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Abstract

‘We give a combinatorial proof of Wilson’s Theorem: p divides
{(p—1)!+1}if p is prime.
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Wilson’s Theorem is one of the basic results in congruence arithmetic.
The English mathematician, Edward Waring (1741-1793) stated it as a new
and interesting property of primes in his book Meditationes Algebraicae
published in 1770. The result was reported to him by his student, John
Wilson, who appears to have guessed the result on the basis of numerical
evidence. Neither Waring nor Wilson had a proof; in fact, Waring added,
“Theorems of this kind will be very hard to prove, because of the absence
of a notation to express prime numbers.” Lagrange gave the first formal
proof in 1771 and also observed that its converse holds. However, there
seems to be some evidence that Leibniz was aware of the result almost a
century earlier although he published nothing on the subject.

Wilson’s Theorem is usually proved by drawing upon basic properties

of linear congruences or by factoring polynomials over Z, or by using the
result that p has a primitive root. The first two methods are commonly
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found in textbooks, for instance [2], and the third often appears as an exer-
cise. The purpose of this note is to give a proof of Wilson’s Theorem using
combinatorial methods.

Definition 1. A linear chain a1a; ... a, of n positive integers ay,as,...,an
is called an n-linear chain, or an L(n) chain, if the following three condi-
tions hold:

(@ 1<a;<n—-1for1<i<ny
(b) Z'-;,- a;Z0(modn) for1<j<k<n-1;
(c) iy ai =0(mod n).

Lemma 1. Let aja;...a, be an L(n) chain. Then a;,a; + @ip1,...,0; +
@it1+---+ap+ay+az+---+ai-; is a complete system of residues modulo
n for eachi,1<i < n.

Proof. If any two numbers in the n-set were congruent modulo n, condi-
tion (b) of the definition would be violated. Thus, no two members of the
n element set are congruent modulo n, and so the set represents a complete
system of residues modulo n. _ (m]

Lemma 2. There are (n — 1)1 L(n) chains.

Proof. Let aja;...a, be an L(n) chain. There are n —1 choices for a; by
condition (a), and then n — 2 choices for a; by condition (b). Inductively,
a;. can be chosen in n—k ways given that ay, @, . ..,ax—1 have already been
chosen. This gives a total of (n — 1)! ways of selecting the linear chain. O

1 2 ... n
& a2 ... Qn
1 < i < n, we associate the chain

D(r) = dida ... . dn,

To each permutation 7 = ( ), so that «(i) = a; for

where
di= { %1 =G (modn) if1<i<n~-1;
Tl ag-a, (modn) ifi=n.

It is easy to verify that D(=) is indeed an L(n) chain.

Conversely, given an £(n) chain a;a;...a,, the permutation

1r,-=(i i+a t+a+az ... i+ar+ax+---+an-1),
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where each entry i +a; +az +---+a¢ is reduced modulon for 1 < i,k < n
is such that D(w;) = ajaz...a,. Here 7; maps each entry within brackets
to the succeeding entry, the permutations my,®s,...,7s are distinct and
there can be no other permutation corresponding to the given L(n) chain.

Thus, from a given permutation we can construct a unigue L(n) chain
while a given L(n) chain yields n distinct permutations corresponding to
this chain. Since there are n! permutations, we have (n — 1)! L(n) chains.
Therefore, by Lemma 2, all the £(n) chains may be obtained in the above
manner from the permutations.

Definition 2. Two permutations m, 72 of {1,2,...,n} are congruent pro-
vided D(m) = D(w3).

Theorem 1. (Wilson’s Theorem)
If p is a prime, then (p — 1)! = —1(mod p).

Proof. If we arrange the L(n) chain aja;...a, in a circle, the n lin-
ear sequences starting with a; for 1 < ¢ < n determine the same circular
sequence. However, the n linear sequences corresponding to a circular se-
quence need not all be distinct. If, for d|n, the sequence ¢; a2 . ..a, consists
of n/d repetitions of the block a;a;...aq, the linear sequences repeat after
the first d. To each circular sequence of length n we may associate a least
positive integer d such that the circular sequence consists of n/d repetitions
of a sequence of length d. Moreover, each circular sequence of length d and
period d may be repeated n/d times to give a circular sequence of length n
and period d provided d|n.

