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Abstract

We introduce a generalisation of the traditional magic square
which proves useful in the construction of magic labelings of graphs.
An order n sparse semi-magic square is an n X n array containing
the entries 1,2,--- ,m (for some m < n?) once each with the re-
mainder of its entries 0, and its rows and columns have a constant
sum k. We discover some of the basic properties of such arrays and
provide constructions for squares of all orders n > 3. We also show
how these arrays can be used to produce vertex-magic labelings for
certain families of graphs.

1 Introduction

There has been interest in magic squares for many centuries and in many
cultures. They and their various generalisations are arguably the most
popular topic of study for those who enjoy recreational mathematics. How-
ever, from time to time they have also been found useful in some application
to another area of mathematics. One such application was found recently
in the construction of certain labelings of graphs. In [5] the notion of a
vertez-magic total labeling (VMTL) for a graph was introduced. For a sim-
ple graph G with v vertices and e edges, this is a one-to-one assignment
of the labels 1,2,--- ,v + e to the vertices and edges of G so that the sum
of labels of any vertex and its incident edges is a constant. In that paper,
an n X n magic square was used to construct a VMTL for the complete
bipartite graph K, , for all n > 1. An up-to-date full account of VMTL’s
is given in [6].

In fact, the construction used in [5] did not make any use of the diagonals
of the square, so that in this paper we will be interested only in squares
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in which the row-sums and column-sums have the same constant value;
these have been called semi-magic squares. As a tool in constructing other
VMTLs, we would like an array which is like an semi-magic square but
allows some of the entries to be 0. We will call such an array a sparse
semi-magic square. More precisely, for any n» > 3, an n x n array will be
an order n sparse semi-magic square if it contains the entries 1,2,.-. ,m
(for some m < n?) once each with the remainder of its entries 0, and its
rows and columns have a constant sum k (the magic constant). We will
abbreviate sparse semi-magic square as SMS

Since no description of these of arrays seems to be readily available in
the literature, we will derive some of their basic properties, and provide
constructions for several infinite families of squares, including every n > 3.
In the last section, we will show how a sparse semi-magic square is used to
construct a VMTL.

2 Basic Properties

Any magic square is semi-magic, thus semi-magic squares exist for every
order n > 3. We note that any permutation of the rows or columns of
an semi-magic square will leave a square which is semi-magic. Apart from
rotation, reflection and row or column permutation, the order 3 array on
the left below is the unique order 3 semi-square.

6]1]8 5[0]|7
7153 6142
2194 1183

Proposition 1 Sparse semi-magic squares exist for all orders n > 3.

Proof. Suppose M = (M; ;) is any order n semi-magic square and let
k be its magic constant. Let S be the array with S; ; = M; ; — 1. Then S
has constant row and column sums (equal to k — n) and contains exactly
one Oentry. m

We will say that the array S is derived from the array M. The array
shown on the right above is derived from the other and it is easily checked
to be the unique sparse semi-magic square of order 3. Conversely, it is clear
that any SMS with exactly one zero can be regarded as being derived from
an semi-magic square.

We originally pictured SMSs as having one or more diagonals filled with
0Os, so that the number of 0s would be a multiple of n, and that there would
be the same number of 0s in each row and each column. We soon discovered
that neither of these conditions need hold. Let us express the number of
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non-zero entries in an n x n SMS as m = nd —r where 0 < r < n. Then we
make the following definitions:

Definition Annxn sparse semi-magic square whose non-zero entries are
the numbers 1,2,--- ,nd —r has density d end deficiency r. Such a square
will be denoted Sp(d, ).

The first example below illustrates an S5(3,0) and the other is an
Ss(4,1).

1 J10[13]0 O 0 [18]15]2 [3
9 [11[0 |0 |4 1 [10[0 | 198
14[0 [0 |2 |8 (17 [0 |7 [0 |14
0 [0 |5 [7 |12 9 [4 |0 [12]13
0 [3[6 |[15]0 11(6 [16]5 |O

The traditional magic square can be regarded as an array S,(n,0).

