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Abstract

For a subset of vertices S in a graph G, ifve Sandwe V - S,
then the vertex w is an external private neighbor of v (with respect
to S) if the only neighbor of w in S is v. A dominating set S is a
private dominating set if each v € S has an external private neigh-
bor. Bollébas and Cockayne (Graph theoretic parameters concern-
ing domination, independence and irredundance. J. Graph Theory
3 (1979) 241-250) showed that every graph without isolated vertices
has a minimum dominating set which is also a private dominating
set. We define a graph G to be a private domination graph if every
minimum dominating set of G is a private dominating set. We give
a constructive characterization of private domination trees.
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1 Introduction

For notation and graph theory terminology we in general follow [2, 4].
Specifically, let G = (V, E) be a graph with vertex set V of order n
and edge set E. The open neighborhood of vertex v € V is denoted
by N(v) = {u € V | wv € E}, while its closed neighborhood is given
by N[v] = N(@w)U {v}. For aset S C V, N(S) = UJ,csN(v) and
N[S] = N(S)US. A set is a dominating set if N[S] = V. The domi-
nation number ¥(G) is the minimum cardinality of a dominating set of G,
and a dominating set of cardinality y(G) is called a v(G)-set. If v € S
and w € V — S, then the vertex w is an external private neighbor of v
(with respect to S) if N(w) NS = {v}. The ezternal private neighborhood
epn(v, ) is the set of external private neighbors of v with respect to S. A
dominating set S is a private dominating set, which we denote as PDS, if
each v € S has an external private neighbor, that is, epn(v, S) # 0 for all
v € 8. The following classic result in domination is due to Bollébas and
Cockayne [1].

Theorem 1 (Bollébas and Cockayne [1]) Every graph without isolated ver-
tices has a minimum dominating set which is also a PDS.

For example, consider the path P; = a, b, c,d. The set {a,d} is a private
v(Py)-set, while {b, d} is a y(Py)-set that is not private because the vertex
d has no external private neighbor with respect to {b,d}. On the other
hand, every «(Ps)-set is a private dominating set.

If G is a graph for which every +(G)-set is a PDS, then we say that
G is a private domination graph, or just a PD-graph. In this paper, we
characterize the PD-trees.

2 PD-Trees

First we give some more terminology. For a set S C V, the subgraph
induced by S is denoted by G[S]. A leaf of G is a vertex of degree 1, while
a support vertez of G is a vertex adjacent to a leaf. A support vertex that
is adjacent to at least two leaves we call a strong support vertez.

We begin with three straightforward observations.

Observation 2 A path P, is an PD-tree if and only if n= 0,2 (mod 3).
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Observation 3 If T is a PD-tree with a y(T)-set S, then for each vertez
v € S, v is an isolate in T[S] or |epn(v, S)| > 2.

Proof. Let T be a PD-tree with y(T')-set S. Suppose that v € S has a
neighbor in S and epn(v,S) = {u}. Then (S — {v}) U {u} is a (T)-set
where u has no external private neighbor, contradicting the fact that T is
a PD-tree. O

Observation 4 If T is a tree of order at least 3, then there is a y(T)-set
that contains all the support vertices of T, and every strong support vertex
is in every y(T')-set.

We shall use the following proposition from [3].

Theorem 5 (3] For any tree T with order n > 3, (T —v) > ¥(T) if and
only if v is in every y(T)-set.

3 Characterization

Let Ty, T3, T3, and 7 be the following four operations on a nontrivial tree
T.

Operation 7;. Attach a vertex to a vertex of T that is in some
¥(T')-set.

Operation 7;. Attach a leaf of a path P, to a vertex v of T, where
v is not in any (T')-set and every ¥(T —v)-set is a PDS of T — v.
Operation 73. Attach a leaf of a path P; to a vertex of T'.

Operation 7;. Attach the center of a path Ps to a vertex of T that
is in every «(T')-set.

We note that Mynhardt [6] uses an innovative pruning technique to char-
acterize the vertices that are contained in every, in some, or in no y(T')-set
of atree T. Let T be the family defined by 7 = {T' | T is obtained from P,
by a finite sequence of operations 7, T3, 73, and 7;}. We show first that
every tree in the family 7 is a PD-tree.
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Lemma 6 IfT € T, then T is a PD-tree.

Proof. We proceed by induction on the number s(T') of operations required
to construct the tree T € 7. If s(T") =0, then T = P, and T is a PD-tree.
This establishes the base case. Assume, then, that k > 1 is an integer and
that each tree T’ € T with s(T”) < k is a PD-tree. Let T € T be a tree with
s(T) = k. Then, T can be obtained from a tree T’ € T with s(T") < k by
one of the operations 7y, T; T3, and 74. Applying the inductive hypothesis
to the tree 7', T’ is a PD-tree. If T is a star, then T has order at least
three, and so T is a PD-tree. Hence we may assume that diam(T) > 3. We
now consider four possibilities depending on whether T is obtained from 7
by operation T3, 72, T, or 74.