If N(d) denotes the number of circular sequences of length and period
d, then dN(d) is the number of linear sequences of length n corresponding
to them. It follows that

D dN(d) = (n - 1)
din

Now, N(1) counts the number of circular sequences of length and period 1,
and this equals n — 1, one for each nonzero value. When n = p is a prime,
the displayed equation reduces to (p — 1)! = N(1) = —1(mod p), and that
completes the proof. o

The converse of Wilson’s Theorem is also true: If (n — 1)! = —1(mod n)
for n > 1, then n must be prime. Indeed, if n > 1 is composite, n always
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has two distinct positive factors a,b, each less than n. Thus (n — 1)! = 0
(mod n) whenever n is composite. Together with Wilson’s Theorem, it
gives a primality test for n > 1, albeit a computationally infeasible one.
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Abstract

In this paper, we studied that a linear space, which is the
complement of a linear space having points are not on a tri-
lateral or a quadrilateral in a projective subplane of order m,
is embeddable in a unique way in a projective plane of order
n. In addition, we showed that this linear space is the comple-
ment of certain regular hyperbolic plane in the sense of Graves
[5] with respect to a finite projective plane.
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1 Introduction

The complementation problem with respect to a projective plane is the fol-
lowing: Remove a certain configuration of points and lines from the plane,
determine the parameters of the resulting space. Complementation prob-
lems have been considered by various authors ([1},[2],[3],[4],[11],[12],[13],[18]
). In 1970, Dickey solved the problem for the case where the configuration
removed was a unital [20] . ( The one exceptional case here was completed
by de Witte in 1977 [3] ). Totten in 1976 considered the complement of
two lines [2]. In 1987, L.M. Batten characterized linear spaces which are
the complements of affine or projective subplanes of finite projective planes
and showed that these spaces can be embeddable in a unique way in a pro-
jective plane of order n [4]. A generalization of Batten’s Theorem [4] was
given by Giinaltih and Olgun [13].
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After then, the problem of embedding the ” complements * of various
configuration in projective planes has arised and this problem has been
studied by various authors ( [1},(2],[3],[4},[11},[12] ).

In this paper, we showed that a linear space, which is the complement
of a linear space having points are not on a trilateral or a quadrilateral
in a projective subplane of order m, is embeddable in a unique way in a
projective plane of order n. In addition, we determined that this linear
space is the complement of certain regular hyperbolic plane in the sense of
Graves (5] with respect to a finite projective plane.

Now, we give some definitions required.

Definition 1.1 : Let P be a set of points and £ be a subset of the
power set of P . Then S = (P, £) is called a linear space if :

L1. Any two points belong to a unique line.

L2. Every line contains at least two points.

While in talking about finite linear spaces we shall use a rather easy-
going terminology borrowed from classical geometry; for example, we shall
use words such as ”collinear,” ” concurrent,” "meeting,” ”joining,” and ex-
pressions such as ” a line (passing) through a point” or ”a point (lying) on
a line”.

If v = |P| and b = || are finite then S is called finite. The total
number of lines through P is denoted by b(P), and the total number of
points on ! is denoted by v{l). Thus, if b(P) = k and v{l) = & then P is
called a k—point and ! is called a k—line. Furthermore, the total number
of k—lines is denoted by b, and the parameters km, kar,7m and rps are
defined as stated below:

kn=min{v(l)|l € L}

kv =max{v(l)|l e L}

rm = min {b(P) |P € P} and
rym = max {b(P) |P € P}

If every point of S lies on exactly ¢ lines of S then S is called t—regular.
(t>21,teZ).

The order of a non-trivial finite linear space is defined as one less than
the highest degree of both points and lines.

A finite projective plane of order n» > 2 is a finite linear space with
n? +n + 1 points in which v(l) = b(P) = n + 1 for every line ! and every
point P.

Definition 1.2 : A linear space S = (P, L) is said to be embeddable
in a linear space &' = (P’, £’) if &’ can be obtained from S by addition of
some points called as ideal points and some lines called as ideal lines.
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Definition 1.3 : A finite (m + 1)—regular hyperbolic plane (P, £), in
the sense of Graves, is a non-trivial (m + 1)—regular linear space such that

H1 : There are four points, no three of which are collinear.

H2 : If P is a point not on a line [, then there exist at least two
lines , not meeting ! and through P .

H3 : If a subset P’ of the points of P contains three non-collinear
points and contains all points on the lines through pairs of distinct points
of P/, then the subset P’ contains all points of P.