Definition An n x n sparse magic square with the same number of 0s in
each row and column is called regular.

Thus a regular square has deficiency 0 and if & is the number of zeros in
each row and column, it has density d = n — k. The S5(3, 0) square on the
left above is regular. Finally, we will call an S,(d, 1) square almost regular
if it has precisely d positive entries in all but one row and one column, and
d-—1 positive entries in a single row and a single column. The S5(4, 1) array
pictured above is almost regular. Reasoning as in the proposition above,
we can always obtain an almost regular square by subtracting 1 from all
the non-zero entries of a regular square. We will also call these derived
squares. The S5(4, 1) square above illustrates that not every almost regular
square is derived from a regular one (For it to be derived, the short row
and column would have to intersect in a 0 entry). The next theorem shows
that there is a limit on the number of Os in a SMS.

Theorem 1 If S,(d,7) is a sparse semi-magic square, then d > 3.

Proof. At most one row (or column) can contain a single positive entry,
since if there were two such rows their row sums would be different. Also
if an entry is alone in its row, it must be alone in its column for the row
and column sums to be equal.

If d = 1, then either some row is empty, or every row contains a single
positive entry. In both cases the row sum is not constant.

If d = 2, then r = 0 or 7 = 1, otherwise either there is a zero row (or
column) or there are two rows (columns) with a single positive entry. In
both cases the row sum is not constant.
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(Case 1: r = 1): Then at least one row contains a single entry and
that entry appears in a column by itself. So n — 1 rows contain precisely 2
entries, and each of these entries must be in a column with only one other
entry. But since the row-sum and column sum are equal, that entry’s row
partner and column partner must be equal. This is impossible since the
entries are all different.

(Case 2: 7 = 0): At least n — 2 rows contain exactly 2 entries. Consider
the entries in any one of these rows. Neither can be in a column by itself,
and at most one can be in a column with 2 other entries. Hence at least
one of them is in a column with only one other entry. This would imply
that its row-partner and column-partner are equal, which is impossible. m

The two following theorems show that the spectrum of values of density
and deficiency which can actually arise in a sparse semi-magic square will
depend on its order.

Theorem 2 For any sparse semi-magic square Sn(d,0) or Sn(d, 1), ifn is
even then d is even.

Proof. First let r = 0. The set of entries is {1,--- ,nd} and then the
magic constant is
_ldn(dn+1) _ d(dn+1)
n 2 2

If n is even, then dn + 1 is odd and so d must be even.
The proof is similar forr=1. =

k

Corollary 1 For any regular or almost regular SMS, if n is even, then d
8 even.

Theorem 3 For any sparse semi-magic square Sn(d,7), if n is a prime
power, thenr =0 orr=1.

Proof. The magic constant is

k= (nd—r)(nd—r+l).

2n
Hence
(nd — r)(nd — r + 1) = 0(mod 2n) (1)
and so, in particular
r(r — 1) = O(mod n). (2)

Since n = p* and r and r — 1 are relatively prime, we hdve r = O(mod p%)
or r — 1= 0(modp®). But sincer <n=p* thenr=0o0rr=1. =
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Corollary 2 For n =4, the only SMS are the semi-magic squares and the
trivial almost regular semi-magic squares derived from them.

Proof. Since n is a prime power, r =0 or r = 1. But n is even, so d is
even and by the previous theorem d = 4. For r = 0 we have an semi-magic
square. If r = 1, there is just 1 cell containing 0, so the array is a derived
square. W

It follows from the theorems that 5 is the smallest order for which a non-
trivial SMS can exist and 2 examples are given above. It is worth pointing
out that squares exist which are neither regular nor almost regular. Shown
is an Sg(4,4)

01712 | 9| 3] 4
O|7|8]6]1]13
5]1]0]0]0[12]18
0] 0]|15]20] 0] O
16(0[0}|0([19]0
14({11|10[{ 0[O0 O

which has a magic constant of 35.

3 Squares with Minimum Density

By theorem 1, the sparsest possible squares have density 3, so it is worth
examining these in more detail. The first 2 theorems show that in this case
the deficiency is considerably restricted.

