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Abstract

The choice number of a graph G, denoted by x:(G), is the mini-
mum number k such that if we give lists of k colors to each vertex of
G, there is a vertex coloring of G where each vertex receives a color
from its own list no matter what the lists are. In this paper, we
show that x1(G) < 3 for each plane graph of girth at least 4 which
contains no 8- and 9-circuits.
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1 Introduction

All graphs considered in this paper are finite, simple plane graphs. G =
(V, E, F) denotes a plane graph, with V, E and F being the set of vertices,
edges and faces of G respectively. We use b(f) to denote the boundary of
a face f, and use N(f) to denote the set of faces adjacent to f. A face
is incident with all vertices and edges on b(f). The degree of a vertex u,
denoted by d(u), is the order of N(u), the set of vertices adjacent to w.
The degree of a face f, denoted by d(f), is the number of edges incident
with it, where cut edges are counted twice. A k-vertex (k-face) is a vertex
(face) of degree k. If » < k or 3 < k < r, then a k-vertex (k-face) is called
an r+- or r~-vertex (r*- or r—-face), respectively. A k-circuit is a circuit
on k vertices. The vertex set of a circuit C will also be denoted by C. The
girth of G is the length of a shortest circuit of G.

Let f be an h-face. f is called a light h-face if all incident vertices are
3—-vertices, and is called a non-light h-face otherwise. If f is a non-light
h-face, then f is called a minimal h-face if all vertices on b(f) except one
4-vertex are 3~-vertices, and a non-minimal h-face otherwise.

A color list L = {L(v) : v € V} is a family of color sets assigned to each
vertex of G. An L-coloring of G is an assignment to each vertex v € V
from L(v) such that adjacent vertices receive distinct colors. A graph G
is called k-choosable if G admits an L-coloring for each color-list L with
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k colors in each list. The choice number of G, denoted by x:(G), is the
minimum k such that G is k-choosable.

Thomassen proved that every planar graph is 5-choosable[6]. Examples
of plane graphs which are not 4-choosable were given by Voigt in [9]. Voigt
and Wirth[11] also presented a 3-colorable non-4-choosable plane graph.
Lam et al[3, 4] proved that plane graphs without i-circuits, for i = 3, 4,
5 or 6, are 4-choosable. Xu[13, 14] proved that each graphs embedded on
surfaces of positive characteristic and in which no two triangles share a
common vertex is 4-choosable(Wang and Lih[12], proved the same result
on plane graphs).

On 3-choosability, Thomassen proved that every plane graph of girth at
least 5 is 3-choosable[7], Alon and Tarsi proved that every planar bipartite
graph is 3-choosable[1]. In [10], Voigt and Wirth gave some plane graphs
of girth 4 which are not 3-choosable. Lam et al[5] proved that every plane
graph with girth at least 4 and contains no 5- and 6-circuits, or contains no
7- and 8-circuits is 3-choosable. Xu [15] proved that every toroidal graph
of girth at least 4 which contains no 5-, 6- and 7-circuits, or contains no 6-,
7-, and 8-circuits is 3-choosable.

. We concern here with a similar problem, the 3-choosability of plane
graphs without 3-circuits. We show that x;(G) < 3 for all plane graphs
without 3-, 8- and 9-circuits. _

A result of Alon and Tarsi[l] will be used in the proofs. Let G be a
digraph, a spanning subdigraph H of G is called an eulerian subdigraph
if d*(z) = d—(z) for each z € V(H). An eulerian subdigraph is called
even(odd) if it contains even{odd) number of arcs.

Theorem A [1] Let D = (V, A) be a digraph, f be an integer function
defined on V such that f(v) = d*(v) + 1 for each v € V. If the number of
even eulerian subdigraphs (the null digraph consisting only vertices is also
counted as an even eulerian subdigraph) differs from the number of odd

eulerian Lubdigrphs, then D is f-choosable. Moreover, the underlying
graph of D is f-choosable.

