TREES WITH PATH-STABLE CENTER

PAOLO DULIO AND VIRGILIO PANNONE

ABSTRACT. We study the notion of path-congruence ® : Ty — T3
between two trees Ty and T2. We introduce the concept of the trunk
of a tree, and prove that, for any tree T, the trunk and the periphery
of T are stable. We then give conditions for which the center of T is
stable. One such condition is that the central vertices have degree 2.
Also, the center is stable when the diameter of T is less than 8.

1. INTRODUCTION

Motivation for the investigations dealt with in this paper comes
mainly from Reconstruction Theory. A survey on Reconstruction
Theory is given in [2].

Let G1,G2 be two (finite, simple) graphs. Let K be a class of
graphs. A K-congruence ® : G; — Gy is a bijection V(G;) — V(G2)
such that, for every @ € K, and every v € V(G};), the number of
subgraphs of G} containing v and isomorphic to Q equals the number
of subgraphs of G, containing ®(v) and isomorphic to Q. If thereisa
K-congruence ® : G; — Go, we say that Gy and G; are K-congruent.

The K-table of a graph G is the array whose rows are labelled by
the vertices of G, whose columns are labelled by representatives of
the isomorphism classes of the graphs of K such that, for v € V(G),
Q € K, the entry at position (v, Q) is the number of subgraphs of G
containing v isomorphic to Q.
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With this definition it follows that two graphs G; and G2 are K-
congruent if and only if their K-tables are equal, up to reordering of
the rows.

When K is the class of all paths, the K-table of G is called the path--
table of G and it is denoted P(G), and a K-congruence & : G, — G»
is called a path-congruence. If there is a path-congruence from G,
to G3, then the graphs are said to be path-congruent. Since an iso-
morphism class of paths can simply be described by their (common)
length, then the columns of P(G) can be labelled by the positive
integers.

In the special case of a tree T', P(T') has |V(T')| rows and diamT
columns (we omit zero columns) and, for v € V(T), l € N, the entry
at position (v,!) is the number of paths of length ! passing through
v (see Fig. 1): we denote this number simply by p;(v), the tree T
being understood.
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FiGURE 1. Example of path-table.

In [5] we have shown that path-congruent trees need not be iso-
morphic. Nonetheless, they have some similarities. In this paper
we are concerned with investigating such similarities: we describe
some “canonical“ subsets of a tree which are preserved by any path-
congruence ® : T) — T5. In Section 2 we give the necessary defini-
tions and notations. In particular, we introduce the basic notion of
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trunk (following an idea that appeared in [1], but with a different
meaning for the word {runk), and its generalization, the p-trunk . We
also define the stump of a tree T, which makes an interesting com-
parison to the center of T. Finally, we define the trunk-decomposition
of a tree, and the ramification of a trunk vertex. In Section 3 we get
some results on the stump and the center. In Section 4 we obtain in-
equalities involving the ramifications of two trunk vertices linked by
a path-congruence. In Section 5 we prove that any path-congruence
@ : Ty, — T, must map the trunk (resp. the periphery) of T} onto
the trunk (resp. the periphery) of T3, and discuss conditions on a
tree T for which any path-congruence ® : T — T must fix the cen-
ter. In Section 6 we pose the problem of locating the row of P(T)
corresponding to the center, and make some final remarks.

2. PRELIMINARIES.

Let T be a tree. If z,y € V(T), we denote by [z,y] the unique
path whose end-vertices are = and y. If 2,y are adjacent. vertices, we
simply denote by zy the edge whose end-points arez and y. Ifz =y
is allowed we also use the notation {z,y} (for example to denote the
center of a tree). For other notations we follow [3].

Recall that in a finite graph G with natural metric d, the eccen-
tricity of a vertex v is defined by e(v) = max{d(v, z)|z € V(G)}, and
that the diameter diamG of G and radius radG of G are respectively
defined as the maximum and minimum eccentricity of the vertices of
G.