Theorem 4 For any sparse semi-magic square S,(d,r), ifd =3 thent =0
orr=1or

%(1 +VBRFD) < nodd
%(l+\/4n+1) <7, n even

Proof. As in the proof of Theorem 3, we have (nd —r)(nd —r +1) =
n2d? —2ndr +nd+r2 —r = 0(mod 2n). For d = 3 and n even, this simplifies
to 7(r — 1) = O(modn) and thus if r # 0,1 we have r2 — r > n, whence
r > 3(1 + VAn+1). For odd n, this simplifies to 7(r — 1) = 0(mod 2n).
Thenr?-r >2nandsor > 4(1+ V8 +1). m

Theorem 5 For any sparse semi-magic square Sp(d,r), ifd = 3 thenr =0

orr=1or 1
r< 5(1 —6n+ V48n2 — 16n+1).
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Proof. Observe that we have 3n — r integers to distribute among n?
cells. The magic constant is k = z=(3n — r)(3n — r + 1) which is greater
than the largest entry, so no row or column can contain only a single entry.
Hence every row and column contains at least two entries. If an entry in
a 2-row also belonged to a 2-column, its row and column partners would
have to be equal (to maintain constant sum). This is impossible since the
entries are all different, so the 2-rows and 2-columns contain no common
elements and there are at least r 2-rows and r 2-columns. Let r + 4, and
r + &, be the number of 2-rows and 2-columns respectively. Then there are
2r + 6, + 6. pairs of positive integers each of which sums to k. Now the
2(2r + 8, + d.) largest entries sum to

- 2(2r + 6, + 6.)

o 2

(2(3n—r1) —2(2r + 6, + 6.) + 1)

and we must have k < ms. Substituting the values for k and S
and simplifying gives us

2 — 7+ 6nr —3n% +4n(6, + 6.) +n < 0.
Since 8,8, > 0, this reduces to r < 1(1 - 6n+ V4827 —16n+1). =

Approximating, we can simplify the above inequality as
r<(2vV3-3)n

or, further, as r < .47n.

Congruence 1 imposes a strong restriction on the possible values of r.
The following theorem singles out certain values of n for which no SMS can
exist.

Theorem 6 Letp be any prime. There is no SMS withn = 2p* endd = 3.

Proof. Let n = 2p®. Using the previous theorem, r < -;-n = p®. By
congruence 1 we have after simplifying:

r(r — 1) = 0(mod p%).

Then p*|r(r — 1) and since r and r — 1 are relatively prime, either p*|r
or p*| (r — 1). Since r < p* neither is possible unless r =0 or r = 1. But
since n is even, d must be even by Theorem 2. Sod >4. =

In the following table we show the list of all feasible values r > 1 which
satisfy both the inequalities and the congruence 1, for all n < 100. Few
values of n in this range admit more than a single feasible r. We note
that for the triangular numbers n = I-(lz-"—ll, r is a [easible value when

r =2, 3(mod4).
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n r n|r n|r n r
12 4 44 | 12 65 | 26 84 | 21,28,36
15 6 45 | 10 66 | 22 85 35
20 5 48 | 16 69 | 24 87 30
21 7 51118 70 | 15 90 10
24 9 52| 13 7219 91 14
30| 6,10 55 | 11 75 | 25 93 31
3| 12 56| 8 76 | 20 95 20
35| 15 57119 77 | 22 96 33
39| 13 60 | 21 78 | 27 99 45
42 | 7,15 63 | 28 80 | 16

From the table, the smallest orders which permit a feasible value of
r > 1 are 12 and 15, and we provide an example of an S;5(3,6) with the
0’s omitted to highlight the sparseness:

39
36
35

13

16

17

34

18

29

23

28

24

2
12

11
4

10

26 3
27

38

37

33 19
32

14
15

31
.30

20

21
22

4

In this section, we show how to construct an infinite family of sparse semi-
magic squares. As one might expect, we deal with those having the most
structure, the regular squares. Our construction produces squares contain-
ing diagonals composed of 0s. We first define a rectangular array which is
the important building block in the construction.

