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Abstract

We call a cycle whose length is at most 5 a short cycle. In this
paper, we consider the packing of short cycles in a graph with speci-
fied edges. A minimum degree condition is obtained, which is slightly
weaker than that of the result in [1].
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1 Introduction

In this paper, we consider only finite undirected graphs without lcops or
multiple edges. For a vertex z of a graph G, the neighborhood of z is
denoted by Ng(z), and dg(z) = |Ng(z)| is the degree of z in G . For
a subgraph H of G and a vertex z € V(G), we also denote Ny(z) =
Ng(z)NV(H) and dy(z) = |Ng(z)|. For a subset S of V(G), we write {S)
for the subgraph induced by S. For a subgraph H of G and a subset S of
V(@), dy(S) = Zzes du(z), Nu(S) = UzesNy(x) and define G — H =
(V(G) - V(H)) and G - § = (V(G) — S). For a graph G, |G| = |[V(G)| is
the order of G, §(G) is the minimum degree of G, and

02(G) = min{dg(z) + de(v)|zy ¢ E(G),z,y € V(G),z # y}

is the minimum degree sum of nonadjacent vertices. (When G is complete,
we define 02(G) = 0.)

For graphs G and G2, G + G2 is the join of G; and G3. For graphs
G1, G2 and G3, Gy + G2 + G3 = (G1 U G3) + G3. K, is a complete graph
of order n. In this paper, ‘disjoint’ means ‘vertex-disjoint’, since we only
deal with partitions of the vertex set, and n always denotes the order of a
graph. A cycle of length 3 is called a triangle.
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In [1), Egawa et al. considered the partition of a graph into cycles
passing through specified edges and proved the following theorem.

Theorem 1 Suppose k > 2,n > 4k —1 and 02(G) 2 n+ 2k — 2. Then for
any independent edges ey, ...,ex € E(G), G can be partitioned into cycles
H,, ..., Hy such that e; € E(H;).

The proof of Theorem 1 consists of two steps, solving packing problems
and then extending a packing to a partition. Result of a packing problem
is the next theorem.

Theorem 2 Suppose k > 1, n > 4k — 1 and 62(G) 2 n+ 2k — 2. Then
for any independent edges ey, ..., ex € BE(G), G contains k disjoint cycles
C1,...,Ck such that e; € E(Cg) and |Cgl <4.

The following corollary is immediate from Theorem 2.

Corollary 3 Suppose k > 1, n > 4k — 1 and §(G) > %(n + 2k — 2). Then
for any independent edges ey, ..., ex € E(G), G contains k disjoint cycles
Ci,...,Ck such that e; € E(C;) and |C;| < 4.

Result of extending a packing to a partition is the following.

Theorem 4 Suppose k > 1, n > 3k, 02(G) > n+k, andey,...,ex € E(G)
are independent edges. Moreover, G contains k disjoint cycles Cy,...,Ck
such that e; € E(C;). Then G contains k disjoint cycles Hy,...,Hy such
that e; € E(H;) and S, V(H;) = V(G).

In (1], the next two examples are shown for Theorem 2 and Corollary 3.

Ezample 1. Let G be a graph of order » obtained from K, _; by adjoining a
new vertex z so that the degree of x is 2k —1. Take any k independent edges
e1,-..,ex in {{z} U Ng(z)), and let = be an endvertex of e;. Then there
is no cycle through e; avoiding any endvertices of ey, ..., e, and o2(G) =
n+2k-3.

Ezample 2. Let G = A+ Kor—» + B with an edge e; joining A and B,
where A and B are complete graphs with |A]| = [n/2] —k+ 1 and |B| =
|n/2) —k+1. Take any k — 1 independent edges e, . .., ex in K2xk—2. Then
e1,..., e are k independent edges, but there is no cycle through e; avoiding
any vertices in Kok_o, while §(G) = |n/2] + k — 2 = | 224
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Example 2 gives the sharpness of the assumption in Corollary 3 only for
even n. :
In this paper, we will prove the following theorem.