Examples of hyperbolic planes have been constructed by Graves (5],
Sandler [6], Crowe [15],{16],{17] and Kaya-Olgun [8].
Proposition 1.1 : ( Bumcrot, 10 ) Any finite linear space satisfying
the following conditions:
l. 7 2k +2
2. km(km - 1) 2™
is a hyperbolic plane in the sense of Graves [5].

2 MAIN RESULTS

Proposition 2.1 : Any (m + 1)—regular linear space satisfying the fol-
lowing conditions for every k € {3,4} is a hyperbolic plane in the sense
of Graves [5] ( this hyperbolic plane is called as a hyperbolic plane of

(k, m)—type) :

i)b=m?4+m+1-kv=m?+1+4(5)—k—(k-1)m and
2

(i) =21, foreveryie {m—1,m—-2,m+1—k}.

Proof : Let S be a linear space satisfying the conditions (i) and (ii).
It is clear that rp, > kpr +2 and km(km —1) = (m+1-k)(m—-k) > m+1
,sincek € {3,4} ,km=m+1—k,ky =m—-1landr, =7y =m+1. By
the Proposition 1.1 , S is a hyperbolic plane which is called (k, m)—type.

Examples of hyperbolic planes of (k, m)—type are obtained by removing
all points of k lines such that any three of which are not concurrent for
k € {8,4} from projective planes of order m. ( See [6],[8],(9]).

Proposition 2.2 : Let S be hyperbolic plane of (3, m)—type. If
bm—1 =3(m —1) and m > 7 then S is a real complement of a triangle in a
projective plane of order m.

Proof : By the Proposition 2.1, S is (m4-1)—regular linear space with
(m — 1)2 points, (m? 4+ m — 2) lines and every line has degree m — 2 or
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m — 1. Thus, S is a real complement of a triangle in a projective plane of
order m, m > 7 in according to Raltson ([11]).

Proposition 2.3 : Let S be a hyperbolic plane of (4, m)—type. If
bm—1 > 3 and m > 23 then S is a real complement of a quadrilateral in a
projective plane of order m.

Proof : Due to the Proposition 2.1, S is (m + 1)~regular linear space
with (m2 — 3m + 8) points, (m? + m — 3) lines and every line has degree
m—1,m —2 or m — 3. Thus § is a real complement of a quadrilateral in
projective plane of order m in according to Montakhab [12].

Theorem 2.1 : Let § = (P, L) be an (n + 1)—regular linear space
such that :

(i) b=n?+n+lv=n2+n—-m2+2m,2<m<n
(ii) bp+2—m = 3(m —1)
(iii) every line hasn+ 1,7,n+ 2 — m,n + 3 — m points.

If m lines of degree n + 2 — m are not mutually parallel, then § is
embeddable in a unique way in a projective plane of order n and it is the
complement of a hyperbolic plane of (3, m)—type.

Proof :

Let P;; be the set of points of S such that there are 7 lines of degree

n+ 2 —m, 7 lines of degree n + 3 — m, k lines of degree n and h lines of
degree n + 1 through every point of it. Then;

(n+l-m)yi+(n+2-m)j+(n—-1k+nh=v-1
i+i+k+h=n+1
YIPj]l = v, Yobe=b, te{n+ln,n+2-—mn+3-m}
< -

Also, by simple counting methods,

=(m-1)?-i(m -1) +j(m -2),
h=n+1-(m—1)%+i(m - 2) +j(m — 3),
ZlPaalt—3(n+2 m)(m - 1),

Z IP1_7|.7 = (n +3- m)bn+3-m
> |Pijl k = nb, and
i'j
2 NPl h = (n+ 1bnyr.
tIJ
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Thus,

b = (m —1)*(n —m)
bpy1 = n® —n(m? — 2m) + (m? —5m — 1)
bp43-m = (m — 1) and
bni2-m = 3(m —1).

It is easily shown that there is an n—line misses a given line of degree
n 4+ 2 — m by using all of the assumptions of theorem.

Let ! be an n—line . The number of lines not meeting ! is n, since S is
(n + 1) regular linear space with n2 +n + 1 lines. Therefore, every n—line
induces a parallel class of n + 1 lines none of which is an (n + 1)-line.