Let T be a tree. For any integer p, with radT” < p < diamT, the
p-th trunk of T, denoted Trp(T), is the intersection of all paths of
length p, and the p-th crown, denoted Cr,(T), is the set of all vertices
of eccentricity p.
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It is immediately seen that the p-th trunk is a path (if nonempty,
since in a tree the intersection of two paths is a path), and that, if
P < ¢, then Trp(T) C Try(T). For simplicity, we shall denote by
Te(T) (without any index) the largest among the Trp(T), and call
it the trunk of T, whereas we shall denote by St(T") the smallest
nonempty among the Trp(T), and call it the stump of T

When p = radT, Cry(T) is equal to the center Z(T). It is well-
known that, for a tree T, |Z(T)| < 2, and if |Z(T)| = 2, then the
two vertices of Z(1') are adjacent. It is also well-known that Z(1')
cau be oblained by applying to T Lhe process of iterated pruning,
Thus, Z(T') has one or two vertices depending on whether diamT is
even or odd.

When p = diamT, Crp(T') is also called the periphery of T, de-
noted by P(T), and its vertices are called peripheral vertices. Clearly,
a vertex v € V(T') is peripheral if and only if there exists y € V(T)
such that d(v,y) = diamT. In this case v and y are said to be
antipodal vertices. When |Tx(T)| > 1, the set P(T) can be parti-
tioned into two subsets Pr(T), PL(T) (conventionally) called right-
peripheral and left-peripheral, defined by stating that two peripheral
vertices belong to the same element of the partition if they are not
antipodal.

A quite general type of “decomposition” for a graph G can be
described as follows. Let G be a graph and S an induced connected
subgraph. Given any v € V(S), we define the S-branch from v,
denoted Brg(v), to be the maximal connected subgraph H of G
containing v and such that HN S = {v}. If § = {vy,...,u}, the
sequence (S, Brg(v), ..., Brg(v;)) is the S-decomposition of G. The
S-ramification ramgs v; of v; € V(S) is defined to be the eccentricity
of v; within Brg(v;). Although the “decomposition” just described
may be unnatural for a general graph G (for instance, when G is a
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cycle and S a path), it is useful in the case of a tree, where we take S
to be the trunk Tr(T'). In this particular case we simply write Br(v)
and ram v for the Tr(T')-branch and Tr(T')-ramification of v, calling
them branch from v and remification of v. The trunk-decomposition
of a tree becomes a decomposition in the usual sense, since the trunk
and the branches make a partition of the edge-set of T'.

To avoid complex notation, in the sequel of the paper, when z is a
vertex of a graph G, we will often write z € G instead of z € V(G).

3. SOME PROPERTIES OF THE TRUNK.

In this section we prove a few results regarding Tr,(T'). Recall
that when p = diamT, we simply write Tr(T') instead of Trp(T).

Proposition 3.1. Let T be a tree. Then the end-vertices of Tr(T)
have degree in T different from 2.

Proof. To begin with, note that an end-vertex v of Tr(T") has degpv =
1 if and only if v € P(T). Let x be an end-vertex of Tr(T) with
degrz # 1. If degra = 2, then all paths of length diamT (which, by
definition, contain z) necessarily also contain the vertices adjacent
to z. This contradicts the fact that z is an end-vertex of Tr(7T"). O

Proposition 3.2. Let T be a tree with more than one vertexr. Then
Z(T) € Tc(T), and either Z(T) — Tx(T") or at least one vertez of
Z(T) is not an end-vertex of Tx(T). Moreover, if diamT is even and
|Tx(T)| > 1, then the center ¢ of T i3 not an end-vertez of Tr(T).

Proof. 1t is well-known that any diametral path of a tree contains
Z(T). Thus Z(T) C Tx(T). Assume Z(T) G Tx(T). If |Z(T)| = 2,
then, by assumption, |Tr(T)| > 3. Since the two central vertices are
adjacent, they obviously cannot both be the end-vertices of Te(T).
If |Z(T)| = 1, then, by assumption, |Tr(T)] > 2. Let ¢ be the
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center, and x be one end-vertex of the trunk. From Proposition 3.1,
degrz = 1 or degpz > 3. If degyrz = 1 then clearly = # c, since
degrc # 1 (T is a nontrivial tree). If degrz > 3, there exist wy, ws
neighbours of z such that both lie on a diametral path (see Fig. 2).-

FIGURE 2

If z were the center (in addition to being an end-vertex of the trunk),
then, by using the two paths of maximum length (..., u,v,2,w1,...)
and (..., u,v, Z, ws, ...), one could also construct another path of max-
imum length (..., w;,z,w,, ...), not containing the trunk vertex b-v, a
contradiction. Thus, again r # c. O

In general, there is no relationship between St(T) and Z(T'), as
the examples in Figure 3 show (St(T) C Z(T') is impossible when
|Z(T)| =1, since St(T') is nonempty by definition).