Case 1. T is obtained from T’ by operation 7;. Suppose T is
obtained from 7" by adding a vertex u and the edge uv where v € V(T")
and v is in some y(T")-set. Any y(T”)-set containing v dominates T, and so
¥(T) = ¥(T"). Let S be a y(T)-set. Suppose u € S. Since y(T") = y(T) =
|S], the set S — {u} is not a dominating set of T”, that is, SN Nfy] = {u}.
But then (S — {u}) U {v} is a y(T")-set that is not a PDS of T” (since v
has no external private neighbor with respect to this set), contradicting the
inductive hypothesis that 7" is a PD-tree. Hence, u ¢ S, andso S is a
7(T")-set. By the inductive hypothesis, S is a PDS of T”, and therefore of
T. Hence, T is a PD-tree.

Case 2. T is obtained from T’ by operation 72. Suppose T is
obtained from T” by adding the path u, w and the edge uv, where v € V(T”),
v is not in any y(T”)-set, and every y(T’ — v)-set is a PDS of T/ — v. If
¥(T' — v) < ¥(T"), then v is in some (T”)-set, a contradiction. Hence,
Y(T’ - v) = Y(T"). It follows that ¥(T) = y(T’) + 1. Let S be a y(T')-set,
and let §’ = SNV(T’). Then, |§'| =S| — 1 =7(T) — 1 = 4(T").

Suppose S’ does not dominate V(T”). Then, S’ is a y(T¥ — v)-set (and
SN N[v] = {u}), and so, by assumption, S’ is a PDS of T’ —v. Hence, S is
a PDS of T'. On the other hand, suppose S’ dominates V(T”). Then, §’'isa
v(T")-set and therefore v ¢ S’. If w € S, then, since S’ is a PDS of T”, the
set S is a PDS of T. Hence we may assume that u € S. If epn(2/, §’) = {v}
for some vertex v’ € S, then (S’ — {v'})U {v} is a y(T”)-set containing v, a
contradiction. Hence, v is not the unique external private neighbor of any
vertex in S’. Thus, S is a PDS of T'.

Case 3. T is obtained from T’ by operation 73. Suppose T is
obtained from T’ by adding the path u,z,w and the edge uv where v €
v(T).
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We show first that y(T) = v(T”)+1. Any y(T")-set can be extended to a
dominating set of T by adding to it the vertex z, and so v(T') € v(T") +1.
On the other hand, let S be a y(T')-set. We may assume SN {u, z, w} = {z}
(if w € S, then replace w in S by z, while if u € S, then replace u in S
by v). Then, S — {z} is a dominating set of 77, and so 4(T") < v(T) — 1.
Consequently, v(T') = y(T') + 1.

Let S be a y(T)-set, and let 8’ = SNV(T”). Then, |$'| < |S|-1 = y(T").
Suppose S’ is not a dominating set of T’. Then, S’ is a dominating set of
T' —v and SN N[v] = {u}. Also, |SN {z,w}| = 1. Hence, |S'|=|S|-2 =
¥(T') = 1. Therefore, S’ U {v} is a ¥(T")-set with epn(v,S’' U {v}) = 0,
contradicting the fact that 7" is a PD-tree. Hence, S’ is a dominating set
of T", and so y(T") < |S’|. Consequently, |S’| = |S| -1 = v(T’). Thus, &’
is a y(T"')-set and S contains either z or w (to dominate w). Since S’ is a
PDS of T”, the set S is therefore a PDS of T.

Case 4. T is obtained from T' by operation 74. Suppose T is
obtained from T” by adding the path u,z,w and the edge zv, where v €
V(T’) is in every (T")-set. Note that since T” is a nontrivial tree and v is
in every (T")-set, the order of 7" is at least three.

We show first that y(T") = 4(T")+ 1. Any 4(T”)-set can be extended to a
dominating set of T by adding to it the vertex z, and so y(T') < y(T") + 1.
On the other hand, let S be a 4(T)-set, and let S’ = SN V(T'). Then,
z € § by Observation 4, and so |§'] = |S]| -1 =y(T)—-1. If §is a
dominating set of T”, then v(T") < |S’| = 4(T)—1. If S is not a dominating
set of T', then S’ is a dominating set of 7V — v, and so, by Theorem 5,
Y(T') < YT’ —v) < |8'| = 4(T) — 1. In both cases, v(T’) < (T) - 1.
Consequently, y(T') = v(T") + 1.

Next we show that T is a PD-tree. Again we let S be a y(T')-set, and let
§' = 8NV(T'). By Observation 4, z € S, and so |§’| = |S| — 1 = y(T).
If v ¢ S, then S’ is a dominating set of T/ — v, and so, by Theorem 5,
¥(T') < T’ —v) < ||, a contradiction. Hence, v € S and §’ is a
dominating set of T”, that is, S’ is a y(T”)-set. Since S’ is a PDS of T”, the
set S is therefore a PDS of T. O

We show next that every PD-tree is in the family 7.
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Lemma 7 IfT is a PD-tree, then T € T.