2 Preliminary Lemmas and Corollaries

A minimally non-3-choosable graph is a graph which is not 3-choosable,
but every of its proper induced subgraph is 3-choosable. It is clearly that
every vertex of a minimally non-3-choosable graph has degree at least 3.

Lemma 1 [2] Every circuit of even length is 2-choosable.

Lemma 2 Let G be a minimally non-3-choosable graph. Then any 2n-
circuit of G contains at least one 4% -vertex.
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Proof: Suppose to the contrary that 2 < d(v) < 3 forallv € C. Let L be
a color-list of G with |L(v)| = 3 for all v € V(G). By assumption, there
exists ¢y, an Lo-coloring of Go = G\ C, where Ly is the restriction of L to
V(Go).

Let L' = {L'(%) : 1 £ i < 2n} where L'(v;) = L(w;) \ {do(z) : v €
N(v%)\ C}. It is clear that |L'(v;)|> 2. Since even circuits are 2-choosable,
there exists an L’-coloring ¢/ on C. An L-coloring of G immediately follows
by combining ¢o and ¢'. This contradiction ends the proof. |

Lemma 8 Let G be a minimally non-3-choosable graph, C; and Cz two
even circuits with exactly one vertez vy in common. If d(vw) = 4, then at
least one of Cy and C, is a non-minimal circuit.

Proof: Let V' = C, UCs,. If both C) and C, are minimal, then all vertices
in V’\ {vp} are 3-vertices. Let L be a color-list of G with |L(v)| = 3 for each
v €V, and Ly the restriction of L to V' \ V’. Then, for any Lo — coloring
¢ of G\ V', |L'(w)| = 3 and |L'(v)| = 2 for all v € V' \ {v}, where
L'(v) = L(v) \ {¢o(u) : u € N(v) \ V'}. -

Let G’ be the subgraph induced by V’. We give G’ an orientation G’
by making both C; and C; into oriented circuits. By Theorem 4, it is easy
to check that G' admits an L'-coloring ¢'. ¢o together with ¢’ yields an
L-coloring of G. This contradiction completes the proof. |

Lemma 4 Let G=(V,E) be a circuit vivovs : - - vav1 with ezactly one chord
v (3 <k <n-1), L a color-list with | L(v1)|=|L(vi)|= 3 and |L(v)|=2
where i 3 1,k. Then G is L-colorable.

Proof: We first choose a color c{v;) € L(v1)\ L(v,) for vy, then choose for
vy, U3, *+ -, Up successively from L{v;) \ L(vi—1) whenever i 3 k, and from
L(vi) \ {L(vk-1) U L(v,)} whenever i = k.

Corollary 1 Let G be a minimally non-3-choosable plane graph. If fi and
fa are two light faces, then f; and f2 cannot be adjacent.

3 Main Result

Theorem 1 Let G be a plane graph of girth at least 4. Then G is 3-
choosable if G contains no 8- and 9-circuits.

Proof: Suppose that G is a counterexample of minimum order. Then,
3(G) = 3. For convenience, a 4-face adjacent to exactly i 4-faces is called
a 4;-face, where i=0, 1 or 2. Because G contains neither 8-circuits nor
9-circuits, we have:
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(01) G contains neither 45-faces nor 44-faces. Every 42-face must be in
a configuration as shown in Figl(a).

(O2) G contains no adjacent 5-faces;

(O3) A 6-face is not adjacent to neither 4-faces nor 5-faces;

(O4) No 7-face can be adjacent to 4-faces;

(Os) A 5-face can be adjacent to at most one 4o-face;

(Os) A 5-face is not adjacent to any 4;-face;

(O7) If a 5-face is adjacent to a 4;-face, then it must be the situation
as shown in Figl(d);

(Os) A 4;-face is adjacent to at most one 5-face;

(Og) Suppose a 10*-face f is adjacent to three 4-faces on consecutive
edges tu, uv and vw on b(f), then at least one of u and v is a 4*-vertex.