(8) St(I) ="Ir3(T) = {x1,¢,22}

b) St(T)=Try(T) =
® ®) © © SO=2
v y v (d) SUT)=Tus(T) = {z,cr.cr}
: 4 Loa e <o () StT)="Trg(T) = {z}

(f) SUT)=2(T) = {cy,cp}
(g) SUT) =Try(T) = {er}

Ly U

€, CR x r oL Cp CL Cr €, CR

FiGURE 3. In (a), (b), () Z(T') = {c}, in (d), (e), (), (&)
Z(T) = {cc.cr}
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However, the following proposition shows that, if |St(T")| > 2, then
St(T) D Z(T).

Proposition 3.3. For any p such that |Trp(T)| > 1, Tr,(T) 2 Z(T).

Proof. Let Z(T) = {cr,cr} (possibly ¢, = cg). We have already
noted that Tx(T") D Z(T'). We now show that Tr(T") can be thought
of as three consecutive paths. Let ¢f and tp denote the end-vertices
of Tr(T). If ¢, # cg, let 1], and tg be in the components of T'\ cicr
containing ¢y, and cp respectively. Then the paths are Py, = [t cL),
cLcr, and Pgr = [cp,tgr]. We shall prove that if there is a path C of
length p not containing Z(T'), then there is another path D of length
p such that |[C N DNTr(T)| < 1. Since Tr,(T) C CNDNT(T), it
will follow that |Tx,(T')| < 1, contradicting the assumption. Assume
that there is a path C as above. Then either C N Tx(T") C Pg or
CNT(T) C P,. We can assume w.Lo.g. that CNTx(T) C Pg (Fig.

4).
C
D
/’
N /

v i €1, CrR T\

FIGURE 4

Let ; € 'Ir(T’) be the vertex of C closest to cp (possibly z; = cp).
The length p of C satisfies p < radT —~ d(cp,1) + ram z;. This
implies p < radT + ram ry. Consequently, there certainly exists a
path D of length p contained in Py U [c,cg, 1] U Br(z;), hence
CNDNT(T) C {=1}. (]
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4. THE RAMIFICATIONS OF PATH-CONGRUENT VERTICES

Recall from Section 2 that if v € Tx(T), then ram v is defined to
be the eccentricity of » within the branch Br(v). Thus, ramv is a
nonnegative integer, and ram v = 0 if and only if degv < 2.

In this section we study the relation between ram z and ram y
when z,y € Tx(T'), are path-congruent vertices, i.e. there is a path-
congruence ® : T' — T taking = to y. This is equivalent to saying
that z and y have the same row in P(T") (see also Section 6). Note,
however, that if z € V(T),y € V(Tp) with T} # T, then the fact
that z and y have the same path-row does not generally imply the
existence of a path-congruence ® : T} — T taking x to y.

Lemma 4.1. Let T be a tree, ® : T — T be a path-congruence and
z € V(T). Foranyl > 1, let A (resp. B;) be the set of the paths
in T of length | containing = but not ®(x) (resp. ®(z) but not x).
Then |A)| = |Bi|. If a (resp. b) denotes the mazimum length of a
path containing z but not ®(zx) (resp. ¥(z) but not ), thena =b.

Proof. Let pi(x, ®(x)) be the number of paths in T of length ! pass-
ing through both = and ®(x). Then |A)] = p(x) — pi(x, (z))
and |B)| = pi(®(z)) — mi(z, (z)). Since P is a path-congruence,
pi(z) = pi(®(z)), hence | A = |By|.

If a < b, since By # B, the equality |4;| = |B;] would imply A, # 0,
contradicting the definition of a. Analogously, it cannot be a > b.
Consequently, a = b. 0

In order to use the equality a = b, we seek explicit formulae for a
and b involving ramifications.