Construction of Regular Squares
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Definition A diagonal Kotzig array is a d x n rectangular erray (d < n)
with the following properties:

1. Each row is a permutation of the set {1,2,--- ,n}
2. All columns have the same sum.
3. All forward diagonals have the same sum.

Three-row arrays satisfying the first two conditions were used by Kotzig
( [3]) to construct edge-magic labelings and there is an account of this in
(6] where they are called Kotzig arrays. The first author has constructed
a d-row generalisation of these Kotzig arrays and they have been used to
construct vertex-magic labelings for complete bipartite graphs ( [2]). Our
constructions of squares require Kotzig arrays with the additional diagonal
condition stated as property 3 above. The theorems below show how to
construct such arrays.

It is an easy calculation to show that the constant sum for the diagonals
will be the same as the column-sum. The procedure to construct a regular
SMS from a diagonal Kotzig array is described in the following theorem.

Theorem 7 If there exists a d x n diagonal Kotzig array, then there exists
a regular SMS of order n, density d and deficiency 0.

Proof. Let D = (D;,;) be a d x n diagonal Kotzig array and let A be
the n X n matrix obtained by appending n — d rows of 0’s to the bottom of
D. Let B be the n x n matrix with b; ; =i —1 wheni < dand b;; =0 for
i > d. Finally let S= A+ nB.

Let u(S) be the matrix obtained from S by moving the entries in column
j upward by j — 1 positions (modn), so that the forward diagonals of S
become the rows of u(S). More precisely, u(S); ; = Sit+;—1,;. We claim that
u(S) is the required regular SMS.

Note that the columns of B have constant sum and therefore the columns
of S = A+ nB will also have a constant sum k. Also the forward diagonals
of B have constant sum and so the forward diagonals of S = A + nB will
also have constant sum, also equal to k. Since the diagonals of S become
the rows of «(S), the rows and columns of u(S) will have constant sum
k. It remains to prove that u(S) is regular, i.e. that there are the same
number of 0’s in each row and column of u(S). Since there were 0’s in the
bottom n — d rows of both A and B, there will be n —d 0’s in each column
of u(S). Since each diagonal of S intersected each of the n — d bottom rows
(the 0 rows) once, there are n — d 0’s on each diagonal of S, and therefore
on each row of u(S). ®

So in order to show the existence of a regular Sy, (d, 0), we must show how
to construct a d x n diagonal Kotzig array. Several different constructions
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are required, depending on the values of d and n, and they are provided
in the following theorems. The difficulty lies in discovering the array -
verifying the row and diagonal sums is usually easy.

Theorem 8 A 3 x n diagonal Kotzig array exists for all odd n > 3.

Proof. A 3 x n diagonal Kotzig array D can be defined as follows

D, =L(n+2—7) ]| jodd
Dyj=n+1-337 j even

21 =N
Dyj=35-1 7>1
D3, =1

Ds;=210n+3-4) | jodd (> 1)
D3;j=5(n+3—73) | jeven

It is easy but tiresome to verify that the columns and forward diagonals all

sum to 3(3n+3). m

We illustrate this construction for n = 7, showing both the diagonal
Kotzig array and the resulting SMS. The particular construction described
in this theorem produces a square whose main diagonal happens to also
add to the magic constant.

4 7 36 2 5 1
D=7 1 2 3 4 5 6
1 47 36 25

4 8 21 0 0 0 O

4 18 0 0 0 0 1

5 0 0 0 0 5 13

$3,0=| 0 0 0 0 2 12 19

0 0 0 6 11 16 0

0 0 3 10 20 0 0

0 7 9 17 0 0 O

For the following constructions we define the complement of a number
t to be n+ 1 —¢. Also the complement of a row will be the row consisting
of the complements of its entries (in the same order as the entries).

