G).
If S is such that i(G) = %? then § is referred to as an isoperimetric set for G. The
problem of finding the isoperimetric number of a given graph is referred to as the

isoperimetric problem. A variant on the isoperimetric problem for Levi graphs of
projective planes was considered in [8].



In Section 2 we establish the main results, an upper bound on the isoperimetric
numbers of general Levi graphs and a lower bound on the isoperimetric numbers
of Levi graphs of symmetric block designs. It is a consequence of our results that
the isoperimetric numbers of Levi graphs of finite projective planes and Hadamard
designs are unbounded as their orders go to infinity. Since the vertex degrees of
such Levi graphs are not fixed, they are not the best expanders in the sense of [11].
However, it is noted that since the vertex degree k of such a family of symmetric
design Levi graphs increases far more slowly than the number of vertices v, the
expansion properties of these graphs remain of interest.

2. BOUNDS FOR THE ISOPERIMETRIC NUMBERS

Note that if G is the Levi graph associated to a (v,b,r,k,A) block design, then
|E(G)| = vr = bk. This is easily seen by noting that every point vertex has degree
r, while every block vertex has degree k. In the following let |- and [-] denote
the greatest integer and least integer functions, respectively. Our main results are
the following two theorems:

Theorem 1. Let G be the Levi graph associated to a (v,b,r,k,\) block design.
Then [b]
21k
iG) < 2=
[3]+13]
Theorem 2. Let G be the Levi graph associated to a symmetric block design with
parameters (v,k,)). Then
202 (v-K) (3
i(G) 2 b-0G)
3[(k—1)(k—=2)(A—1)2+A2(k—1)(v—k))

We establish the upper bounds for i(G) by constructing a specific candidate
isoperimetric set. In Section 3 we will see that in the special cases considered
there, our upper bound is reasonably close to the actual value of i(G). The lower
bound is established by counting small cycles, following the methods in [3] and
[10].

We will need the following lemma to prove Theorem 1:

Lemma 1. Let G be the Levi graph of a (v,b,r,k,\) block design. Let P be a set
containing | § | point vertices. Then there exists a set B of %) block vertices such
that |[E(GIPUB])| > |315.
Proof. Let P be a set containing | 3| point vertices. There are | %|r edges of G
having an endpoint in P. Let B be an arbitrary set of [ 3] block vertices and denote
the complement of B by B.

Every edge with one endvertex in P is connected either to an element of B or
an element of B. Therefore, it follows from the pigeonhole principle that either
E(G[PUB]) or E(G[PUB]) contains | %] § elements. It follows that either B or B
with one additional block vertex added will satisfy the conditions above. a




Proof. (Theorem 1) Let P be as in Lemma 1. Then there is a set of block vertices
B satisfying |B| = [4] and |[E(G[PUB])| > [4]4- Set § = PUB. Then we have

v b
o[-
psi < | 2] r+ |2 k2| 2|2
=1z21"" )2 2|2
Observe that since |V(G)| = v+ b, we have that |S] < 3|V(G)|. Since i(G) <
is(G), Theorem 1 follows. 0

To obtain the lower bound we count the number of six-cycles containing arbi-
trary pairs of vertices in G. If G is bipartitioned into sets S; and S, then at least
two edges out of each six-cycle containing vertices in opposite sets must be cut in
order to disconnect the graph. To address overcounting, we determine the number
of six-cycles in which a given edge appears. This is a variation of a method for
establishing lower bounds on isoperimetric numbers that has been used previously
(see [3], [4], [9] and [10], for example).

For a graph G, let x,y € V(G) and let e € E(G). We denote by Cg(x,y) and
Cs(e) respectively, the number of six-cycles containing vertices x and y, and the
number of six-cycles containing edge e. We begin with two lemmas.

Lemma 2. Let G be the Levi graph of a symmetric block design with parameters
(v,k,\). Let p1, p2 be two distinct points and let by be an arbitrary block satisfying
P1 ¢ by. Then

k
Cs(p1,p2) = Cs(p1,b1) =22 (2)

Throughout the following proof it will be convenient to make no distinction
between points and blocks in the design, and the vertices representing those points
and blocks in the Levi graph. We trust it will be clear from the context whether it
is an element of the design or a vertex in the graph that is intended.

Proof. Let p;, p2 be arbitrary distinct point vertices. A six-cycle containing both
of these points will contain exactly one further point vertex, which we denote by
p3. We distinguish two cases.

Assume that p; is chosen so there is no block containing all three points. There
are v— k such points. Each pair of point vertices appears in exactly A blocks. Since
no block contains all three points, we see that each of the three blocks in the cycle
can be chosen in A many ways. Consequently, there are a total of A3(v — k) such
six-cycles.

