ISOMORPHISMS OF CONNECTED CYCLIC ABELIAN COVERS OF SYMMETRIC DIGRAPHS

Iwao SATO*
Oyama National College of Technology
Oyama, Tochigi 323, JAPAN

Jaeun LEE
Department of Mathematics
Yeungnam University, Kyongsan, 712-749 KOREA

Abstract

Let D be a connected symmetric digraph, A a finite abelian group, $g \in A$ and Γ a group of automorphisms of D. We consider the number of Γ -isomorphism classes of connected g-cycic A-covers of D for an element g of odd order. Specially, we enumerate the number of I-isomorphism classes of connected g-cycic A-covers of D for an element g of odd order and the trivial automorphism group I of D, when A is the cyclic group \mathbb{Z}_{p^n} and the direct sum of m copies of \mathbb{Z}_p for any prime number p(>2).

Key words: digraph covering; enumeration

1 Introduction

Graphs and digraphs treated here are finite and simple.

A graph H is called a covering of a graph G with projection $\pi: H \longrightarrow G$ if there is a surjection $\pi: V(H) \longrightarrow V(G)$ such that $\pi|_{N(v')}: N(v') \longrightarrow N(v)$ is a bijection for all vertices $v \in V(G)$ and $v' \in \pi^{-1}(v)$, where $N(v) = N_G(v) = \{w \in V(G) \mid (v, w) \in D(G)\}$, etc. The projection $\pi: H \longrightarrow G$ is an n-fold covering of G if π is n-to-one. A covering $\pi: H \longrightarrow G$ is said to be regular if there is a subgroup B of the automorphism group Aut H of H acting freely on H such that the quotient graph H/B is isomorphic to G.

^{*}Supported by Grant-in-Aid for Scientific Research (C)

Let G be a graph and A a finite group. Let D(G) be the arc set of the symmetric digraph corresponding to G. Then a mapping $\alpha: D(G) \longrightarrow A$ is called an <u>ordinary voltage assignment</u> if $\alpha(v,u) = \alpha(u,v)^{-1}$ for each $(u,v) \in D(G)$. The (<u>ordinary</u>) <u>derived graph</u> G^{α} derived from an ordinary voltage assignment α is defined as follows:

$$V(G^{\alpha}) = V(G) \times A$$
, and $((u, h), (v, k)) \in D(G^{\alpha})$ if and only if $(u, v) \in D(G)$ and $k = h\alpha(u, v)$.

The graph G^{α} is called an <u>A-covering</u> of G. The A-covering G^{α} is an |A|-fold regular covering of G. Every regular covering of G is an A-covering of G for some group A (see [3]). Furthermore the 1-cyclic A-cover $D_1(\alpha)$ of a symmetric digraph D can be considered as the A-covering \tilde{D}^{α} of the underlying graph \tilde{D} of D.

A general theory of graph coverings is developed in [4]. \mathbb{Z}_2 -coverings (double coverings) of graphs were dealed in [5] and [17]. Hofmeister [6] and, independently, Kwak and Lee [11] enumerated the I-isomorphism classes of n-fold coverings of a graph, for any $n \in \mathbb{N}$. Dresbach [2] obtained a formula for the number of strong isomorphism classes of regular coverings of graphs with voltages in finite fields. The I-isomorphism classes of regular coverings of graphs with voltages in finite dimensional vector spaces over finite fields were enumerated by Hofmeister [7]. Hong, Kwak and Lee [9] gave the number of I-isomorphism classes of \mathbb{Z}_n -coverings, $\mathbb{Z}_p \bigoplus \mathbb{Z}_p$ -coverings and D_n -coverings, n:odd, of graphs, respectively.

In the case of connected coverings, Kwak and Lee [13] enumerated the I-isomorphism classes of connected n-fold coverings of a graph G. Furthermore, Kwak, Chun and Lee [12] gave some formulas for the number of I-isomorphism classes of connected A-coverings of a graph G when A is a finite abelian group or D_n .