Let ¢ and d be the numbers of (n + 2 —m)—line and (n + 3 — m)—line
in a fixed class, respectively. Then

cn+2-m)+d(n+3-m)+(n+l-—c—dn=n?+n-m?+2m
. c—3
impliesthat d=m+1—-c+ ——t

Since ¢ < m, by hypothesis ¢ = 3, d = m — 2. Thus, the number of
n—lines in a parallel class is n — m. And the number of different parallel
classes is (m — 1)2, since b, = (m — 1)%(n — m).

Consider the structure S* = (P*,£*) where P* is P along with the
parallel classes and L£* consisting of the lines of £ extended by those parallel
classes to which they belong. We shall prove that S* is a linear space. It
is clear that two old points (points of P) or an old and a new point are on
a unique line of £*, since S = (P, L) is a linear space.

Let X and Y be two new different points. We must show that they
determine a unique line of £*.Let [x and !y be n-lines which determine
the parallel classes corresponding to X and Y, respectively . If Ix and ly
do not meet, then X = Y which is a contradiction. So {x and ly meet.
Each point of ly is on a unique line of the parallel class determined by {x.
Thus, Iy does not meet precisely one line of the parallel class determined
by Ix. This leaves precisely one line parallel to both Ix and ly. Thus S* is
a linear space with n2+n+1 points and n?2+n+1 lines. S* is a projective
plane of order n, by [18].

Consider the complement of § in 8*. The lines of §*\ &S are sets of
(m — 1) or (m — 2) points, the extensions of the (n + 2 — m)—lines or
(n + 3 — m)—lines of S, respectively. It is clear that S*\ S is a linear space
and there is at least one point not on a given line in §*\ S. It is known
that there are exactly three lines of degree m —1 and (m —2) lines of degree
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m — 2 through any new point added to § (any point of S*\ § ). Thus S*\
S is a (m + 1)~—regular linear space with (m — 1)2 points and m2 + m — 2
lines such that every line has degree m — 2 or m — 1. Therefore; S*\ S is a
(m + 1)—regular hyperbolic plane of (3, m)—type, by the Proposition 2.1.

Theorem 2.2 : Let S = (P, L) be an (n + 1)—regular linear space,
with satisfying the following conditions :

() b=n’+n+l,v=n+n-—m?+3m -2, 2<m<n,
(ii) bn+2—m =3 and bn+3._m = 6(m - 2)
(iii) every line hasn+1,n,n+2 —m,n+ 3 —m,n + 4 — m points.

If m lines of degree (n + 3 — m) are not mutually parallel, S is embed-
dable in a unique way in a projective plane of order n and is complement
of a hyperbolic plane of (4, n)—type.

Proof :

Let P;;i be the set of points such that there are exactly i lines of degree
n+ 2 — m, j lines of degree n 4+ 3 — m, k lines of degreen +4 — m, h lines
of degree n and w lines of degree n + 1 through every point P of it. Then;

n+l-mhi+(n+2-m)j+(n+3—mk+(n-1h+nw=v-1,
i+j+k+ht+w=n+1l,

Y |Pyjkl=v, Y b =b te{n+lnn+2-mn+3-mn+4-—m}.
ik T

Also, by simple counting methods,

h=(m?-3m+3)—i(m-1)—-j(m—2)—k(m-3),
w=n+1-(m?2=-3m+3)+i(m—-1)+j(m—2)+ k(m - 3),
3 Pgili =3(n+2 - m),
t'-7,
2 |Pijkli = 6(m —2)(n+3 —m),
t'J'

Y |Pijklk=(n+4—m)bpia—m,

i’jlk
Z |Pijk| h= nb,, and
ilj’k
2 Pkl w = (n+1)bns1.
i.5.k

and the following results are obtained.
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bn = (m? — 3m + 3)(n — m),
bnt1 =n? — (m = 2)(m — )n+m(m? — 4m + 2) +4,
bﬂ+2—‘m = 31
bn+3—m = 6(m —2),
bnta—m = (m — 3)(m - 2).

It is easily shown that there is an n—line misses a given line of degree
n+ 2 — m by using all of the assumptions of theorem.

Let ! be an n-line and n (I) be a parallel class corresponding to I.
w(l) contains at most three (n 4+ 2 — m)—lines, since the total number of
(n + 2 — m)-lines of S is exactly three. Thus, there are four cases which
are needed to examine for =(l).

