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Abstract

Let D be a connected symmetric digraph, A a finite abelian group,
g € A and T a group of automorphisms of D. We consider the
number of I'-isomorphism classes of connected g-cycic A-covers of D
for an element g of odd order. Specially, we enumerate the number
of I-isomorphism classes of connected g-cycic A-covers of D for an
element g of odd order and the trivial automorphism group I of D,
when A is the cyclic group Z,» and the direct sum of m copies of Z,
for any prime number p(> 2).
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1 Introduction

Graphs and digraphs treated here are finite and simple.

A graph H is called a covering of a graph G with projection 7 : H — G
if there is a surjection 7 : V(H) — V/(G) such that | Ny P N@) —
N(v) is a bijection for all vertices v € V(G) and v’ € 7~1(v), where N(v) =
Ng(v) = {w € V(G) | (v,w) € D(G)}, etc. The projection 7 : H — G is
an n-fold covering of G if 7 is n-to-one. A covering v : H — G is said to
be regular if there is a subgroup B of the automorphism group Aut H of H
acting freely on H such that the quotient graph H/B is isomorphic to G.
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Let G be a graph and A a finite group. Let D(G) be the arc set of the
symmetric digraph corresponding to G. Then a mapping o : D(G) — A
is called an ordinary voltage assignment if a(v,u) = a(u,v)”" for each
(u,v) € D(G). The ( ordinary ) derived graph G* derived from an ordinary
voltage assignment « is defined as follows:

V(G*) = V(G) x A, and ((u, k), (v, k)) € D(G*) if and only
if (u,v) € D(G) and k = ha(u,v).

The graph G* is called an A-covering of G. The A-covering G¢ is
an | A |-fold regular covering of G. Every regular covering of G is an A-
covering of G for some group A (see [3]). Furthermore the 1-cyclic A-cover
Dj(a) of a symmetric digraph D can be considered as the A-covering D=
of the underlying graph D of D.

A general theory of graph coverings is developed in [4]. Z2-coverings
(double coverings) of graphs were dealed in [5] and [17]. Hofmeister [6] and,
independently, Kwak and Lee [11] enumerated the I-isomorphism classes of
n-fold coverings of a graph, for any n € N. Dresbach [2] obtained a formula
for the number of strong isomorphism classes of regular coverings of graphs
with voltages in finite fields. The I-isomorphism classes of regular coverings
of graphs with voltages in finite dimensional vector spaces over finite fields
were enumerated by Hofmeister [7]. Hong, Kwak and Lee [9] gave the
number of I-isomorphism classes of Z,-coverings, Z, @ Z,-coverings and
D, -coverings, n:0odd, of graphs, respectively.

In the case of connected coverings, Kwak and Lee [13] enumerated the
I-isomorphism classes of connected n-fold coverings of a graph G. Fur-
thermore, Kwak, Chun and Lee [12] gave some formulas for the number of
I-isomorphism classes of connected A-coverings of a graph G when A is a
finite abelian group or D,,.

Let D be a symmetric digraph with arc set A(D), A a finite group, and
a function a : A(D) — A an ordinary voltage assignment. For g € 4, a
g-cyclic A-cover ( or g-cyclic cover ) Dy(a) of D is the digraph as follows:

V(Dy(a)) = V(D) x A, and ((u,h), (v, k)) € A(Dy(a)) if
and only if (u,v) € A(D) and k™ tha(u,v) = g.

The natural projection 7 : Dy(a) — D is a function from V(Dg(ex))
onto V(D) which erases the second coordinates. A digraph D’ is called a
cyclic A-cover of D if D’ is a g-cyclic A-cover of D for some g € A. In the
case that A is abelian, then Dy(a) is called simply a cyclic abelian cover.

Let o and 8 be two ordinary voltage assignments from A(D) into A, and
let T be a subgroup of the automorphism group Aut D of D, denoted I" <
Aut D. Let g,h € A. Then two cyclic A-covers Dg(a) and Dy(B) are called

I'-isomorphic, denoted Dgy(a)=pDn(B), if there exist an isomorphism & :

130



Dy(a) — Dp(B) and a v € T such that 7@ = vm, i.e., the diagram
commutes. Let I = {1} be the trivial group of automorphisms.