Let D be a symmetric digraph with arc set A(D), A a finite group, and a function $\alpha: A(D) \longrightarrow A$ an ordinary voltage assignment. For $g \in A$, a g-cyclic A-cover (or g-cyclic cover) $D_g(\alpha)$ of D is the digraph as follows:

$$V(D_g(\alpha)) = V(D) \times A$$
, and $((u,h),(v,k)) \in A(D_g(\alpha))$ if and only if $(u,v) \in A(D)$ and $k^{-1}h\alpha(u,v) = g$.

The natural projection $\pi:D_g(\alpha)\longrightarrow D$ is a function from $V(D_g(\alpha))$ onto $V(\overline{D})$ which erases the second coordinates. A digraph D' is called a cyclic A-cover of D if D' is a g-cyclic A-cover of D for some $g\in A$. In the case that A is abelian, then $D_g(\alpha)$ is called simply a cyclic abelian cover.

Let α and β be two ordinary voltage assignments from A(D) into A, and let Γ be a subgroup of the automorphism group $Aut\ D$ of D, denoted $\Gamma \leq Aut\ D$. Let $g,h \in A$. Then two cyclic A-covers $D_g(\alpha)$ and $D_h(\beta)$ are called Γ -isomorphic, denoted $D_g(\alpha) \cong_{\Gamma} D_h(\beta)$, if there exist an isomorphism Φ :

 $D_g(\alpha) \longrightarrow D_h(\beta)$ and a $\gamma \in \Gamma$ such that $\pi \Phi = \gamma \pi$, i.e., the diagram commutes. Let $I = \{1\}$ be the trivial group of automorphisms.

Cheng and Wells [1] discussed isomorphism classes of cyclic triple covers (1-cyclic \mathbb{Z}_3 -covers) of a complete symmetric digraph. Moreover, Mizuno and Sato [15] gave a formula for the characteristic polynomial of a cyclic A-cover of a symmetric digraph, for any finite group A. Mizuno and Sato [14] enumerated the number of I-isomorphism classes of g-cyclic \mathbb{Z}_p^n -covers of a connected symmetric digraph D for an element g of odd order and a prime number g (> 2). Furthermore, Mizuno and Sato [16] gave a formula for the number of I-isomorphism classes of g-cyclic \mathbb{Z}_{p^n} -covers of D for any prime g (> 2).

In Section 2, we discuss the number of Γ -isomorphism classes of connected g-cycic A-covers of D for a finite abelian group A and $g \in A$ of odd order. In Section 3, we enumerate the number of I-isomorphism classes of connected g-cycic \mathbb{Z}_p^n -covers and connected h-cycic \mathbb{Z}_{p^n} -covers of D, where p(>2) is prime.

2 Isomorphisms of cyclic abelian covers

Let D be a symmetric digraph and A a finite group. A group Γ of automorphisms of D acts on the set C(D) of ordinary voltage assignments from A(D) into A as follows:

$$\alpha^{\gamma}(x,y) = \alpha(\gamma(x),\gamma(y)) \text{ for all } (x,y) \in A(D),$$

where $\alpha \in C(D)$ and $\gamma \in \Gamma$. Any voltage $g \in A$ determines a permutation $\rho(g)$ of the symmetric group S_A on A which is given by $\rho(g)(h) = hg$, $h \in A$.

From now on, assume that D is connected and A is abelian. Let G be the underlying graph of D, T be a spanning tree of G and w a root of T. For any $\alpha \in C(D)$ and any walk W in G, the net α -voltage of W, denoted $\alpha(W)$, is the sum of the voltages of the edges of W. Then the \underline{T} -voltages α_T of α is defined as follows:

$$\alpha_T(u,v) = \alpha(P_u) + \alpha(u,v) - \alpha(P_v)$$
 for each $(u,v) \in D(G) = A(D)$,

where P_u and P_v denote the unique walk from w to u and v in T, respectively. For a function $f: A(D) \longrightarrow A$, the net f-values f(W) of any walk

W is defined as the net f-voltage of W. For a function $f:A(D)\longrightarrow A$, let the pseudolocal voltage group $A_f(v)$ of f at v denote the subgroup of A consisting of all net f-values of the closed walk based at $v\in V(D)$. By the hypothesis that A is abelian, we have $A_f(v)=A_f(w)$ for a function $f:A(D)\longrightarrow A$ and any two vertices $v,w\in V(D)$. Thus, let $A_f=A_f(v)$ for any $v\in V(D)$. Notice that if $\alpha\in C(D)$ and $g\in A$, then the pseudolocal voltage groups $A_{\alpha-g}$ and $A_{\alpha T-g}$ are equal to the group generated by g and $A_{\alpha}=A_{\alpha T}$, where $(\alpha_T-g)(u,v)=\alpha_T(u,v)-g$, $(u,v)\in A(D)$. Moreover, $D_g(\alpha)$ is connected if and only if $A_{\alpha-g}$ is the full group A. Let ord(g) be the order of $g\in A$.

