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Abstract

The Padmakar-Ivan (PI) index of a graph G is defined as PI(G) = X[ny(e|G)*+
D.«(€|G)], where n,(e|G) is the number of edges of G lying closer to u than to
vV, Ne(e|G) is the number of edges of G lying closer to v than to u and
summation goes over all edges of G. The PI Index is a Szeged-like topological
index developed very recently. In this paper an exact expression for PI index
of the armchair polyhex nanotubes is given.
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1. Introduction

Graph theory was successfully provided the chemist with a variety of very useful
tools, namely, the topological index. A topological index is a numeric quantity of the
structural graph of a molecule. With hundreds of topological indices one would expect that
most molecules could be well characterized and their physicochemical properties correlated
with the available descriptors.

The oldest topological indices is the Wiener index. Numerous of its chemical
applications were reported and its mathematical properties are well understood [17,19]. We

encourage the reader to consult [10,11], for a good survey on the topic.
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In Refs. [12,13], the authors defined a new topological index and named it
Padmakar-Ivan index. They abbreviated this new topological index as PI. This newly
proposed topological index, PI, does not coincide with the Wiener index (W) for acyclic
(trees) molecules. The derived Pl index is very simple to calculate and has a discriminating
power similar to that of the W index, for details see [14-16].

We now recall some algebraic definitions that will be used in the paper. Let G be a
simple molecular graph without directed and multiple edges and without loops, the vertex
and edge-shapes of which are represented by V(G) and E(G), respectively. If e is an edge of
G, connecting the vertices u and v then we write e=uv. The number of vertices of G is
denoted by n. The distance between a pair of vertices u and w of G is denoted by d(u,w). We
define for e=uv two quantities n.(e}G) and n.,(e[G). n..(e|G) is the number of edges lying
closer to the vertex u than the vertex v, and n.,(e|G) is the number of edges lying closer to the
vertex v than the vertex u. Edges equidistant from both ends of the edge uv are not counted.
In fact, if Gy = {x | d(u,x) < d(v,x)}, Gy = { x| d(u,x) > d(v,x)} and G, = {x | d(u,x) - d(v,x)
= +1} then neu(e|G) = |[E(Gye)l, ne(e]G) = |[E(G. )| and N(e) = [E(G)}. Here for any subset U
of the vertex set V = V(G), |E(U)| denotes the number of edges of G between the vertices of
u.

In a series of papers, Diudea and coauthors [4-9] computed the Wiener index of
some nanotubes. In this paper an exact expression for PI index of zig-zag polyhex nanotubes
is given. The present authors in Ref. {1] computed the PI index of the zig zag polyhex
nanotube. In this paper we continue our study to compute the PI index of the armchair
polyhex nanotube.

Our notation is standard and mainly taken from [2-18]. Throughout this paper T =
TUVCq[2p,q] denotes an arbitrary armchair polyhex nanotube, see Figure 1.

2. PI Index of TUHCs[2p,q]

In this section, the PI index of the graph T = TUVCy[2p,q] were computed. We
assume that E = E(T) is the set of all edges and N(e) = |E} - (n.(e|G) + n.(e|G)). Then PI(T)
= |E - Teer N(e). But [E(T)| = p(3q-2) and so PI(T) = p*(3q-2)* - o<z N(e). Therefore, for
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computing the PI index of T, it is enough to calculate N(e), for every e € E. To calculate

N(e), we consider two cases that e is horizontal or non-horizontal.

Figure 1: An Armchair TUVC4[20,n}(The figure is taken from [4])

q-1  eemy _
Lemma 1. If e is an horizontal edge then N(e)= [{qﬂ cery, PEHN here T, denotes the

q otherwise

set of all horizontal edges of the i" row of the armchair polyhex lattice, Figure 2.
Proof. We first assume that p is even, q is odd and e = UVeTy. It is enough to consider the
case that u is in the second column of the armchair polyhex lattice, Figure 2. Suppose Eyx =
Uak2Uews and Fy = UgyeiUaiypesy 1 < k S [q/2], are arbitrary horizontal edges of the
second and (p+2)™ column, respectively. Since d(U, Uquyz) = d(V,Uays) and d(U, Ugiypez) =
d(V,Ugyps3))s Ei, Fi € E(T,). and so X = { Ey, Fy| 1 £k <[q/2] } < E(T,). We claim that X
= E(T,). To prove, we assume that f = UyUg.y is a non-horizontal edge of the armchair
polyhex lattice of T. If 1 € 2 or | 2 p+3 then d(U,U) < d(Ug,V) and d(Us+1y,U) < d(Ugry, V).
Thus UgUgey € E(T,). In the case that 3 < 1 < p+2 we have d(Ug,U) > d(Ug,V) and
d(Ugsiy,U) > d(Ugery, V) and so UgUgriy € E(Te). Therefore, X = E(T,) and N(e) = |X| =
[¢/2] + [¢/2] = g-1, in which [x] denotes the greatest integer less than or equal to x. If p is
even, q is odd and e = UVeTy. then a similar argument as above shows that N(e) =
2[(q+1)/2]=q+1.