Lemma 4.2. Let T be a tree with |Tx(T)] > 1. Then, for every
z € Te(T)
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ram z + d(z, Z(T)) <radT - |Z(T)| + 1,

with equality holding if end only if x is a trunk end-vertexz.

Proof. If z is an end-vertex of Tr(T), then ram z 4 d(2, Z(T)) =
radT — |Z(T)| + 1.

If 2 is not an end-vertex of Tr(T'), then there exists a path P (Fig.
5) of length ! = rama +d(z, Z(T)) +radT containing one end-vertex
of Tr(T") but not the other.

FIGURE 5

If ram z > radT — d(z, Z(T')) — |Z(T)| + 1, one has

! 2 redT — d(x, Z(T)) - |Z(T)| + 1 + d(z, Z(T)) + redT = diamT.

The case ! > diamT" is impossible, while the case [ = diamT contra-
dicts the fact that z is not an end-vertex of the trunk. ()

Lemma 4.3. Let T be a tree with [Tx(T)| > 1. Let vy, v € Tx(T),
with vy # vp. Let k = d(wn,v2), and denote by wy, ..., wy. the vertices
of [v1,vo] (set wo = v1). Let a ( resp. b ) be the length of a longest
path containing vy but not vy (resp. containing vy but not vg). Let
t1,to be the end-vertices of Tr(T) (let ty be the one closer to v).
Then
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a = k + max{ram p + d(p,v2) | p € [v2, t2]}
+wax{ram w; —i|i=1,...,k},

b= max{ram g + d(g,v1) | g € [t1,11]}

+max{ramw; +¢|i=0,...,k — 1}.
Proof. Let P be a path containing v, but not v; (see Fig. 6). We
can think of P as the splicing of four paths: a first path within the
branch of a vertex w; € [v;,v9] (with w; # vy, but possibly w; = v9),
a second path [w;,vo], a third path [ve,p] with p € [vg,t2], and a
fourth path within the branch of p. ‘

|

t) vy Wi vz P t2

FIGURE 6

Therefore, a = max{ram w; + d(w;,v2) + d(ve,p) + ramp | i =
1,...k, p € [va,t3]}. Since we can vary w; and p independently,
clearly

a = max{ram w; + d(w;, v) | i = 1,..., k}
+ max{d(vz,p) + ram p| p € [v2,12]}.

The formula for @ given in the statement then follows from the fact
that d(w;,v2) =k — 2.
Let Q be a path containing v; but not v (see Fig. 7).
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ty q ™M w; 2 ta

FIGURE 7

By an argument analogous to the previous one, we obtain

b = max{ramw;+i|i =0, ..., k—1}+max{ramg+d(q, v))|q € [t1, 1]}
a

Lemma 4.4. Let T be a tree, and ® : T — T be a path-congruence.
Let Z(T) = {cL.cr} (possibly cL, = cr), and assume, w.l.o.g., (cL) ¢
Z(T) (therefore cr, # ®(cL) # cr)- Let a (resp. b) be the length of a
longest path containing cf, but not ®(cr) (resp. containing ${cL) but
not cp). Let k = d(cr,®(cL)), and denote by wy, ..., wy the vertices
of [®(cL), cL] (set wo = B(cL)).

(1). If eL = cr, then

a=radT + k + max{ramw; —i|i=1,...,k},
b=radT — k + max{ramw; +i|i =0,....k - 1}.
(2). Ifer # cr and cp ¢ [®(cL),cL], then

e =radT + k + max{ramw; — i |i =1, ..., k},
b=radT — k~ 1+ max{ramw; +i|i=0,...,k—1}.

(3). Ifer # cr and cg € [®(cL), cL], then

a=radT+ k—1+ max{ramw; —i|i=1,..,k},
b =radT — k + max{ramw; +i|i=0,...,.k — 1}.
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Proof. (1). Let ¢ be the center of T, that is ¢ = ¢; = cg, and let ¢;
and t; be defined as in Lemma 4.3. Letting ®(c) = v; and ¢ = v,
from Lemma 4.3 we obtain

a = max{ramw;—i|i = 1, ...,k}+k+max{ramp+d(p,c)|p € [c, t2]}.

By Lemma 4.2, we have

max{ram p + d(p, c) | p € [c,t2]} = ram t3 + d(t2, c) = radT.