Let D be a connected symmetric digraph, G its underlying graph and A a finite abelian group. The set of ordinary voltage assignments of G with voltages in A is denoted by $C^1(G;A)$. Note that $C(D) = C^1(G;A)$. Furthremore, let $C^0(G;A)$ be the set of functions from V(G) into A. We consider $C^0(G;A)$ and $C^1(G;A)$ as additive groups.

The automorphism group $Aut\ A$ acts on $C^0(G;A)$ and $C^1(G;A)$ as follows:

$$(\sigma s)(x) = \sigma(s(x)) \text{ for } x \in V(D),$$

 $(\sigma \alpha)(x,y) = \sigma(\alpha(x,y)) \text{ for } (x,y) \in A(D),$

where $s \in C^0(G; A)$, $\alpha \in C^1(G; A)$ and $\sigma \in Aut A$.

We proceed according to an analogue of a method in [12].

Theorem 1 Let D be a connected symmetric digraph, G the underlying graph of D, T a spanning tree of G and $\Gamma \leq Aut$ G. Let A, B be two finite abelian groups, $g \in A$ and $h \in B$. Let $\alpha \in C^1(G; A)$ and $\beta \in C^1(G; B)$. Assume that the orders of g and h are odd. Then the following are equivalent:

- 1. $D_g(\alpha) \cong {}_{\Gamma}D_h(\beta)$.
- 2. There exist $\gamma \in \Gamma$ and an isomorphism $\sigma : A_{\alpha_T g}(w) \longrightarrow B_{\beta_{\gamma_T h}}(\gamma(w))$ such that

$$\beta_{\gamma T}^{\gamma}(u,v) = \sigma(\alpha_T(u,v)) \text{ for each } (u,v) \in A(D),$$

and

$$\sigma(g) = h$$
.

where $w \in V(D)$.

Furthermore, if both α and β derive connected cyclic abelian covers, then the above statement 1 is also equivalent to:

There exist $\gamma \in \Gamma$ and an group isomorphism $\sigma : A \longrightarrow B$ such that

$$\beta_{\gamma T}^{\gamma}(u,v) = \sigma(\alpha_T(u,v)) \text{ for each } (u,v) \in A(D),$$

and

$$\sigma(g) = h$$
.

Proof. By an analogue of the proof of Theorem 2 of [16], $D_g(\alpha) \cong \Gamma D_h(\beta)$ if and only if there exist $\gamma \in \Gamma$ and an isomorphism $\sigma : A_{\alpha_T - g}(w) \longrightarrow B_{\beta_{\gamma_T} - h}(\gamma(w))$ such that

$$\beta_{\gamma T}^{\gamma}(u,v) - h = \sigma(\alpha_T(u,v) - g)$$
 for each $(u,v) \in A(D)$.

Note that $\alpha_T(u,v) = \beta_{\gamma T}^{\gamma}(u,v) = 0$ for all $(u,v) \in A(T)$.

But we have $\beta_{\gamma T}^{\gamma}(v,u) - h = \sigma(\alpha_T(v,u) - g)$. Thus we have $-2h = -2\sigma(g)$. Since ord(g) = ord(h) are odd, it follows that $\sigma(g) = h$. Q.E.D.

Corollary 1 Let D be a connected symmetric digraph, G the underlying graph of D, T a spanning tree of G and A a finite abelian group.