Theorem 9 A d x n diagonal Kotzig array exists for d = O(mod 4).
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Proof. Let d = 4m. First consider the top 2m rows of the array. Each
of the first m rows is any permutation of 1,2, - .- ,n (different rows may be
different permutations). The next m rows are the complements of the first
m rows, shifted horizontally so that the complement of element D; ; appears
on the same diagonal as D; ;. More precisely, let Diym,j=n+1—D;;-m
for 1 < i < m (where the subscripts are taken mod n). Since the sum of any
element and its complement is n + 1, each diagonal now sums to m(n + 1).

For the bottom 2m rows of D, we just take the complements of the
first 2m rows (in the same order). Precisely, Di12m,; =n+1—D; ;. Since
Diyom,j + D;j =n+1, each column sums to 2m(n + 1).

Since each diagonal in the top 2m rows adds to the constant m(n +
1), each diagonal in the bottom 2m rows will be the complement of that
diagonal and therefore also sum to a constant, namely 2m(n + 1) — m(n +
1) = m(n + 1). Thus each diagonal of the whole array sums to 2m(n + 1).
Therefore the array is diagonal Kotzig. m

Since each of the first m rows was an arbitrary permutation, the con-
struction actually provides a large family of inequivalent squares.

For even n not multiples of 4, we have to modify the above construction
somewhat. The modification will consist of changing a few rows in the
centre of the array, and differs as n is odd or even.

Theorem 10 A d x n diagonal Kolzig array ezists for d = 2(mod4) and
n odd.

Proof. Let d = 4m + 2. Consider the top 2m + 1 rows of the array.
We construct the first 2m — 2 rows as in the proof of Theorem 9. Let row
2m — 1 be any permutation of 1,2,--- ,n. Define row 2m by

Dom j41 =22+ Dom—1,; | J < 23
Dom j+1 = Dom-1,5 = 25~ | 5> 25

Then the diagonal sums for these 2 rows will be the consecutive integers
"—“121 +1to E.}i +n. Now we let row 2m + 1 complement these sums in the
following way:

3
Dom+1,5+42 = 5(n+1) = Damjr1 = Dom-1,5

so that the diagonal sums for the 3 rows are now constant. Thus the
diagonal sums for the top 2m + 1 rows are the constant %(n +1)+ (m -
1)(n +1).

Take as the bottom 2m+1 rows the complements of the top 2m+1 rows,
exactly as in the previous construction. Then both columns and diagonals
sum to (2m + 1)(n + 1) and so the array is diagonal Kotzig. =
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Theorem 11 A d x n diagonal Kotzig array exists for d = 2(mod4) and
n even.

Proof. Let d =4m + 2 and consider the top 2m + 1 rows of the array.
We construct the first 2m —2 rows as in the proof of Theorem 9. This leaves
the rows 2m — 1 to 2m + 1 to be filled. In row 2m — 1 place the integers
1,---,n in ascending order. Row 2m is the permutation defined by

Domj+r=3(n+1—3) | jodd
Domji1=5(2n+2—73) | jeven |

and row 2m + 1 is the permutation defined by

Damgsz=3(@n+1-7) | jodd
Domjs2 = 3(nt2-7) | jeven|

The diagonal sums for these three rows are alternately %n +1and -";-n +2.

Take the complements of these three rows as rows 2m + 2, 2m + 3 and
2m + 4, and the complements of the first 2m — 2 rows as the last 2m — 2
rows. Then the column sums in the array will all be equal and the diagonal
sums for the bottom half of the array will also alternately sum to 3n + 1
and 2n + 2. To get constant diagonal sums in the array, we need to make
the 'gn + 1 diagonals from the bottom half align with the §n+ 2 diagonals
of the top half. We do this by simply inserting a row of zeroes between rows
2m+1 and 2m+2. We then must insert a row of zeroes in the corresponding
rowof B. m

Having constructed the arrays for all even d it is now an easy matter to
construct the arrays for odd d :

Theorem 12 A d x n diagonal Kotzig array exists for all odd d > 7 and
n odd.