(=) 6@) 5 © @(d) %(e)

Figure 1: Some configurations of the observations

The proofs of Oy, O3, O3, O4, Os, Og are trivial. If a 5-face adjacent to
a 4p-face, then it must contain a sub-configuration as shown in Figure 1(c),
but it yields a 9-circuit, this contradiction give us (Og). (O7) and (Os) can
be proved similarly.

Let w(v) = 3920 _1ifyv € V(G) and w(f) = 8L _1if f €
F(G). Applying Euler’s formula for plane graphs, |V|+|F|—|E|= 2, we
have ZUGV(G)(—I(,Q D+ er) (—é—l — 1) = -2. We will construct
a new weight w*(z) by transferring weights from one element to another
with the property }° .y rw*(z) = —2, and show that w*(z) > 0 for all
z € VUF. Then, we get a contradiction and complete the proof.

Weights will be transferred according to the following rules:

(R1) A face transfers g5 to every incident 3-vertex;

(R2) A 4-vertex transfers & to every incident 4-face, and % to every
incident 5-face;

(Rs) A 5%-vertex transfers § to every incident 4- or 5-face;

(Rs) A 5-face transfers o 35 to every adjacent 4o-face, and s to every adja-
cent 4;-face;

Rs) A 7-face transfers - to every adjacent 5-face;
20

(Re) Let f be a 10*-face, tuvw a segment on b(f), and f’ a face adjacent
to f at uwv.
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(Re1) If f' is a 4-face, f transfers to f':
a if f' is & non-minimal face;
55 if f' is a 4g-face;
¥ if f' is a 4;-face, or a 4p-face incident with a 5+-vertex;
if f' is a 4o-face and both u and v are 3-vertices;
if f’ is a 4o-face, and neither {u nor vw is incident with a
4-face;
'1!6 otherwise;
(Rez) If f' is a light 5-face , f transfers to f/,
2= whenever f' is not adjacent to any 4-face;
™ whenever f' is adjacent to a 4¢-face;
g if f' is adjacent to a 4;-face;
(Res) If f is a non-light 5-face , f transfers to f/,
2 if ' is a non-minimal 5-face;
P if f’ is not adjacent to any 4-face;
if f/ is adjacent to a 4op-face;
P if f/ is adjacent to 4,-face and d(u) = d(v) = 3;
if f! is adjacent to a 4;-face and incident with one 5*-vertex;
35 Otherwise;

If two or more of the above sub-rules apply, the earliest one takes pri-
ority.

Claim 1. w*(v) > 0 for every vertex v.
Proof. Let v be a k-vertex. If k = 3, then v is incident with three 4*-faces
and therefore w*(v) = w(v) + & =0.

Suppose & = 4. By 0,, v is incident with at most two 4-faces. If v
is not incident with any 4-faces, then w*(v) 2> w(v) — %2> 0. Ifvis
incident with exactly one 4-face, then by Os, the total number of 5-faces
incident with v is at most 2, w*(v) > w(v) — §5 — 95 - 2 = 0. If v is incident
with two 4-faces, then by O,, O5 and O, v is not incident with any 5-faces,
W) =wv)—§-2=0.

If k > 5, according to the analysis as above, at least two of the faces
incident with v are not 5~-faces. Therefore w*(v) > w(v) — &52 = 26210 >
0.

Let f be an h-face of G. (h =4, 5, 6, 7, 10%).
Claim 2. w*(f) > 0ifh=4. ‘
Proof. By O3, O, f is adjacent only to 4-, 5-, or 10*-faces. By R4 and
Rg, if f is a 4g-face or a 4;-face, the weight transferred to it from a 5-face
is equal to that transferred from a 10*-face. So, we may assume that f is
adjacent to 4-faces or 10*-faces.
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If b( f) has least two 4*-vertices, then by Ry, Ro and Rg,, f transfers at
most 2 - 97,- to its incident vertices, recelves at least 2. 1—% from its incident
vertices, and recelves at least 2 - 30 from its adjacent faces. Therefore,

w(f) 2 ulf) -+ H+=0.