- 1. Let $g, h \in A$, $\alpha, \beta \in C(D)$ and $\Gamma \leq Aut G$. Assume that the orders of g and h are equal and odd. Then the following are equivalent:
 - (a) $D_g(\alpha) \cong {}_{\Gamma}D_h(\beta)$.
 - (b) There exist $\gamma \in \Gamma$ and an isomorphism $\sigma : A_{\alpha_T g}(w) \longrightarrow A_{\beta_{\gamma_T} h}(\gamma(w))$ such that

$$\beta_{\gamma T}^{\gamma}(u,v) = \sigma(\alpha_T(u,v)) \text{ for each } (u,v) \in A(D),$$

and

$$\sigma(q) = h$$
.

If both α and β derive connected cyclic A-covers, then the condition (a) is also equivalent to say that there exist $\gamma \in \Gamma$ and an automorphism $\sigma \in \operatorname{Aut} A$ such that

$$\beta_{\gamma T}^{\gamma}(u,v) = \sigma(\alpha_T(u,v))$$
 for each $(u,v) \in A(D)$,

and

$$\sigma(a) = h$$
.

- 2. Let $g \in A$ and $\alpha, \beta \in C(D)$. Assume that the order of g is odd. If both $D_g(\alpha)$ and $D_g(\beta)$ are connected, then the following are equivalent:
 - (a) $D_g(\alpha) \cong {}_I D_g(\beta)$.
 - (b) There exists $\sigma \in AutA$ such that

$$\beta_T(u,v) = \sigma(\alpha_T(u,v))$$
 for each $(u,v) \in A(D) \setminus A(T)$

and

$$\sigma(q) = q$$
.

Let D be a connected symmetric digraph and A a finite abelian group, $g \in A$. Furthermore, let G be the underlying graph of D and T a spanning tree of G. Then set, $C_T(D) = \{\alpha_T \mid \alpha \in C(D) = C^1(G;A)\}$. By Corollary 1 of [16], we have $D_g(\alpha) \cong {}_ID_g(\alpha_T)$ for any $\alpha \in C(G;A)$ and any $g \in A$. Thus we consider only an element α in $C_T(D)$.

Let $\alpha \in C_T(D)$ and $v \in V(D)$. The component of g-cyclic A-cover $D_g(\alpha)$ containing (v,0) is called the identity component of $D_g(\alpha)$. By the definition of cyclic A-covers, each component of $D_g(\alpha)$ is isomorphic to the identity component. Furthermore, the identity component of g-cyclic A-cover $D_g(\alpha)$ is just a g-cyclic $A_{\alpha-g}$ -cover if g is of odd order.

Lemma 1 Let D be a connected symmetric digraph, G be the underlying graph of D, T a spanning tree of G and A a finite abelian group, $g \in A$, $\alpha, \beta \in C_T(D)$ and $v \in V(D)$. Then the following are equivalent:

- 1. $D_g(\alpha) \cong {}_I D_g(\beta)$.
- 2. The identity component of $D_g(\alpha)$ is I-isomorphic to that of $D_g(\beta)$.

For a finite abelian group A and $g \in A$, let Iso(D, A, g, I) denote the number of I-isomorphism classes of g-cyclic A-covers of D. Furthermore, let Isoc(D, A, g, I) be the number of I-isomorphism classes of connected g-cyclic A-covers of D.

Theorem 2 Let D be a connected symmetric digraph, A a finite abelian group and $g \in A$. Assume that the order of g is odd. Then

$$Iso(D, A, g, I) = \sum_{B} Isoc(D, B, g, I),$$

where B runs over all representatives of isomorphism classes of subgroups of A which contain g and have an isomorphism fixing g.

Proof. We use Lemma 1. Let B and C be any two isomorphic subgroups of A which contain g and have an isomorphism fixing g. Then by Theorem 1, we have Isoc(D, B, g, I) = Isoc(D, C, g, I) Furthhermore, Isoc(D, B, g, I) is equal to the number of I-isomorphism classes of connected g-cyclic A-covers of D whose pseudolocal voltage groups are isomorphic to B. Q.E.D.

3 Isomorphisms of connected cyclic abelian covers

Let D be a connected symmetric digraph and A a finite abelian group. For A and a natural number n, let

$$F_g(A;n) = \{(g_1, \dots, g_n) \in A^n \mid \{g, g_1, \dots, g_n\} \text{ generates } A\}.$$

We give a formula for the number of I-isomorphism classes of connected g-cyclic A-covers of D for an element g of odd order.