Now assume that p3 is chosen so there is a block containing all three vertices.
Let by be a block containing p; and p,. In a general symmetric block design, the
number of blocks containing a given triple of points will depend on the particular
triple. Since we seek a lower bound on Cg(p1, p2), we assume there is only one



such block. Consequently, p3 must be chosen from among the Xk — 2 remaining
unused points in b;.

If the six-cycle containing p;, p2, p3 also contains the block b;, then there will
be (A — 1) ways of choosing the remaining two blocks. Since there were A many
ways of choosing b;, we have a total of A(A — 1)%(k — 2) six-cycles in this case.

If the six-cycle containing pi, p2, p3 does not contain by, then the three block
vertices can be chosen in (A — 1)* ways. This leads to (A — 1)3(k — 2) six-cycles
in this case.

Adding together our findings in each of these cases leads to

Col(p1,p2) 2 M (v— k) + (A= 1)*(k~2) + (A~ 1)*(k - 2).

To determine C¢(py1,b1), note that the remaining point vertices in the cycle
must be contained in b;. Consequently, there will be (%) ways of choosing those
vertices. Having made those choices, there will be A2 many ways of choosing the
remaining two block vertices.

It is a straightforward, but tedious, algebraic exercise to show that if p;, p> and
b; satisfy the assumptions of the lemma, then

MBy—k)+A-12k-2)+A-1)3(k—2) > Cs(p1,b1).
The lemma now follows. O

Let by, b, be arbitrary, distinct block vertices and let p;, p» be arbitrary, dis-
tinct point vertices. We must now address the problem of determining C¢(b1,b2).
In a symmetric block design we have that v = b and uz = A. Consequently, the
counting argument provided for the determination of C¢(p1,p2) goes through
virtually unchanged for the determination of Cg(b),b52). We see, therefore, that

Cs(b1,b2) = Cs(p1,p2)-
Lemma 3. Let G be as above and let e € E(G). Then
Co(e) = (k—1)(k—2)(A~ 124+ A%(k — 1)(v—k).

Proof. Denote by p; and b, the endpoints of the edge e. One of the remaining
point vertices in the cycle must be chosen from the k — 1 points of b; different
from p;. If the third point is likewise chosen from b, then there will be k — 2
possible choices. There will then be (A — 1)? ways of choosing the remaining two
blocks. If the third point is not chosen from b then there will be v — k& possibilities,
followed by A2 many ways of choosing the remaining blocks in the cycle. a

Proof. (Theorem 2) Assume that the vertices of G have been bipartitioned into
sets S1 and Sz, with |S;] < |S2|. By Lemma 2 there are at least A2 (g) six-cycles
containing both v; and v,. Each such cycle contributes at least two edges to d5.
From Lemma 3 we have that each edge appears in no more than (k—1)(k—2)(A—
1)2+A2(k— 1)(v— k) six-cycles. Since there are three points on a given cycle non-
adjacent to a given point, each cycle can be counted up to three times. It follows



that

20751 (1521 - K) (5)
3{(k—1)(k—2)(A—1)2+A2(k—1)(v—k)]

Since a‘;? is an arbitrary isoperimetric quotient and (|S2| — k) > v — k, the proof

of Theorem 2 is complete. O

[9S1] =

3. PROJECTIVE PLANES AND HADAMARD DESIGNS

Two especially important classes of symmetric block designs are the finite pro-
jective planes and the Hadamard designs. They are united by the following obser-
vation (see [7]): Given a symmetric (v,k,A) design, we must have

4n—15v5n2+n+1,

where n = k— A. The cases where v = n? -+ n+ 1 are the projective planes and the
cases where v = 4n — 1 are the Hadamard designs.

Given their importance within the theory of block designs, we apply Theorems
1 and 2 to these cases and state them separately as corollaries. The closeness
of the upper and lower bounds in these cases suggests that our bounds are fairly
accurate.

Corollary 1. Let G, be the Levi graph of the finite projective plane of order q.

Then 2
q+1 q+l +q
<i <
T3 SiG)s (q2+q+ 1)
Proof. The finite projective plane of order g has the parameters v = ¢2+g+1,
k=q+landA=1. a

‘We note in passing that the lower bound proven here was first presented, without
proof, in [4].

Corollary 2. Let G be the Levi graph of the Hadamard design with v =4n— 1.

(n—1)>(2n—2) -1 2n—1
< <
( 3n2 4n 1) SHO) s =
Proof. The Hadamard design with v = 4n — 1 has the parameters k =2n— 1 and

A=n-1. ]
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