Theorem 5 Supposen > max{6k, 4k+6}, k > 1 and §(G) > (n+2k-3)/2.
Then for any independent edges ey,...,ex, G contains k disjoint cycles
C1,...,Ck such that e; € E(C;) for 1 <i <k, and |Ci| <4 for1 <i <k’
or ‘|C;| =5 for some i, 1 <i < k and the rest are all triangles’.

By Theorem 5, the degree condition in Theorem 1 can be slightly im-
proved when n is sufficiently large.

Theorem 6 Suppose n > 6k + 2, k > 2 and either o2(G) >n+2k -2 or
8G) > (n+2k —3)/2. Then for any independent edges ey, . ..,ex € E(G),
G can be partitioned into cycles Hy,. .., Hy such that e; € E(H;).

The following example shows that the conclusion ‘|C;| = 5 for some i,
1 <1 < k and the rest are all triangles’ in Theorem 5 is necessary.

Example 8. Suppose n is odd. Let G be a graph obtained from G’ =
A+ Kjr_2 + B, where A and B are complete graphs with |A| = |B| =
(n—2k—1)/2, by adding new three vertices z, y and z with an edge yz and
joining = to A, B and Koo, y to A and Koi_2, and z to B and Kok—o.
Take any k—1 independent edges es, . . ., ex in Koi_o and let e; = yz. Then
ey,..., e are k independent edges, but e; can not be contained in a cycle
of length 3 or 4 avoiding the vertices of Kax—2, while §(G) = (n+2k-3)/2.

For k independent edges e; = z1¥1, . - -, €k = ZkYk, & cycle C is called ad-
missible if |[E(C)N {e1,...,ex}| =1 and |[V(C)N{zy,...,Zk, ¥1,. .., Y} =
2. For 1 < r <k, a set of cycles {Cy,...,C,} is admissible if each C; is
admissible, mutually disjoint, and |C;] < 4 for 1 < i <7 or |Ci| = 5 for
some ¢, 1 < i < 7 and the rest are all triangles. If we say ‘r admissible
cycles’, it means that a set of these r cycles is admissible.

2 Proof of Theorem 5

We distinguish two cases according to the value of k.
Case 1k >2.

Let G be an edge-maximal counterexample and e; = z;y; for 1 < i < k.
Since if G is a complete graph, G contains k admissible cycles, G is not
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complete. Let z and y be nonadjacent vertices of G and define G' = G +zy,
the graph obtained from G by adding the edge zy. Then G’ is not a
counterexample by the maximality of G, and so G’ has k admissible cycles
Ci,...,Ck. Without loss of generality, we may assume that zy € E(Ck).
Then G has k-1 admissible cycles Cj, ..., Cr—1. We take these cycles such
that |Uf=_1l V(C;)| is as small as possible. We may assume that e; € E(C;).
Let L= (U V(C)), M =G —L, D=M — {zx, y}-

Claim 1 dg,(2) <3 foranyz€e V(D) and1 <i<k-—1.

(Proof.) Let z € V(D). If dg,(2) = 4 for some 4,1 < i < k-1, (V(Ci)u{z})
contains a cycle passing through e; which is shorter than C;. ]

Claim 2 dp(zx) > 2 and dp(yx) 2 2.

(Proof.) Suppose dp(zx) < 1. Then

n+2k-3
2

Then n 5 max{6k — 1, 4k + 5}. This is a contradiction. 0

<dg(zk) < |L|+ 2 < max{4k — 4,3k — 1} + 2.

Take any z € Np(zx) and 2’ € Np(yk), and let S = {zk,yx, 2, 2'}.
Since M does not contain an admissible cycle passing through e, length at
most 4 (if such cycle exists, it contradicts G does not contain k admissible
cycles or the minimality of |L|), 22/, zx2', yxz ¢ E(G), and ds(w) < 2 for
any w € V(M) — S. Then

dm(S) < 2(M| —4) + 6 = 2|M| - 2.