Theorem 3 Let D be a connected symmetric digraph, A a finite abelian group and $g \in A$. Furthermore, assume that the order of g is odd. Then

$$Isoc(D, A, g, I) = |F_{a}(A; B(D))| / |(Aut A)_{a}|,$$

where B(D) = |A(D)|/2 - |V(D)| + 1 is the Betti number of D and $(Aut\ A)_g = \{\sigma \in Aut\ A \mid \sigma(g) = g\}.$

Proof. Let G be the underlying graph of D and T a spanning tree of G. Then the pseudolocal voltage group $A_{\alpha_T-g}(w)$ for any connected g-cyclic A-covers $D_g(\alpha_T)$ of D is isomorphic to A. By Corollary 1.2, the number of I-isomorphism classes of connected g-cyclic A-covers of D is equal to that of $(Aut\ A)_g$ -orbits on $F_g(A;B(D))$. By Burnside's Lemma, we have

$$Isoc(D, A, g, I) = \frac{1}{|(Aut A)_g|} \sum_{\sigma \in (Aut A)_\sigma} |F_g(A; B(D))^\sigma|,$$

where U^{σ} is the set consisting of the elements of U fixed by σ .

If $|F_g(A; B(D))^{\sigma}| \neq 0$, then there exists a $(g_1, \dots, g_n) \in F_g(A; B(D))$ such that $\sigma(g_i) = g_i$ for all $i = 1, \dots, r$. Since $\{g\} \cup \{g_1, \dots, g_n\}$ generates A, we have $\sigma(h) = h$ for each $h \in A$, i.e., $\sigma = 1$. Therefore it follows that

$$Isoc(D, A, g, I) = |F_g(A; B(D))| / |(Aut A)_g|.$$

Q.E.D.

Let p(>2) be a prime number and \mathbb{Z}_p^n the direct sum of n copies of the cyclic group \mathbb{Z}_p .

Theorem 4 Let D be a connected symmetric digraph and $g \in \mathbb{Z}_p^n \setminus \{0\}$. Then the number of I-isomorphism classes of connected g-cyclic \mathbb{Z}_p^n -covers of D is

$$Isoc(D, \mathbb{Z}_p^n, g, I) = \frac{p^{B-n+1}(p^B-1)\cdots(p^{B-n+2}-1)}{(p^{n-1}-1)(p^{n-2}-1)\cdots(p-1)},$$

where B = B(D).

Proof. Since \mathbb{Z}_p^n is the *n*-dimensional vector space over \mathbb{Z}_p , the general linear group $GL_n(\mathbb{Z}_p)$ is the automorphism group of \mathbb{Z}_p^n . By Lemma 2 of [7], we have

$$|(Aut \mathbb{Z}_p^n)_g| = p^{\frac{n(n-1)}{2}} (p^{n-1} - 1)(p^{n-2} - 1) \cdots (p-1).$$

Let K be the orthogonal complement of $\langle g \rangle$ in the vector space \mathbb{Z}_p^n . Note that $K \cong \mathbb{Z}_p^{n-1}$. Then we have

$$F_g(\mathbf{Z}_p^n;B) = F_0(\mathbf{Z}_p^n;B) \cup \{(g_1,\cdots,g_B) \in (\mathbf{Z}_p^n)^B \mid \{g_1,\cdots,g_B\} \text{ generates } K\}.$$

By Lemma 1 of [12], we have

$$|F_0(\mathbf{Z}_p^n;B)| = p^{\frac{n(n-1)}{2}}(p^B-1)(p^{B-1}-1)\cdots(p^{B-n+1}-1).$$