Proof. By the constructions of Theorems 10 and 11, there exists a
2t x n diagonal Kotzig array D for any ¢t > 2. From Theorem 8 there exists
a 3 x n diagonal Kotzig array D’ for any odd n. Create a 2t + 3 X n array
E by appending the 3 rows of D' below the rows of D. Since each column
of D has a constant sum k and each column of D’ has a constant sum
k' the columns of the new array E will all sum to k + k’. Similarly each
diagonal will sum to the same constant k + k’. Finally, each row of E is a
permutation of 1,--- ,n so E is a diagonal Kotzig array. Since ¢t > 2, then
d>7. =

The only odd d not covered by Theorems 8 and 12 is d = 5. We provide
a special construction to cover this case.
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Theorem 13 A 5 x n diagonal Kotzig array exists for all odd n > 5.

Proof. We define the array as follows

1
Dl.j = -T%'(J - 1)(modn) +1
Dyj=n+1-3
D3;=3j
. n+1l
Dsj=j+———Di;
It is clear that each row is a permutation of 1,--- ,n and that the columns

sum to 3(n+1).

We need to verify that the diagonals also have the same sum. There are
6cases: odd j<n—-38,evenj<n-3,j=n-3,j=n-2,j=n-1,
j = n. We prove the first; let 5 = 2t — 1. We have

Dy, = n—2—+1(2t —2)(modn) + 1 =1
D3 41 =n+1-(G+1)=n+1-2¢
D3jpa=3+2=2t+1
D4.,-+3=n+1—(j+3)=n—1—2t

. n+1
Ds jia = (5 +4) +t—— - Dhjsa
= @49+ 2 - PR 2+ 2)(modn) + 1]
n+1
—t+1+—2—.

Then the diagonal sum is
Dy j+ D21+ D3 jia+ Dajis+ Ds jia
5
=5(n+1)
as required. The other cases are similar and the proofs are omitted. &

We conclude this section with the following theorem which summarises
the previous results:

Theorem 14 An order n and density d SMS with deficiency 0 erists when-
ever (1) n >4 is even and d > 4 is even, and (2) n > 3 is odd and d > 3.

Corollary 3 An order n and density d SMS with deficiency 1 exists when-
ever (1) n > 4 is even and d > 4 is even, and (2) n > 3 is odd and
d>3. .
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5 Vertex-magic Labelings of Graphs

In this section , we present an example showing how a SMS can be used to
construct a VMTL. We begin by describing the kind of labeling problem
that motivated our study in the first place. Let G be a disconnected graph
with e edges and having 2 disconnected components whose vertex sets are
{v1,-+-,vn} and {uy,---,un}. Suppose G has a vertex-magic labeling A
with magic constant k. Form a new connected graph H by adding all the
edges u;v; for 1 < 4,5 < n. In other words we insert the edges of a complete
bipartite graph between the two components of G. Extend A to a labeling
for H by assigning numbers to these new edges using an n x n magic square
M (which has magic constant k’), as follows:

N(uvj)) =M j+2n+e.

The labels now form the consecutive set 1,--- ,2n+e+n2. Since A(u;) = k&
and the new edges meeting at vertex u; sum to k' +n(2n+e¢), then X (u;) =
k+ k' 4+ n(2n+ e) for all u;. The same calculation holds for the v;, so X’ is
a vertex magic labeling for H.

An example of this construction is shown in Figure 1 where we insert the
edges of a K3 3, labeled using a 3 x 3 magic square, between the components
of a labeled 2P;.

10 6 12
] 5 19 1
7 4
3 2
8 9 16 14
11 138
18

Figure 1: A magic square used to join 2PCj.

The above construction produces one new connected graph from a dis-
connected graph with two components. If we could arrange to insert the
edges of other labeled incomplete bipartite graphs between the components,
then we could construct a variety of new labeled graphs from the single
starter. The SMS allows us to do this. The construction is identical to
that above, except that the entry S;; = 0 indicates that the edge u;v; is
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omitted from the bipartite graph. In Figure 2 we show a labeling of 2P; for
which v + ¢ = 18, and the edges to be inserted between the components,
labeled by adding 18 to the entries of the S5(3, 0) shown in section 2.

10 @ @17
11 4
'@ o2
1 5
3¢ $14
7 2
ST @16
6 3
15. .18

Figure 2: An S5(3,0) used to join 2Ps.