Dy(a) Dn(B)
0
D D

Cheng and Wells [1] discussed isomorphism classes of cyclic triple covers
(1-cyclic Z3-covers) of a complete symmetric digraph. Moreover, Mizuno
and Sato [15] gave a formula for the characteristic polynomial of a cyclic
A-cover of a symmetric digraph, for any finite group A. Mizuno and Sato
[14] enumerated the number of I-isomorphism classes of g-cyclic Z3-covers
of a connected symmetric digraph D for an element g of odd order and a
prime number p(> 2). Furthermore, Mizuno and Sato {16] gave a formula
for the number of I-isomorphism classes of g-cyclic Z,n-covers of D for any
prime p(> 2).

In Section 2, we discuss the number of I'-isomorphism classes of con-
nected g-cycic A-covers of D for a finite abelian group A and g € A of odd
order. In Section 3, we enumerate the number of I-isomorphism classes of
connected g-cycic Zg-covers and connected h-cycic Zpn-covers of D, where
p(> 2) is prime.

2 Isomorphisms of cyclic abelian covers

Let D be a symmetric digraph and A a finite group. A group I' of auto-
morphisms of D acts on the set C(D) of ordinary voltage assignments from
A(D) into A as follows:

a”(z,y) = a(y(z),¥(y)) for all (z,y) € A(D),

where o € C(D) and y € I". Any voltage g € A determines a permutation
p(g) of the symmetric group S4 on A which is given by p(g)(h) = hg, h € A.

From now on, assume that D is connected and A is abelian. Let G be
the underlying graph of D, T be a spanning tree of G and w a root of T.
For any a € C(D) and any walk W in G, the net a-voltage of W, denoted
a(W), is the sum of the voltages of the edges of W. Then the T-voltages
ar of a is defined as follows:

or(u,v) = a(P,) + a(u,v) — a(P,) for each (u,v) € D(G) = A(D),

where P, and P, denote the unique walk from w to » and v in T, respec-
tively. For a function f : A(D) — A, the net f-values f(W) of any walk
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W is defined as the net f-voltage of W. For a function f : A(D) — A,
let the pseudolocal voltage group Ag(v) of f at v denote the subgroup of
A consisting of all net f-values of the closed walk based at v € V(D). By
the hypothesis that A is abelian, we have As(v) = Ag(w) for a function
f : A(D) — A and any two vertices v,w € V(D). Thus, let Ay = Af(v)
for any v € V(D). Notice that if « € C(D) and g € A, then the pseudolocal
voltage groups As—g and Aas.—g are equal to the group generated by g and
Ay = Ay, where (ar — g)(u,v) = or(u,v) — g, (u,v) € A(D). Moreover,
Dy(a) is connected if and only if Aq—g is the full group A. Let ord(g) be
the order of g € A. '

Let D be a connected symmetric digraph, G its underlying graph and
A a finite abelian group. The set of ordinary voltage assignments of G
with voltages in A is denoted by C*(G; A). Note that C(D) = C(G; A).
Furthremore, let C°(G; A) be the set of functions from V(G) into A. We
consider C%(G; A) and C!(G; A) as additive groups.

The automorphism group Aut A acts on C°(G; A) and C(G; A) as
follows:

(os)(z) = o(s(z)) for z € V(D),
(ca)(z,y) = o(a(z,y)) for (z,y) € A(D),
where s € C%(G; A), a € C!(G; A) and o € Aut A.
We proceed according to an analogue of a method in [12].

Theorem 1 Let D be a connected symmetric digraph, G the underlying
graph of D, T a spanning tree of G and T’ < Aut G. Let A, B be two
finite abelian groups, g € A and h € B. Let @ € C'(G;A) and § €
CY(G; B). Assume that the orders of g and h are odd. Then the following
are equivalent:

1. Dy(a) = rDn(B)-

2. There existy € T and an isomorphism o : Aay—g(w) — Bg,r—n(y(w))
such that

Byr(u,v) = o(ar(u,v)) for each (u,v) € A(D),

and
a(g) =h.
where w € V(D).

Purthermore, if both o and B derive connected cyclic abelian covers,
then the above statement 1 is also equivalent to:
There exist ¥ € ' and an group isomorphism o : A — B such that

Byr(u,v) = o(ar(u,v)) for each (u,v) € A(D),
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and
o(g) = h.

Proof. By an analogue of the proof of Theorem 2 of [16], Dy(a) =
rDy(B) ifand only if there exist v € I' and an isomorphism o : A, _g(w) —
Bg,—n(y(w)) such that

Byp(u,v) — h=o(ar(u,v) — g) for each (u,v) € A(D).