Now, set $X = \{(g_1, \dots, g_B) \in (\mathbb{Z}_p^n)^B \mid \{g_1, \dots, g_B\} \text{ generates } \mathbb{Z}_p^{n-1}\}$. Let $(g_1, \dots, g_B) \in X$. Furthermore, let A be the $n \times B$ matrix having g_1, g_2, \dots, g_B as column vectors. By the definition of X, the rank of A is n-1. Let u_1, u_2, \dots, u_n be the row vectors of A. Then $(g_1, \dots, g_B) \in X$ if and only if $dim < u_1, u_2, \dots, u_n >= n-1$. Thus we have

$$|X| = |\{(u_1, u_2, \cdots, u_n) \in (\mathbb{Z}_p^n)^B \mid \dim \langle u_1, u_2, \cdots, u_n \rangle = n - 1\}|$$

$$= (p^B - 1)(p^B - p) \cdots (p^B - p^{n-2})p^{n-1}$$

$$= p^{\frac{n(n-1)}{2}}(p^B - 1)(p^{B-1} - 1) \cdots (p^{B-n+2} - 1).$$

Therefore it follows that

$$|F_{\sigma}(\mathbf{Z}_{n}^{n};B)| = p^{\frac{n(n-1)}{2}+B-n+1}(p^{B}-1)(p^{B-1}-1)\cdots(p^{B-n+2}-1).$$

By Theorem 3, the result follows. Q.E.D.

For n=2 and $g \in \mathbb{Z}_p^2 \setminus \{0\}$, we have

$$Isoc(D, \mathbf{Z}_p, g, I) = p^B$$

and

$$Isoc(D, \mathbb{Z}_p^2, g, I) = \frac{p^{B-1}(p^B-1)}{p-1},$$

where B = B(D). By Theorem 2, these imply that

$$Iso(D, \mathbb{Z}_p^2, g, I) = p^B + \frac{p^{B-1}(p^B - 1)}{p - 1}.$$

This is given in Corollary 4.6 of [14].

In general, the following result holds. This formula is an explicit form of the formula in [14].

Corollary 2 (14, Theorem 4.4) Let D be a connected symmetric digraph and $g \in \mathbb{Z}_p^n \setminus \{0\}$. Then the number of I-isomorphism classes of g-cyclic \mathbb{Z}_p^n -covers of D is

$$Iso(D, \mathbb{Z}_p^n, g, I) = \sum_{k=1}^n \frac{p^{B-k+1}(p^B-1)\cdots(p^{B-k+2}-1)}{(p^{k-1}-1)(p^{k-2}-1)\cdots(p-1)},$$

where B = B(D).

Let p(>2) be a prime number and \mathbb{Z}_{p^n} the cyclic group of order p^n .

Theorem 5 Let D be a connected symmetric digraph, \mathbf{Z}_{p^n} the cyclic group of order $p^n(p(>2)$: prime) and $g \in \mathbf{Z}_{p^n} \setminus \{0\}$. Furthermore, let $ord(g) = p^{n-\mu}(\mu < n)$ be the order of g. Then the number of I-isomorphism classes of connected g-cyclic \mathbf{Z}_{p^n} -covers of D is

$$Isoc(D, \mathbf{Z}_{p^n}, g, I) = \left\{ egin{array}{ll} p^{(n-1)B-\mu}(p^B-1) & \mbox{if } \mu \geq 1, \\ p^{nB} & \mbox{otherwise,} \end{array}
ight.$$

where B = B(D).

Proof. By Theorem 6 of [16], we have

$$\mid (Aut \mathbf{Z}_{p^n})_q \mid = p^{\mu}.$$

At first, assume that $\mu \geq 1$. Let $(g_1, \dots, g_B) \in F_g(\mathbf{Z}_{p^n}; B)$. Then the set $\{g_1, \dots, g_B, g\}$ generates the group \mathbf{Z}_{p^n} . Since g is not a generator of \mathbf{Z}_{p^n} , the set $\{g_1, \dots, g_B\}$ generates the group \mathbf{Z}_{p^n} . Thus we have

$$F_q(\mathbf{Z}_{p^n};B)=F_0(\mathbf{Z}_{p^n};B).$$

By Lemma 1 of [12], we have

$$|F_a(\mathbf{Z}_{p^n}; B)| = p^{(n-1)B}(p^B - 1).$$

Next, let $\mu = 0$. Then g is a generator of \mathbb{Z}_{p^n} . Thus it follows that

$$F_g(\mathbf{Z}_{p^n};B)=(\mathbf{Z}_{p^n})^B,$$

i.e.,

$$\mid F_g(\mathbf{Z}_{p^n};B) \mid = p^{nB}.$$

By Theorem 3, the result follows. Q.E.D.