6 Sparse Magic Squares

Because of the application to graph labeling, we have been interested in
squares with constant row-sums and column-sums; the diagonal sums did
not matter. However it is possible to construct sparse squares which are
truly magic; that is, have both main diagonals sum to the magic constant
as well. In this section, we give an example of one construction which
produces such sparse magic squares for certain odd orders.

Let us call a regular sparse semi-magic square to be centre-complementary
if it has the property that a; j+@n+1-i;n+1-; = nd+1 whenever a; ; # 0 and
the entries are not in the same row. Then column ¢ is the complement of the
horizontal reflection of column n 4+ 1 — z. It is clear that if we interchange
columns 7 and j, we can preserve the centre-complementary property by
simultaneously interchanging columns n+1 —i and n + 1 — j. Our goal
is to permute the columns in such a way that each of the main diagonals
has d non-zero entries while maintaining the centre-complementarity of the
matrix. Then the diagonal sums would equal the magic constant. The next
theorem is necessary for constructing centre-complementary squares.
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Theorem 15 For odd n and 3 < d < n there is a centre-complementary
d x n diagonal Kotzig array.

Proof. The 3 x n and 5 x n constructed previously have the required
property. Define a 4 x n array as follows:

Dyj=j <o
Dy;j=j+1 B <j<n-1
Dy ; =22 j=n

Dy ;=22 j=1
Dyj=n+2-j 252
Dyj=ntl-j i>
Dyj=n+1-Donyij
Dyj=n+1—-Dypni1—j

It is easy to check that this is a Kotzig array. Not only are the forward
diagonal sums all equal to the column sum s, but the forward diagonals of
the first two rows alone each sum to 5 as they do for the last two rows. It
is clear from the definition that the array is centre-complementary.

Given any n x t diagonal Kotzig array which is centre-complementary,
we can sandwich it between the two top rows and the two bottom rows of
the 4 x n array to produce a centre-complementary array of size (4 +£) x n.
Thus from the 3 arrays above, we can produce an array of any odd density
d. An array with even density d = 24 can be constructed from any § x n
array A by appending to A the § x n array A’ which is its complement
rotated 180 degrees. = ’

The method of construction is as in the proof of Theorem 7, except that
we must ensure that there is a suitable permutation of the columns. This
is easily done when n is not divisible of 3, so we restrict ourselves to this
case. We will make use of the following result:

Lemma 1 Forn = £1(mod6), there exists an n x n diagonal latin square
whogse entries in centrally symmetric positions are complementary.

Proof. Let L be the square defined by L; ; = (25 — ¢)(modn) + 1 for
0 < 4,5 < n-—1. This is easily checked to be latin whenever n is odd.
For entries on the main diagonal, we have L; ; = i and these entries are
clearly distinct. To show entries on the back diagonal are distinct, suppose
Lin_1-i = Ljn_1-j. Then 2n -2 —3i = 2n — 2 — 3j(mod n), which yields
i = j so long as n is relatively prime to 3. Thus L is a diagonal latin square.
Now consider the sum of two entries in centrally symmetric positions. We
have L; j + Ln—1-in-1-j = (27 — $)(mod n) + (n — 1 — (25 — ¢))(mod n) + 2
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which simplifies to

(2 -i-n)+@n-1-(Q+i)+2, 2-i = n
(2i—-))+(n-1-(2—i)+2 2—-i < n

both of which simplifyton+ 1. ®

We will make use of the fact that in L the entries in the columns occur
consecutively in decreasing order (mod n).

Theorem 16 A regular sparse magic square exists for every order n =
6m £ 1 and densily d when 3 <d < n.

Proof. Let D be a centre-complementary d x n diagonal Kotzig array.
By Theorem 7, we can construct from D a regular SMS S of order » and
density d. The matrix S will have the centre-complementary property and
have n — d zeroes appearing in each column. In particular, the zeroes will
occur as a consecutive block in each column.