Also, from Lemma 4.3,

b = max{ramw;+i|i = 0, ..., k—1}+max{ramg+d(q, ®(c))|q € [t1, B(c)]}.

Now, d(q, ®(c)) = d(q, c) — d(c, ®(c)) = d(g, c) — k, so that, again by
Lemma 4.2, we have

max{ram q + d(g,¢c) | g € [¢c, ®(c)]} = radT-

Claims (2) and (3) are obtained by using Lemma 4.2 and Lemma 4.3
as above, once we assume $(cy) = v; and ¢, = vs. 0

We now establish arithmetic relationships among the ramifications

of a vertex z € Z(T'), its image ®(z) under a path-congruence @, and
the interior vertices on the [z, ®(z)] path.

Theorem 4.5. Let T be a iree, and ® : T' — T be a path-congruence.
Let Z(T) = {cL,cr} (possibly ¢, = cr), and assume ®(cL) ¢ Z(T)
(therefore ¢y, # ®(cL) # cr). Let k = d(cr,®(cL)), and denote by
W, ..., Wi the vertices of [®(cL),cL] (set wo = B(cL)). The following
hold

(1) If ey = cp =c, then
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ram ®(c) > ramw; + 2k — i, (i=1,...,k).

Moreover, ram ®(c) = rame+k if and only if rame > ramw; +k —i
Joralli=1,...,k.

(2) If e # cr and cp & [®(cL), cL], then

ram®(cy) >ramw; +2k—i+1, (i=1,..,k).

Moreover, ram ®(c;) = ramcg + k + 1 if and only if ram ¢y >
ramw;+k—1i foralli=1,...,k.

(3) Ifer # cg and cg € [®(cL),cL), then

ram ®(cy) >ramw; +2k—i-1, (i=1,..,k).

Moreover, ram ®(cz) = rame¢g + k ~ 1 if and only if ram cy >
ramw; +k—i foradli=1,..,k.

Proof. From a = b of Lemma 4.1 and part (1) of Lemma 4.4, we
obtain

(*) max{ramec,ramw;+k—i|li=1,..,k—1}
= max{ram ®(¢) — k,ramw; — k+i|i=1,...,k—1}.

Observe that ramw; +k—¢ >ramw; — k+iforalli=1,.. k—1.
Therefore, from (),

max{ram &(c) — k,ramw; —k+i|i=1,....,k — 1} = ram &(c) — k,
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and consequently, again by (),

ram &(c) > ramw; +2k -4, (i=1,...,k).

In particular, if i = k we get ram ®(c) > ram c + k, where equality
holds if and only if

max{ramc,ramw; + k—i|i=1,..,k -1} =rameg,
thatisramc>ramw; + k—iforalli=1,..., k.

Claims (2) and (3) are similarly obtained by Lemma 4.1, and, re-
spectively, parts (2) and (3) of Lemma 4.4. O

Remark 4.6. With regards to (1) of Theorem 4.5, notice that both
possibilities ram ®(¢) = ram ¢+ £ and ram ®(¢) > ramc + k can
actually occur, as one can easily see by examining the trees in Figure
8 (where k = 2).

S RARESAY

v ¢ v ¢

FIGURE 8. The cases ram®(c) = ramc+2 and ram®(c) >
ramc+2.

For both trees, the path congruence ® : T — T is defined as follows.
For z € V(T'), put

z ifzx#ouc
®(z)=<v ifz=c

c ifz=wv.
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5. SOME STABLE SUBSETS. STABILITY CONDITIONS FOR Z(T')

We start this section by pointing out some general properties of
a path-congruence ® : Ty — T> between trees T} and T». This will
allow us to determine some stable sets.

Recall that, for v € V(T'), p;(v) denotes the number of paths of
length [ passing through v. If ® : T} — T5 is a path-congruence,
then, by definition, p;(®(v)) = pi(v) for any positive integer I. It
is also clear that diamT} = diamT3, and thus |Z(T})| = 1 if and
only if |Z(T3)| = 1. The next result gives other quantities that are
preserved under a path-congruence.