Next we assume that p and q are even and e = UVeT,,. Then using a similar
argument N(e) = 2[q/2] = q and if e = UVe Ty, N(e) = 2[(q+1)/2] = q. Finally, if p is odd
then N(e) = [¢/2] + [(q+1)/2] = q. u

195



Lemma 2. If e is a non-horizontal edge in the #" row, 1<k < p, of the armchair polyhex

lattice of T = TUVCA(2p,q), then N(e) = {24 %228,

Proof. Let Ej; denote the non-horizontal edge of T in the i" row and j* column. We first
notice that for every i, 1< i € g-1, N(E;;) = N(Eiz) = - = N(Ei¢zp). So it is enough to calculate
N(E1), N(E21), -+, N(Egy). Compute the value of N(E,). Suppose q 2 p. We consider the
edges Eigry Ezpely, - Epgery If 1 S t S p then Eiguyy = UigeyUgeiypery and we have
d(Uip1p,Un) = dUgenprnyUzi)- S0 Eqery € E( T ), 1 St < p. Similarly, for 1 <i<p, E; €

Tg, and E(Tg, )= (Eig+1, Ezgirs » Epipens, Ents Ezz, -+, Egp}. Thus N(En) = [E( Tg, N =2p.
Ifq < p by above calculations E( TE") = {E|(p+|), Ez(Pq), ey E(ll'l)(P'*l)- En, Ezz, oy E(q.l)(q.|)}.

This shows that N(Ey,) = |E( Te,, ) = 2q-2. We continue our argument by considering the

edge E,. To prove this case, we delete the first row of the armchair polyhex lattice of T and
obtain a TUVC4[2p,q-1]. Since Ez, is the (1,1) entry of this lattice, we have

= 2p  q-l2p
=R+
NEa) =R+ {® =,

where R is the number of edges E( TE:. ) in the first row of TUVC¢[2p,q]. On the other hand,
Ej+1) and E;, are only edges of TUVC4[2p,q] in the first row. Therefore,

2p+2 q2p+l
N(Ey) = .
(Ez)) 20-2 qsp+l

We can continue this method for computing N(E)), -+, N(Ej,) to complete the proof. ]

Lemma 3. If ¢ < 2p then N(Ey1) = N(Eq1), N(E21) = N(E(g.1y1), -, N(Es1) = N(Es+141), Where
s = [q/2] is the greatest integer less than or equal to /2, and b = [(q+1)/2] - [¢/2].

Proof. Since the armchair polyhex lattice is symmetric, the proof is straightforward. ]
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Figure 2: A Zig-Zag Polyhex Lattice withp=4 andq= 15

Lemma 4. If g > 2p then N(E1;) = MEqp), MEz) = MEg.in), - MEpr) = MEgpein), and
NE@em) = MEg: ) = - = MEgpn) = MEp).

Proof. The first part of the lemma is a conclusion of this fact that the armchair polyhex
lattice is symmetric. To prove the second part, we notice that for a fixed row j there are

exactly p-1 row with two edges belongs to E('I};,,I ). The other rows don't intersect E(TE',l ).

Thus N(Eg+1)1) = N(Egrap) = - = N(Egpn) = N(Ep). u
We now ready to state the main result of the paper. We have:

Theorem. The PI index of armchair polyhex nanotube is as follows:

{X-p qsp+
2Ap&2iq-1
Y- 1
PITUVC2p.q) ={ ¥ .
[ 5P Otherwise
Y q2p+l
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where X = 9p%q? - 12p%q — 5pq® + 8pq + 4p* — dp and Y = 9p°q® — 20p’q —pq® + 4pq + 4p’ +
8p?-4p.
Proof. Since PI(T) = |E[* - ZceN(e), it is enough to compute ..z N(e). Suppose A and B

are the set of all horizontal and non-horizontal edges of T. Then

PKT) = [E* - ZeeaN(e) ~ Zeea N(e)

2
- ’(3q—2)’-{"";’ A1 N(e)
Pq

erwise

=-2.eaN(e) + 9p%q2-12p%q+4p” o’ 2p &2ig-1
9p%q2-12p%q+4p%-pq®  Otherwise
By Lemma 2, N(Ex)) = N(Eu) + 2(i-1) and so we have

_ [oaongp apH
PIT) {—m—ons"mwxm @pH

+ {9pzq2-l2p’q+‘pz-pq’-p 2p &2iq-1

9pzq7'-12pzq4-4p2 -pq2 Otherwise

But N(Ey)) = { 2 @ oo we have

2q-2 qsp+l
X Sp+l
R .
PI(T) = , which completes the proof. ]
X qsp+l .
Otherwise
{Y q2p+l
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