Let L be any n x n diagonal latin square whose centrally symmetric
entries are complementary. We will replace certain entries of L by 0s and
use the positions of these Os to define the permutation of columns in . To
obtain a SMS of density d, we need n—d consecutive 0s in each column. If d
is even, let n—d = 2u+1 and set the entries -;-(n+1)-u, -+, 3(n+1)+uto.
If d is odd so that n—d = 2u, we set the entries 1,--- ,u andn+1-u,--- ,n
to 0. In both cases, we have a consecutive block of n —d 0s since the entries
in each column of L are consecutive (modn). Now we move column ¢ of S
to the unique position where its block of consecutive Os corresponds with
the block of Os of a column of L. Column n + 1 — 1 of S must be moved
correspondingly since there are Os in centrally symmetric positions of L, but
as described above, this will preserve the centre-complementary character
of S. m

We illustrate the construction with an example of a magic S(5,4,0).
The matrix A consists of a centrally complementary 4 x 5 diagonal Kotzig
array with a row of Os inserted between the top two rows and the bottom
two rows. Then A4 5B =

1 2 45 3 0 00 0O
3 54 21 11111
0 00O0O(|+5[0000O00O0
54 2 1 3 2 2 2 2 2
312 45 3 33333
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1 2 4 5 3 15 16 4 7 0
8 10 9 7 6 18 2 9 0 13
=] 0 0 0 0 O — 1 10 0 11 20
15 14 12 11 13 8 0 12 19 3

18 16 17 19 20 0 14 17 5 6

The latin square from Lemma 1 determines the permutation of columns
of the array as follows:

1 35 2 4 z 0 z z z
5 2 41 3 z z z z 0
4135 2]|—]zzxz 02z z
3 5 2 41 0 z z =z =z
2 413 5 z zz 0 z

which yields the sparse magic square

16 0 4 15 7
2 13 9 18 0
10 20 0 1 11
0 3 12 8 19
14 6 17 0 5

The construction described in the proof of Theorem 16 actually allows
us to produce two sparse magic squares simultaneously, one of density d by
setting n — d of the numbers 1,.-- ,n equal to 0 in the latin square, and
the other of density n — d by setting the d complementary numbers of the
latin square equal to 0. The non-zero entries in one square will occur in
precisely the positions where the 0 entries occur in the other square. We
give an example of 7 x 7 squares, Sy and Sj:

0 18 7 0 0 8 0 23 0 0 5 20 0 10
0O 0 9 0o 0 21 3 3 21 0 12 22 0 O
0 0 17 6 0 0 10 13 25 0 0 2 18 O
2 0 0 11 0 O 20 0 1 15 0 14 28 O
12 0 0 16 5 0 O 0 11 27 0 0 4 16
19 1 0 0 13 0 O 0 0 7 17 0 8 26
0 14 0 0 15 4 0 19 0 9 24 0 0 6

Since the row and column sums (and diagonals) of S; are constant, as
they are for S3, we have the interesting consequence that the two sparse
squares can be superimposed to form a traditional (full density) magic
square (so long as we add 21 to every entry of the second square to ensure
that the numbers range from 1 to 49). In this case we get the square
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4 18 7 26 41 8 31

12 32 48 16 5 25 37
19 1 28 38 13 29 47
40 14 30 45 15 4 27

References

[1] W. S. Andrews, Magic Squares and Cubes, Dover, 1960.

[2] I. D. Gray, J. A. MacDougall, R. J. Simpson, W. D. Wallis, Vertex-
magic Total Labelings of Complete Bipartite Graphs, Ars Comb. (to
appear).

[3] A. Kotzig, On Magic Valuations of Trichromatic Graphs, Reports of the
CRM, CRM-148, December 1971.

[4] C. F. Laywine & G. L. Mullen, Discrete Mathematics Using Latin
Squares, John Wiley & Sons, 1998.

[5] J. A. MacDougall, Mirka Miller, Slamin, W.D. Wallis, Vertex-magic
Total Labelings of Graphs, Ultilitas Math., 2001.

[6] W.D. Wallis, Magic Graphs, Birkhauser, 2001.

242