Proposition 5.1. Let T; and T, be trees and ® : T} — T be a
path-congruence. Then

(3) ®(Tea(T1)) = Tra(Tp) for all k.
(i) ®(P(Th)) = P(T3).
(#48) If |PL(Th)| # |Pr(T1)|, then ® preserves the partition into
right-peripheral and left-peripheral vertices.
(i) {IPL(T)], [Pr(T1)]} = {IPL(T2)], IPr(T2)I}-

Proof. We argue in terms of the path-tables, because it is more im-
mediate.

() For i = 1,2, a vertex u belongs to Trx(T;) if and only if the
k-th entry pr(u) of its path-row has value N = E% Y- pr(v), that
is the total number of paths of length & > 1 in T}. Sincev{) -1
is a path-congruence, then the tables P(T}) and P(T3) are equal up
to reordering of the rows. Thus, in particular, diam7; = diam75,
N{'= NP, and [Tex(T3)] = [Tre(T)]-

From the fact that ® permutes the path-rows and is injective, it
follows that ®(Trx(T})) = Tri(To).
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(%) It is enough to note that a vertex is peripheral if and only if
its path-row has its first entry 1, and a nonzero last entry. Reasoning
as above, we get ®(P(T1)) = P(T3).

(#8) Assume |Pr(T})| # |Pr(T1)|- Then a peripheral vertex v will
belong to Pg(T}) if and only if its path-row has last entry equal to
{PL(T1)|. Since P(T}) and P(T2) are equal up to reordering of the
rows, it follows {|P(T1)|, |Pr(T1)|} = {|PL(T2)|,|Pr(T2)|}. From
the fact that ® permutes path-rows and is injective, it then follows
that ®(PL(T)) = PL(T?) or else B(PL(Th)) = Pr(T2).

(i) Since ® is a path-congruence, so is ®!. The result fol-
lows from (iii) in case |PL(T})| # |Pr(T1)| or (using ®~!) in case
[PL(T2)| # |Pr(T2)|. It remains to show that if [PL(T1)] = [Pr(T1)|
and [P(T2)| = |Pr(T2)| then these two numbers are equal. Indeed,
this follows from the equality {PL(T;)| + |Pr(Ti)| = |P(T:)| and the
statement (). (]

Let G be a finite graph and  a group of permutations of V(G). A
subset S of V(G) is said to be Q-stable if, for any & € Q, (5) = S.

According to this definition we have, for example, that for a tree
T, Z(T) is Aut(T)-stable. Here we only deal with the group Q of
all path-congruences on a tree T'. Thus, we shall call path-stable, or
simply stable, an S-stable subset. Note that, as a path-congruence
& is not generally an automorphism, the graph induced by & path-
stable set S may differ from the graph induced by ®(5). It seems an
interesting problem to describe the stable subsets of T'. Perhaps a
bit surprisingly, Z(T') is not always stable, so we are led to formulate
sufficient conditions for the stability of Z(T’).

Proposition 5.2. Let T be a tree. For everyp, Tr,(1') is stable. The

set P(T) is also stable, and if |PL(T)| # |Pr(T)| then both PL(T)
and Pr(T) are stable.
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Proof. The results follow immediately from Proposition 5.1, upon
settingTy} =T =T. O

Theorem 5.3. Let T' be a tree and Z(T) = {cL,cr} ( possibly ¢, =
cr ) its center. Then Z(T) is stuble if al least one of the following
holds

(6) Ie(T)] = 1.
(¢¢) min{ram cr,ram cg} > ram z for all x € Tx(T').

(¢#44) ram ¢f, = radT — |Z(T)| and ram cg = radT - |Z(T")|
(iv) degcr, = 2 and degcr = 2.

Proof. From (i) stability immediately follows, since Z(T') C Tx(T),
and Tr(T') is stable. We can next assume [Tx(T)| > 1. Let &: T —
T be a path-congruence, and suppose ®(Z(T)) # Z(T'). Without
loss of generality we can assume ®(cr) ¢ Z(T) (possibly ¢r = cg).
Since ®(cr) € Tx(T), condition (ii) implies ram ¢; > ram ®(cg).
By Theorem 4.5 this cannot happen unless ®(cy) = cg; but this
contradicts the assumption that ®(cr) ¢ Z(T). Condition (iii) and
Lemma 4.2 imply (i%), since at least one vertex of Z(T') is not a trunk
end-vertex. Assume now (iv). Since ® preserves the degree, we have
2 = degcy, = deg®(c), hence ram®(c.) = 0. Therefore ram®(c;) =
ramcy,. By Theorem 4.5 this cannot happen unless ®(c.) = cg; but
this contradicts the assumption that ®(c;) ¢ Z(T). O

Theorem 5.4. The center of any tree T with diamT < 8 is stable.