Note that ar(u,v) = B)p(u,v) = 0 for all (u,v) € A(T).
But we have 87r(v,u) — h = o(ar(v,u) — g). Thus we have —2h =
—20(g). Since ordeg) = ord(h) are odd, it follows that o(g) = k.

QE.D

Corollary 1 Let D be a connected symmelric digraph, G the underlying
graph of D, T a spanning tree of G and A a finite abelian group.

1. Let g,h € A, a,8 € C(D) and " £ Aut G. Assume that the orders
of g and h are equal and odd. Then the following are equivalent:

(2) Dy(a) = rDn(B).
(b) There exist v € T and an isomorphism o : Agr—g(w) —
Ap,r—n(y(w)) such that

BYr(u,v) = oar(u,v)) for each (u,v) € A(D),

and
o(g) =h.

If both a and B derive connected cyclic A-covers, then the condition
(a) is also equivalent to say that there ezist v € T and an automor-
phism o € AutA such that

Bir(u,v) = o(ar(u,v)) for each (u,v) € A(D),

and
o(g) = h.

2. Letg € A and o, 8 € C(D). Assume that the order of g is odd. If both
Dy(c) and Dy(B) are connected, then the following are equivalent:

(a) Do(e) = 1 Dy(B).
(b) There exists 0 € AutA such that

Br(u,v) = o(ar(u,v)) for each (u,v) € A(D)\ A(T)

and
a(g) =g
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Let D be a connected symmetric digraph and A a finite abelian group,
g € A. Furthermore, let G be the underlying graph of D and T a spanning
tree of G. Then set, Cr(D) = {ar | @ € C(D) = C}(G; A)}. By Corollary
1 of [16], we have Dy(e) = ;Dy(ar) for any a € C(G; A) and any g € A.
Thus we consider only an element « in Cp(D).

Let « € Cr(D) and v € V(D). The component of g-cyclic A-cover
D,(c) containing (v,0) is called the identity component of Dy(a). By the
definition of cyclic A-covers, each component of Dy(c) is isomorphic to
the identity component. Furthermore, the identity component of g-cyclic
A-cover Dy(a) is just a g-cyclic Aa—g-cover if g is of odd order.

Lemma 1 Let D be a connected symmetric digraph, G be the underlying
graph of D, T a spanning tree of G and A a finite abelian group, g € A,
a,B € Cr(D) and v € V(D). Then the following are equivalent:

2. The identity component of Dy(cx) is I-isomorphic to that of Dg(B).

For a finite abelian group A and g € A, let Iso(D, A, g, I) denote the
number of J-isomorphism classes of g-cyclic A-covers of D. Furthermore,
let Isoc(D, A, g,I) be the number of I-isomorphism classes of connected
g-cyclic A-covers of D.

Theorem 2 Let D be a connected symmetric digraph, A a finite abelian
group and g € A. Assume that the order of g is odd. Then

Iso(D,A,9,1) = Isoc(D, B,g,I),
B

where B runs over all representatives of isomorphism classes of subgroups
of A which contain g and have an isomorphism fizing g.

Proof. We use Lemma 1. Let B and C be any two isomorphic sub-
groups of A which contain g and have an isomorphism fixing g. Then
by Theorem 1, we have Isoc(D, B,g,I) = Isoc(D,C, g,I) Furhthermore,
Isoc(D, B, g,I) is equal to the number of I-isomorphism classes of con-
nected g-cyclic A-covers of D whose pseudolocal voltage groups are isomor-
phic to B.

Q.E.D.
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3 Isomorphisms of connected cyclic abelian
covers

Let D be a connected symmetric digraph and A a finite abelian group. For
A and a natural number n, let

Fg(A» n) = {(gli b 'vgn) € An | {gl g1, )gn} genera‘tes A}'

We give a formula for the number of I-isomorphism classes of connected
g-cyclic A-covers of D for an element g of odd order.

Theorem 8 Let D be a connected symmetric digraph, A a finite abelian
group and g € A. Furthermore, assume that the order of g is odd. Then

Isoc(D, A, g,I) =| Fo(A; B(D)) | / | (Aut A)g |,

where B(D) =| A(D) | /2— | V(D) | +1 is the Betti number of D and
(Aut A)g={o € Aut A|o(g) =g}.