If b(f) contmns a 57-vertex and three 3-vertlces then by Rg, the total
weight transferred from adjacent 10*-faces is 20, 15 or 15 , depending on
whether f is a 4o-, 4;- or 4p-face respectively. Therefore, w*(f) 2 w(f) —
3'6 + g + 1—- =0.

Now, assume that f is a minimal 4-face. Then by R;, R, and Rg;,

w*(f) > w(f) 3% + 35 + 35 = 0 whenever f is a 4o-face, and w*(f) >
w(f) 330 + & 16+ 3 = 0 whenever f is a 4)-face. If f is a 45-face, then
f must be adJacent to two 10+-faces at two consecutive edges. Suppose
b(f) = tuvwt and f is adjacent to two 10%-faces fy and fo at edges uv and
vw respectively. Then t is a 3-vertex. If d(w) = 4, thend(u) = d(v) =3 and
fa cannot be adjacent to any 4-faces at the two edges adjacent to vw, and
by Rg,, the weight transferred from f1 and f2 across uv and vw are -7 and
g respectively, w* (f) 2> w(f)— %-i- -5+—§+§ > 0. A similar conclusion can
be reached if d(u) = 4. If d(v) = 4, then the weights transferred from fl and
f2 across uv and vw are both 7, and so w*(f) > w(f)— FH+ &+ 5 =01

Claim 3. w*(f) > 0if h=35.
Proof. By the choice of G, f is adjacent to only 4- or 7- or 10*-face. We
divide the proof into three cases depending on the type of f.
Case 1 f is a light 5-face.
If N(f) contains no 4-faces, by Rs and Rgy, the worst situation for
w*(f) occurs whenever N(f) contains no 7-faces, then by R; and Rgy,
‘(f)>w(f) Ht+a-5=0

If N(f) cont.ams a 4o-faoe(a.s shown in Fig 2(a)), by Rs and Rgg, the
worst situation for w*(f) occurs whenever the number of 10+-faces in N(f)
is as small as possible. By O4, N(f) contains at most two 7-faces, so
w(f) 2 w(f) =45 — g5+ 352+ 13- 2= 0 by Ry, Ry, Rs and Rea.

If N(f) contains a 4,-face, again by R5 and Rg,, the worst situation for
w*(f) occurs whenever f is contained in a configuration as shown in Fig2 (b)
by Oy, and by Ry, Ry, Rs and Rez, w*(f) > w(f)— §5— &2+ & +5-2=0.

Case 2 f is a minimal 5-face incident with a 4-vertex and four 3-
vertices.

If N(f) contains no 4-faces, By R5 and Rgs, the worst situation occurs
whenever fis only adjacent. to 10+-faces then by Ry, Ry and Res, w*(f) =
wif)— 35 +2+d5-5=0

If N(f) contains a 4qp-face, the worst situation occurs whenever f is
contained in a configuration as shown in Fig2(c), then by R;, Ra, R4 and
Rea,w (f) 2w(f) — g5 -+ +35-4=0.
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N\ 4o-f/

N\41-f/
10+- 10+-f 10+-f 10+-
f 7-f (a) 10*-f 7-f (b) 10*-f

Figure 2: Some configurations while h=>5

If N(f) contains a 4;-face, all three possible configurations that may
contain f are shown in Fig2 (d), (e) and (f). In every configuration, one can
find an edge, say zy, on b(f) and a 10*-face f’ such that d(z) = d(y) =3
and one of z and y is shared by f, f' and a 4,-face. By Rgs, such a
10*-face f' transfers é% to f. By Ry, R4, Rz, Rs and Rgs, w*(f) 2
o)~ gy~ k2% ity 34y =0

Case 3 f is a non-minimal 5-face.