Therefore,
dr(S) > 46(G)-(2IM|-2)=2n+4k—-6-2(n—|L|)+2
k-1
= 2Ll +4k-4=> (2Ci|+4). (1)

i=1
Claim 8 dc,(S) < 2|Ci|+4 for1<i<k-1.
(Proof.) Suppose |C;| > 4. By Claim 1, d¢,({z, 2'}) < 6. If de, ({2, yx}) 2
|C;| + 3, there is a triangle zxyxazx for some a € V(C;) — {z:,v:}. Hence

de.({zk, yx}) < |Ci| + 2, and we get dc,(S) < 2|Ci| +4 if |Ci] = 4 and
de,(S) < 2|Ci| + 3 if || = 5.

150



Suppose |C;| = 8, C; = z;y;az; and dg,(S) = 2|Ci| +5 = 11. If
{zz;, zyi, zxa, Za} C E(G), then z:y;2z; and zxyxz'azy are two admissible
cycles. Then, since d¢,(S) > 11, we may assume that {za, yxa, 'z, 2y} C
E(G). But this means that there are two admissible cycles z;y;2'z; and
TRYK Q2T (m}

By Claim 3, the equality holds for (1), that is, d¢,(S) = 2|C;| + 4 for
alli, 1<i<k-—L.

Claim 4 |Ci| =3 for 1 <i<k—1.

(Proof.) By the proof of Claim 3, we only consider the case |C;| = 4. Let
C; = ziyiabz;. Since dg,({z,2'}) = 6, d¢,(z) = d¢,(2') = 3 and each of
Nc¢,(z) and Ng,(2') is {a,b,z;} or {a,b,;}. Hence we may assume that
{za, 2'a, zb, 2'b, zy;} C E(G) by symmetry. Then zxa ¢ E(G) and since
do,({zk, yx}) = 6, we may assume that yxa € E(G). (Otherwise, we get an
admissible triangle z,yxbz.) By Claim 2, we can take 2" € Np(zi) - {z}.
Since also d¢,({z",2'}) = 6, 2”a € E(G). Then z;y;2bz; and zxyraz"zk
are admissible cycles. n]

Claim 5 d¢;({z,2'}) =6 for somei, 1 <i<k-1.

(Proof.) Suppose dc,({2,2'}) < 5for1 <i < k—1. Then dy({2,7}) <
5k — 5. Since Np(z) N Np(2') = ¢,

du({z,}) < |M|-2=n~-3(k-1)-2=n—-3k+1.
Hence we get
de({z,7'}) < (5k = 8) + (n— 3k +1) =n + 2k — 4 < 26(G).
This is a contradiction. n}

Without loss of generality, we may assume that d¢, ({z,2’}) = 6. This
means that Ng,(2) = Ng,(2’) = V(C1). Let Cy = z1y,0z1 and take any
2" € Np(zk) — {2}. Let &' = {zx,yx,2',2"}. Then, since N¢,(S') =
2|C1| + 4 = 10 also holds, d¢, (2”) 2> 2. Hence z1y 2z; and zryr2'az’"zx
or z1y12"z1 and zxy,2’'azzy are two admissible cycles, and this gives k ad-
missible cycles which consist of k—1 admissible triangles and an admissible
cycle of length 5. This completes the proof of Case 1.

Case 2k =1.
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In this case, the assumption is 6(G) > (n —1)/2. Let ey = zy, z,y €
V(G) and M = V(G) — {z,y}. We may assume that N(z) "N N(y) = ¢,
since otherwise there is an admissible triangle. If there are z € Ny (z) and
2’ € Np(y) such that N(z)NN(2') # ¢, there is an admissible cycle. Hence
we may assume that N(z)NN(2’) = ¢ for any z € Ny(z) and 2z’ € Np(y).
Let D = V(G) — (N(z) U N(y)) and take any z € Np(z) and 2’ € Ny (y).
Then

> 2+ |Num(z)| + INm®)| + |ND(2)| + INp(2')|
2 24 |Nm(z)| + INm()l
n-1 n-1

+ (252 - @l =0 1) (25 - (Ml - ) -1)
n+1.

n

This is a contradiction. This completes the proofs of Case 2 and Theorem
5.
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