Proof. Let G be the underlying graph of D and T a spanning tree of G.
Then the pseudolocal voltage group Aar-g(w) for any connected g-cyclic
A-covers Dy(ar) of D is isomorphic to A. By Corollary 1.2, the number of
I-isomorphism classes of connected g-cyclic A-covers of D is equal to that
of (Aut A)g-orbits on Fy(A; B(D)). By Burnside’s Lemma, we have

1 o
ISOC(D, A,g, I) = I—(—m GE(E o, | FS(A, B(D)) la

where U7 is the set consisting of the elements of U fixed by o.

If | F,(A; B(D))? |# 0, then there exists a (g1, -+, gn) € Fg(A; B(D))
such that o(g;) = g; forall i =1,---,r. Since {g} U {91, --,9n} generates
A, we have o(h) = h for each h € A, i.e., 0 = 1. Therefore it follows that

Isoc(D, 4,9,1) =| Fy(A; B(D)) | / | (Aut A), | .

Q.E.D.
Let p(> 2) be a prime number and Z7 the direct sum of n copies of the
cyclic group Zy.

Theorem 4 Let D be a connected symmetric digraph and g € Z3 \ {0}.
Then the number of I-isomorphism classes of connected g-cyclic Zy-covers
of D is

pB—n+1(pB _ 1) e (pB'"+2 — 1)

food D250 ) = T - 1) G- D)

where B = B(D).
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Proof. Since Zj is the n-dimensional vector space over Z,, the general
linear group GL,(Z,) is the automorphism group of Z7. By Lemma 2 of
(7], we have

| (Aut Z2), |=p™ T2 @™ — )" 2 -1)---(p - 1).

Let K be the orthogonal complement of < g > in the vector space Z3.
Note that K = Z3~!. Then we have
Fy(Z2; B) = Fo(22; B)\W{(91, -+, 98) € (Zp)® | {91, -, 98} generates K}.
By Lemma 1 of [12], we have

| Fo(2Z2; B) |= p™ 5 (p° — (B! = 1) - (pB~"+1 - 1),

Now, set X = {(g1,-+,98) € (Z3)® | {91,"--,98} generates Z37}.
Let (g1,-+-,98) € X. Furthermore, let A be the n x B matrix havmg
91,92, ++, 9B as column vectors. By the definition of X, the rank of A is
n—1. Let u;,ug, - -+, un be the row vectors of A. Then (gl,- --,g8) € X if
and only if dim < uj,us,--+,un >=n —1. Thus we have

1X] = |{(ur,u2, -, un) € (ZD)® | dim <uy,ug,--,un >=n—1}|
= (pB_l)(pB -p)-- (pB n—2 n—l
= P EP - )P - )---(pB-»+2 ~1).
Therefore it follows that
I Fg(z:; B) I= pngn-12+B—n+1(pB - 1)(pB—1 —1)--- (pB—n+2 — 1).

By Theorem 3, the result follows.
Q.E.D.
For n =2 and g € Z2\ {0}, we have

ISOC(D, zmg:I) =pB

and 1B _ 1)
2 _P" -
ISOC(D, Zp, g, I) = —_})T_’
where B = B(D). By Theorem 2, these imply that

o8 + p21(p8 —1)

Iso(D, Zp, g,1)= -1

This is given in Corollary 4.6 of [14].
In general, the following result holds. This formula is an explicit form
of the formula in [14].
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Corollary 2 (14, Theorem 4.4) Let D be a connected symmetric digraph
and g € Z3 \ {0}. Then the number of I-isomorphism classes of g-cyclic
Z3-covers of D is

hid pB—k+1(pB - 1) . (pB—k+2 - 1)
& G- DeF -y - D)

ISO(D» Z::.q: I)=

where B = B(D).
Let p(> 2) be a prime number and Z,~ the cyclic group of order p™.

Theorem 5 Let D be a connected symmetric digraph, Zp~ the cyclic group
of order p™(p(> 2): prime) and g € Zyn \ {0}. Furthermore, let ord(g) =
p"#(u < n) be the order of g. Then the number of I-isomorphism classes
of connected g-cyclic Zyn-covers of D is

prDBHEE 1) ifp2l,
p"B otherwise,

Isoc(D,Zpn,g,I) = {
where B = B(D).
Proof. By Theorem 6 of [16], we have
| (Aut Zpn)g |= p*.