Case 1: w(l) contains none of (n + 2 — m)—lines. Let ¢ and d be the
number of (n+ 3 — m)—lines and (n + 4 — m)—lines, respectively, in 7 ().

c(n+3-m)+dn+4d-m)+(n+l—c-dn=n*+n-m?>+3m-2

implies that d=m +1—-c¢ - ;—i

Since ¢ < m, by hypothesis, ¢ = 6 and d = m — 5. Thus, the number of
n—lines, in w(l), is n — m.

Case 2: =(l) contains exactly one (n + 2 — m)—line. Let ¢ and d be
the number of (n + 3 — m)—lines and (n + 4 — m)—lines, respectively, in

().
(n+2-m)+c(n+3—m)+d(n+d—m)+(n—c—dn =n*+n—m?+3m—-2
c—4

implies that d = m — ¢ —

Since ¢ < m, by hypoth&slsltc =4 and d = m — 4. Thus, the number of
n—lines in w(l) is n —m.

Case 3: m(l) contains exactly two (n + 2 — m)—lines. Let c and d be
the number of (n + 3 — m)—line and (n + 4 — m)—line, respectively, in 7.

2(n+2-m)+c(n+3—m)+d(n+4—m)+(n+1—c~d)n = n®+n—m2+3m-2
c—2

impliesthat d=m ~1—c¢c — p——
Since ¢ < m, by hypothesis ¢ = 2 and d = m — 3. Thus, the number of
n—lines in 7(l) is n — m.
Case 4: n(l) contains exactly three (n+2 — m)—lines. Let ¢ and d be
the number of (n+4 3 —m)—line and (n+4 —m)-line, respectively, in 7 (l).
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3(n+2—m)+c(n+3—m)+d(n+4—m)+(n—2—c—d)n = n+n-m?+43m—2

implies that d = m—2—%. d,m,c € Z* require both (m—3,m—4) =

1 and (m —4) | ¢. Thus, there is t > 0, £ € Z such that ¢ = t(m — 4). In
this case

0<d=(m—2)—t(m-3) (®))

From (1), t=0o0rt=1.

Ift = 1, thenit is easily calculated that the number of (n+3—m)—lines
and (n+4 —m)—lines in n(l) are 1 and m — 4, respectively. Thus the total
number of n—lines in 7(l) isn+1 - m.

Since the total number of (n+2—m)—lines of S is exactly three, parallel
classes of S which are different from () don’t contain (n + 2 — mn)—lines.
Let a be the total number of parallel classes of S. By the case 1, it is clear
that S contains exactly one parallel class which has n+ 1 — m (n)—lines
and a — 1 parallel classes which have n — m (n)—lines. Thus, the following
equality is valid.

m+l-m)+(@—1)n—m)=b,=(mM2-3m+3)n-m) ((2)

From (2), )

a=(m?-3m+3) - ——.
n—m
Since n > m, a ¢ Z. This contradicts a € Z. Thus, t = 0 and it is easily
shown that w(l) contains exactly n — m (n)—lines.

Consequently, the number of n—lines in any parallel class is (n — m).
Therefore; the number of different parallel classes of S is m? — 3m+3, since
bp = (m? — 3m + 3)(n — m).

Consider the structure $* = (P*, L*) defined above. It is easily shown that
S* is a projective plane of order n, by the similar technique in the proof
of Theorem 2.1.. Consider the complement of S in S*. The lines of S* \
S are sets of {m — 1},{m — 2} or {m — 3} points, which are extensions
of the (n + 2 — m)-lines, (n + 3 — m)—lines and (n + 4 — m)—lines of S,
respectively. It is clear that &* \ S is a linear space and there is at least
one point not on a given line in §* \ 8. It is known that there are at most
two (m — 1)—lines on any new point (any point of §* \ & ). If there are
two (m — 1)—lines on any new point, this point of S* \ & is exactly on
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two lines of degree m — 2 and m — 3 lines of degree (m — 3). If there is
one (m — 1)—line on any new point; this point of S* \ S is exactly on four
lines of degree m — 2 and m — 4 lines of degree (m — 3). If there is not any
(m —1)—lines on a new point, this point of S* \ § is exactly on six lines of
size m — 2 and m — 5 lines of size (m —3). Thus §* \ S is a (m +1)-regular
linear space with m2 — 3m + 3 points and m? + m — 3 lines in which a line
is degree of m — 1,m — 2 or m — 3. Therefore, S* \ S is a hyperbolic plane
of (4, m)-type , by the Proposition 2.1.
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