For n=2 and $g \in \mathbb{Z}_{p^2} \setminus \{0\}$, we have

$$Isoc(D, \mathbb{Z}_{p^2}, g, I) = p^{B-1}(p^B - 1)$$

and

$$Isoc(D, \mathbf{Z}_p, g, I) = p^B.$$

By Theorem 2, these imply that

$$Iso(D, \mathbb{Z}_{p^2}, g, I) = p^B + p^{B-1}(p^B - 1).$$

In general, the following result is obtained. This formula is an alternative form of the formula in [16].

Corollary 3 (16, Theorem 6) Let D be a connected symmetric digraph and $g \in \mathbb{Z}_{p^n} \setminus \{0\}$. Furthermore, let $ord(g) = p^{n-\mu}(0 < \mu < n)$ be the order of g. Then the number of I-isomorphism classes of g-cyclic \mathbb{Z}_{p^n} -covers of D is

$$Iso(D, \mathbf{Z}_{p^n}, g, I) = p^{(n-\mu-1)B} + p^{(n-\mu-1)B}(p^B - 1) \frac{p^{(\mu+1)(B-1)} - 1}{(p^{B-1} - 1)},$$

where B = B(D).

We state a few problems on enumeration of isomorphism classes of cyclic A-covers.

Problem 1 When g is even order, can we obtain a characterization when two g-cyclic A-covers are Γ -isomorphic?

We have no information on enumeration of cyclic A-covers for any non-abelian group A.

Problem 2 Can we drive enumeration formula for any other abelian groups or non-abelian groups?

Acknowledgment. We would like to thank the referee for many valuable comments and suggestions.

References

- [1] Y. Cheng and A.L. Wells, Jr., Switching classes of directed graphs, J. Combin. Theory Ser. B 40 (1986), 169-186.
- [2] K. Dresbach, Über die strenge Isomorphie von Graphenüberlagerungen, Diplomarbeit, Univ. of Cologne (1989).
- [3] J.L. Gross and T.W. Tucker, Generating all graph coverings by permutation voltage assignments, Discrete Math. 18 (1977), 273-283.

- [4] J.L. Gross and T.W. Tucker, Topological Graph Theory, Wiley-Interscience, New York, 1987.
- [5] M. Hofmeister, Counting double covers of graphs, J. Graph Theory 12 (1988), 437-444.
- [6] M. Hofmeister, Isomorphisms and automorphisms of graph coverings, Discrete Math. 98 (1991), 175-185.
- [7] M. Hofmeister, Graph covering projections arising from finite vector spaces over finite fields, *Discrete Math.* 143 (1995), 87–97.
- [8] M. Hofmeister, Combinatorial aspects of an exact sequence that is related to a graph, Publ. I.R.M.A. Strasbourg, 1993, S-29, Actes 29^e Séminaire Lotharingien.
- [9] S. Hong, J.H. Kwak and J. Lee, Regular graph coverings whose covering transformation groups have the isomorphism extension property, Discrete Math. 148 (1996), 85-105.
- [10] A. Kerber, Algebraic Combinatorics via Finite Group Actions, BI-Wiss. Verl., Mannheim, Wien, Zü rich, 1991.
- [11] J.H. Kwak and J. Lee, Isomorphism classes of graph bundles, Canad. J. Math. XLII (1990), 747-761.
- [12] J.H. Kwak, J. Chun and J. Lee, Enumeration of regular graph coverings having finite abelian covering transformation groups, SIAM. J. Disc. Math. 11 (1998), 273-285.
- [13] J.H. Kwak and J. Lee, Enumeration of connected graph coverings, J. Graph Theory 23 (1996), 105-109.
- [14] H. Mizuno and I. Sato, Isomorphisms of some covers of symmetric digraphs (in Japanese), Trans. Japan SIAM. 5-1 (1995), 27-36.
- [15] H. Mizuno and I. Sato, Characteristic polynomials of some covers of symmetric digraphs, Ars Combinatoria 45 (1997), 3-12.
- [16] H. Mizuno and I. Sato, Isomorphisms of cyclic abelian covers of symmetric digraphs, Ars Combinatoria 54 (2000), 51-64.
- [17] D.A. Waller, Double covers of graphs, Bull. Austral. Math. Soc. 14 (1976), 233-248.