Proof. Let Z(T) = {cL,cr} be the center of T, where, if diamT is
even, we let ¢f = cg =c.

Assume, by contradiction, that ®(Z(T)) # Z(T) for some path-
congruence @ : T — T, and, without loss of generality, thal $(cy) ¢
Z(T), so that ¢;, # ®(c) # cr. By Theorem 4.5, ram®(cz) > ramc;y,
(note that, if cp € [®(cL), cL], it must be k > 2).
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If ram ¢z = 0, then deg ¢ = 2, and, since ® preserves the degree,
deg ®(c1) = 2, so that ram ®(c,) = 0 = ramcg, which is impossible.
We shall next assume ram ¢, > 1, and consequently ram ®(c.) > 2.
It is easy to see that the statement is true if diamT < 5, so we discuss
only the cases diamT = 6 and diamT = 7.

If diamT = 6 and ram ¢ = 2, one would have ram ®(c) > 3, which
is impossible. Hence ram ¢ = 1, and T must contain, as a subtree,
the graph T} in Fig. 9

T[ T2

FIGURE 9

Note that Tr(T) C {z,y,2,c,t,u,v}. Let ® : T — T be a path-
congruence such that ®(c) # c. Since diamT = 6, the only possi-
bility is that ram ®(c) = 2, and consequently ®(c) is adjacent to c.
Consequently, ®(c) is an end-vertex of Tr(T), and, w.l.o.g. we can
suppose that ®(c) = z, so that T must contain the tree T3 in Fig. 9
Let D be the set of vertices of T which are at distance 2 from 2z and
are not adjacent to c. Since & is a path-congruence, we have pa(z) =
p2(c), that is (“8%) +|D| +degc—1 = (“¥) +degt — 1 +degz—1,
which implies degt = |D| + 1.

Now, denote by ps(z, ¢) the number of paths in T, of length 3, passing
through both z and c¢. We have p3(2) = p3(, ¢) + (deg 2 — 2)|D| and
p3(c) = pa(z,¢) + (deg c — 2)(deg t — 1) + 7, where 7 is the number
of vertices of T' at distance 2 from ¢ and not adjacent to c. Since
degt—1=|D| and r > 1 (being diamT = 6), we get p3(c) > p3(z),

contradicting the assumption that ® is a path-congruence.
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Let, now, diamT = 7. Then we can find a path in T of length

| =radT + d(®(cr), Z(T)) + ram ®(cr)

> 44+d(®(cr), Z(T)) +2=6+d(®(cL), Z(T))-
Since diamT = 7, then d(®(c.), Z(T')) = 1 and ram ®(cy) = 2. This
implies that ®(cy) is adjacent to cg, since otherwise ¢z would be
between ®(cp) and cg, and we would have ram ®(c,) > rameg +1 2>
2. Consequently, T must contain, as a subtree, the tree T3 in Fig.
10, where z = ®(c.).

t &L CrR 2

FIGURE 10

Let D be the set of vertices of T which have distance 2 from z and are
not adjacent to cx. From now on, we can argue in analogy with the
case diamT" = 6, ending again with a contradiction to the assumption
that ® is a path-congruence. a

Remark 5.5. The assumption diamT < 8 in Theorem 5.4 is essen-
tial. In fact it is possible to prove that for any pair (D, m), D,m € N,
D>8,1<m< [9-;-'-1] — |Z(T)| — 1, there exists at least a tree T
such that

(i) diamT = D;

(i) there exists ¢ € Z(T") with ramc =m;

(¢4¢) there exists a path-congruence @ : T — T such that ®(c) ¢
Z(T).
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A detailed proof of this fact is given in [6]. In Figure 11 we only show
two examples with diam7 = 8, where p;(v) = pi(c) for all l € N and
center ramification 1 and 2 (that, by Theorem 5.3 case (#it), are the
only ramification values for which we can have unstable center). In
both cases, a path-congruence ® such that ®(c} = v is defined as in
Remark 4.6.