Proof. We proceed by induction on the order n > 2 of T. If n = 2, then
T = P, and T € 7. This establishes the base case. Assume n > 3 and that
every PD-tree of order less than = is in the family 7. Let T be a PD-tree
of order n. If T is a star, then it can be obtained from P, using repeated
applications of operation 77, so we may assume that diam(T) > 3. Consider
a longest path g, ¥1,v2, . . ., Ydiam(r) in T, and root T at the vertex vgiam(r)-
Then, v is a leaf and v, is a support vertex. We consider three possibilities
depending on the degree of v;.

Case 1. deg(v;) > 4. By our choice of vo, v1 has three or more leaf
children. Let T = T'—vp. Then v, is a strong support in T/ and hence is in
every v(T")-set. Thus every y(T”)-set is a y(T')-set, and so T” is a PD-tree.
Applying our inductive hypothesis, T’ € 7. Hence, T can be obtained from
T’ using operation 7; implying that T € 7.

Case 2. deg(v;) = 3. By our choice of v, v; has exactly two leaf
children, and every child of v is either a leaf or a support vertex. Since v;
is a strong support vertex, it is in every y(T')-set.

First suppose that v, is in some 4(T)-set S. Since v; € S, Observation 3
implies that |epn(vz, S)| = 2 implying that vz has at least one leaf child.
Suppose that v, has exactly one leaf neighbor u. Then, |epn(vz, S)| = 2
and v € epn(vz, S). Since T is a PD-tree and v, is in every «(T')-set, the
leaf u is in no y(T')-set (since otherwise u would have no external private
neighbor in such a set). Hence, v, is in every «(T)-set. Next suppose that
vy has two or more leaf children. By Observation 4, v, is in every (T)-set.
Hence if v, is in some v(T')-set, then v, is in every v(T')-set.

Let T’ be the tree formed by removing v; and its children from T'. Since
every y(T')-set can be extended to a (T')-set by adding to it the vertex vy,
it follows that v is in every y(T")-set (otherwise, there exists a y(T)-set
that does not contain we). Thus, 7' is a PD-tree, and by our inductive
hypothesis, T’ € T. Since T can be obtained from T” using operation 74,
TeT.

Next, assume that vs is not in any 4(T')-set. Observation 4 implies that
vy is not a support vertex, and so every child of v, is a support vertex. Let
T' = T — vo. Since v; is a support vertex in T”, there exists a y(T")-set
containing vy, and so y(T') = v(T"). Every ¥(T”)-set containing v, is a
4(T)-set, and hence is a PDS of T’. Suppose S’ is a y(T”)-set that does
not contain v;. Then z € ', where z is the leaf neighbor of vy in T". If
v € epn(z, S’) in T”, then v2 € S’. But then (S’ — {z})U{v } is a y(T)-set
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containing vz, a contradiction. Therefore every y(T")-set contains v; and is
therefore a PDS in T”, and so T” is a PD-tree. By the inductive hypothesis,
T’ € T. Thus, T is a PD-tree because it can be obtained from 7" using
operation T;.

Case 3. deg(v1) = 2. Then, v is the only leaf neighbor of »;. If v is in
some y(T')-set S, then (S — {v1})U {vo} is a 4(T)-set that is not a PDS of
T, a contradiction since T is a PD-tree. Hence, v, is not in any (T)-set.

First assume that deg(vz) > 3, and let T = T — {wg, v; }. By our choice
of vg, every child of v, is a leaf or a support vertex. Observation 4 implies
that v, is not a support vertex, and so it must be the case that every child
of v is a support vertex. Thus the restriction of any (T')-set that contains
all the support vertices of T (such a set exists by Observation 4) to the tree
T’ is a dominating set of T, and so ¥(T”) < 4(T) — 1. On the other hand,
any y(T"’)-set can be extended to a dominating set of T’ by adding to it the
vertex vy, and so y(T) < 4(T’) + 1. Consequently, v(T) = v(T") + 1.

If v is in some ~(T”)-set, then adding v; to this set produces a y(T')-set
containing vz, a contradiction. Thus, no y{(T”')-set includes vp. If S’ is a
¥(T”")-set that is not a PDS of T”, then S’ U {v;} is a y(T)-set that is not a
PDS of T', a contradiction. Hence every v(T”)-set is a PDS of T”, that is, T’
is a PD-tree. Applying our inductive hypothesis, T’ € 7. Moreover, if there
exists a y(T" — v2)-set S’ that is not a PDS of T — vs, then S’ U {v;} is a
v(T)-set that is not a PDS of T, a contradiction. Hence every (T’ —v;)-set
isa PDS in T' —v,. Therefore, T can be formed from T” using operation 7g,
and hence, T is in 7.

We may assume that deg(vs) = 2. Let T =T — {vo, v1,v2}. Let S’ be a
¥(T")-set. Now every (T”)-set S’ is a PDS of T”, for otherwise $' U{v;} is
a (T)-set that is not a PDS of T, a contradiction. It follows that T” is a
PD-tree, and by our inductive hypothesis, T’ € T. Now T can be obtained
from T using operation 73. O

As an immediate consequence of Lemmas 6 and 7, we have our main
result.

Theorem 8 A tree T € T if and only if T is a PD-tree.
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