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Abstract
A finite planar set is k-isosceles for k > 3, if every k-point subset
of the set contains a point equidistant from the other two. This
paper gives a 4-isosceles set consisting of 7 points with no three on
a line and no four on a circle.

A finite planar set is said to be k-isosceles for k > 3, if every k—point
subset of the set includes a 3-set which forms an isosceles triangle, i.e.,
contains a point equidistant from the other two. In [1] Fishburn discussed
3-isosceles planar sets and 4-isosceles planar sets. At the end of his paper,
he put forward several open questions about 4-isosceles planar sets. Two
of them are as follows: Let F denote a 4-isosceles planar set.

Problem 1: Is there a 6-point set F with no four points on a circle and
no three points on a line ?

Problem 2: Is there a 7-point set F with no four points on a circle ?

[2] gave affirmative answers to the two questions. In this article we
propose a new 7-point set F with no four points on a circle and meanwhile
with no three points on a line. The conclusion is stronger than that in [2].

Theorem 1. There exists a 7-point set F with no four points on a circle
and no three points on a line.

Proof. Let To = AABC be an equilateral triangle with edge length 1 and
with center at O. See Figure 1. Construct an equilateral triangle T} =
ADEF such that

|AD| = |BE| = |CF|=|AB| =1,
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Figure 1: 7-point set F with no four points on a circle and no three points
on a line.
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Thus triangles 7o and T} have the same center O. See Figure 1. We prove
that F = {A, B,C, D, E, F, 0} is the 7-point set as required.

By our construction it is easy to check that F is 4-isosceles with no
three points on a line. It remains to prove that no four points of F are on
a circle. F has thirty five 4-point subsets. It is obvious that the convex
hull of each of the following twenty 4-point subsets is a triangle:

g < ZDAC = LFCB = LEBA <

{4,B,C,0},{A,B,D,E},{A,B,E,F},{A,B,F,0},{A,C,D,E},

{A,C,D,F},{A,C,E,0},{A,D,E,F},{A,D,E,0},{A,E,F,0},
{B,C,D,F},{B,C,D,0},{B,C,E,F},{B,D,E,F},{B,D,F,0},
{B,E,F,0},{C,D,E,F},{C,D,E,0},{C,D,F,0},{D,E,F,O}.

So each of the twenty subsets is nonconcyclic. Now we prove that each of
the remaining fifteen 4-point subsets is nonconcyclic (abbreviated as “nc”):

T m™
_+._

£ZADC + LABC < 313

<m = {A,B,C,D} is nc,

LACB+ZAEB < 3 +3 <m= {A,B,C,E} isnc,

LBAC + LCFB< 3 +% <m = {A,B,C,F} isn,

LCBF = }(n — ZBCF) < }{(n— %)==
= {A,B, D, F} is nc,
LADF + LABF < % +§+£CBF<11'
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