T T .
v ¢ v ¢
FIGURE 11. diam? = 8 and py(v) = py(c) for all { € N.

A concept related to Q-stability is that of Q-closure. Let S be a
subset of V(T'). Let Q be a group of permutations of V(T'). The
Q-closure of S, denoted S (2 being understood), is the set

5= 2(5).

e

Remark 5.6. Since 2 is a group, S is an Q-stable set, in fact the
smallest 2-stable set containing S.

congruences T — T') shows that, although Z(T") may not be stable,
the union Z(T') of all images of Z(T') under all path-congruences is
somewhat confined.

Proposition 5.7. Z(T) is contained in the smallest Tr,(T') with
|Trp(T)f > 1.
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Proof. By Proposition 3.3, Z(T') is contained in the smallest Tr,(T")
of order greater than 1, but since Trp(T) is stable by Proposition
5.2, then also Z(T') is contained in Tr,(T). a

6. ALGORITHMS ON P(T) AND FINAL REMARKS

The question is how to locate in P(T) the rows corresponding to
the vertices of previously defined subsets of V(T'). For example, the
“largest” crown P(T') is represented by those rows which have first
entry (degree-column) equal to 1, and last entry (diameter-column)
different from zero. As another example, to locate the rows of Trp(T),
one can first calculate the total number N, of the paths of length
p by summing up the entries in column p and dividing by p + 1.
Then, the rows sought are those whose p-th entry is equal to Np.
Note that whenever two rows of P(T') are equal, then the function
V(T) — V(T') which exchanges the two vertices corresponding to
these equal rows and fixes all other vertices is a path-congruence
(see also the end of Section 4). Thus a minimal (w.r.t. inclusion)
stable subset of V(1) corresponds to a maximal set of identical rows.
For example, if diamT is even, then the center c¢ is stable if and only
if its row is different from all the other rows of P(T). It would be
interesting to develop an algorithm that selects the center row (under
uniqueness assumption). Although the algorithm of iterated pruning
can easily be applied to the adjacency matrix, it is not clear how the
pruning operation affects a path-table.

We have seen that the “largest” crown P(T') is stable, and the
“smallest” crown Z(T') is not (in general). It would then be inter-
esting to find out which of the other sets Cr,(T') are stable.

Another problem would be the search in T for pairs of path-
congruent non-similar vertices. For example, in Figure 8 are de-
picted trees in which the two vertices ¢, v are path-congruent (take
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for example the path-congruence ® of V(T) which exchanges ¢ and
v, and fixes all other vertices), but they are not similar since any
automorphism of T fixes c.

The problem of searching “large” subsets of mutually K-congruent
(not just path-congruent) non-similar vertices of a graph G (not just
a tree) seems also interesting.

As a further remark we wish to point out that the notion of path-
congruence we have discussed in this paper, is similar to a notion
introduced by Randi¢ in [7]. A Randic-relation between two trees
T1,T; is a bijection ¢ : V(T1) — V(T2) such that for every vertex
v of T} and any integer [ > 1, the number of paths contained in T}
of length ! and slarting al v, cquals the number of paths contained
in Ty of length ! and starting at o(v). Ty, T> will then be said
Randié-related. The Randié-table S(T') of a tree T (called path layer
matriz in [4]) is the rectangular array having n rows and diam(T")
columns such that the (i, j)-entry is the number of paths in T' of
length j starting at the vertex v; (see [5]). It is clear that two trees
T, Ty
one can renumber the vertices of T, such that P(T}) = P(T3) (resp.
S(T1) = S(T3)). Randit conjectured that Randic-related trees are
isomorphic ([7]). Slater has shown that it is not so. In ([8]) he has
described an infinite set of example-pairs. In Fig. 12 it is depicted
one of these examples.

1 6 9 15161718 5 1516 1718 6 9
2% &4 7p 48 @ w M
3

FIGURE 12. A pair of non-isomorphic trees with the same
Randié-table
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In addition to the path-table and the Randi¢-table, of interest in
the present context could be a table in which the row corresponding
to a given vertex v contains, for each ! € N, the number of paths of
length ! starting at v and ending at a leaf.
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