At first, assume that x > 1. Let (g1,-:+,9B) € Fg(Zpn; B). Then the
set {g1, -+, 98,9} generates the group Zg-. Since g is not a generator of
Zon, the set {g1,:-+,9B} generates the group Z,~». Thus we have

Fy(Zyn; B) = Fo(Zyn; B).
By Lemma 1 of [12], we have
| Fy(Zpn; B) |=p"~DE(p? ~1).
Next, let = 0. Then g is a generator of Z,~. Thus it follows that
Fo(Zpn; B) = (Z-)?,

ie.,
| Fy(Zpn; B) |=p"5.

By Theorem 3, the result follows.
Q.E.D.
For n =2 and g € Z,2 \ {0}, we have

Isoc(D,Zyp2,9,1) = p®~1(p® - 1)
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and
Isoc(D, Zy, g,1) = p®.

By Theorem 2, these imply that
Iso(D,Zy,g,1) =p® +pP~1(p® - 1).

In general, the following result is obtained. This formula is an alternative
form of the formula in [16].

Corollary 3 (16, Theorem 6) Let D be o connected symmetric digraph
and g € Zyn \ {0}. PFurthermore, let ord(g) = p™#(0 < u < n) be the order
of g. Then the number of I-isomorphism classes of g-cyclic Zyn-covers of
Dis

plB+1B-1) _ 1

I50(D,Zpn, g, I) = p"=#=1B 4 pn=s=B(pB _ V=—pp=gy
where B = B(D).

We state a few problems on enumeration of isomorphism classes of cyclic
A-covers.

Problem 1 When g is even order, can we obtain a characterization when
two g-cyclic A-covers are I'-isomorphic ?

We have no information on enumeration of cyclic A-covers for any non-
abelian group A.

Problem 2 Can we drive enumeration formula for any other abelian groups
or non-abelian groups ?

Acknowledgment. We would like to thank the referee for many valuable
comments and suggestions.

References

(1] Y. Cheng and A.L. Wells, Jr., Switching classes of directed graphs, J.
Combin. Theory Ser. B 40 (1986), 169-186.

[2] K.  Dresbach, Uber die strenge  Isomorphie  von
Grapheniiberlagerungen, Diplomarbeit, Univ. of Cologne (1989).

[3] J.L. Gross and T.W. Tucker, Generating all graph coverings by per-
mutation voltage assignments, Discrete Math. 18 (1977), 273-283.

138



[4] J.L. Gross and T.W. Tucker, Topological Graph Theory, Wiley-
Interscience, New York, 1987.

[5] M. Hofmeister, Counting double covers of graphs, J. Graph Theory 12
(1988), 437-444.

[6] M. Hofmeister, Isomorphisms and automorphisms of graph coverings,
Discrete Math. 98 (1991), 175-185.

[7] M. Hofmeister, Graph covering projections arising from finite vector
spaces over finite fields, Discrete Math. 143 (1995), 87-97.

[8] M. Hofmeister, Combinatorial aspects of an exact sequence that is
related to a graph, Publ. .R.M.A. Strasbourg, 1993, S-29, Actes 29°
Séminaire Lotharingien.

[9] S. Hong, J.H. Kwak and J. Lee, Regular graph coverings whose cover-
ing transformation groups have the isomorphism extension property,
Discrete Math. 148 (1996), 85-105.

[10] A. Kerber, Algebraic Combinatorics via Finite Group Actions, Bl-
Wiss. Verl., Mannheim, Wien, Zii rich, 1991.

[11] J.H. Kwak and J. Lee, Isomorphism classes of graph bundles, Canad.
J. Math. XLII (1990), 747-761.

[12] J.H. Kwak, J. Chun and J. Lee, Enumeration of regular graph coverings
having finite abelian covering transformation groups, SIAM. J. Disc.
Math. 11 (1998), 273-285.

(13) J.H. Kwak and J. Lee, Enumeration of connected graph coverings, J.
Graph Theory 23 (1996), 105-109.

[14] H. Mizuno and I. Sato, Isomorphisms of some covers of symmetric
digraphs(in Japanese), Trans. Japan SIAM. 5-1 (1995), 27-36.

[15] H. Mizuno and 1. Sato, Characteristic polynomials of some covers of
symmetric digraphs, Ars Combinatoria 45 (1997), 3-12.

[16] H. Mizuno and 1. Sato, Isomorphisms of cyclic abelian covers of sym-
metric digraphs, Ars Combinatoria 54 (2000), 51-64.

[17) D.A. Waller, Double covers of graphs, Bull. Austral. Math. Soc. 14
(1976), 233-248.

139