If b(f) contains at least two 4*-vertices, since f get & and Z from every
adjacent 7-face and 10%-face respectively, and N(f) contains at most two
41-faces, by Ry, Ry, Ry, and Re3, w*(f) 2 w(f)~ g5~ {5-2+55:2+7%-3=0.

If b(f) contains a 5*-vertex, f get § from the 5*-vertex. Even if N(f)
czontains two 4;-faces and three 10%-faces, w*(f) > w(f) — 35— 75 - 2+ -};-ii
2.350.

Claim 4. w*(f) > 0if6 <h < T.

Proof. If d(f) = 6, by Lemma 2 and O3, b(f) contains at least one 4*-

vertex, and N(f) contains only 67 -faces, then w*(f) > w(f)— 55 = 45 > 0.
If d(f) = 7, by O4, N(f) contains only 5+-faces. Let r be the number

of 5-faces in N(f). Then, by Oz, there are at most 14 — 2r 3-vertices on

b(f) whenever r > 4. Therefore, w*(f) > w(f) — 55 — 5 > 0if r < 3, and

WCHw(f) - - =>0ifr >4 |

Claim 5. w*(f) > 0if h > 10.
Proof. We assign a quota of -3—10- and ;& to each vertex and edge on b(f),
respectively. By the discharging rules, f transfers only to either 3-vertices
on b(f), or 4-face or 5-face in N(f). By adjusting the quotas, we will show
that the total quotas, 3-% + l—"s, are enough to cover all transfers to incident
vertices and adjacent faces, and then w*(f) > w(f) — 45 — & > 0.

For each 4*-vertex v on b(f), the quota assigned to v can be donated
to the edges incident with v on b(f). For an edge uv on b(f) and a face f
adjacent to f at uv, if the quota assigned to uv is bigger than the weight
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transferred from f to f, then the unused quota can be also donated to the
edges adjacent to uv on b(f).

Let tu, uv and vw be three consecutive edges on b(f), and let f1, f' and
f2 be the faces adjacent to f at tu, uv and vw, respectively. Without loss of
generality, we assume that d(f’) = 4 or 5. Let s be the weight transferred
from fto fl. Ifs < 115, we are done. So, we assume that s > &. Then
by Rg1, Re2 and Rgs, f' must be a 4o-face, or a light 5-face a.djacent to a
4,-face, or a non-light 5-face adjacent to a 4;-face with d(u) = d(v) =

Case 1: f'isa 42-face,

By our assumption s > 15, we have that f is a 4a-face.

If d(u) = d(v) = 3, then s = 12, f! is adjacent to both f1 and fy,
and by (03),(04) and (06), one of f; and fo, say fo, is a 10"'-face and
the weight transferred from f to f across vw is 0. Therefore, = =5, half
of the unused quota of vw, may be donated to uv, adjusting its quota to
EtH =B E =S

Now we may assume by symmetry that d(u) 3 and d(v) = 4. By the
dlschargmg rules, s = g L if neither tu nor vw is incident with a 4-face, and
8= — othermse by Rg;.

If s=4%, then ne:ther fi nor fa is a 4-face. Since d(u) =3, d(f1) = 10
by (Oe), and 15 55 half of the unused quota of tu, may be donated
to wv. Since f’ is a 43-face and d(f1) > 10, d(f2) > 10 and half of the
quota of vw may be donated to uv also. Therefore, the quota of uv can be
adjusted to £ +2- 35> § =s.

If s = 15, then f; must be a 4-face. If d(f2) = 4, f2 cannot be a
rmmmal face by Lemma 3 and the weight transferred from f to fo is at
most ?- by Rsl, then both 1 that is half of the unused quota of v and
% =% (f5 — %) that is half of the unused quota of vw may | be donated
to uv, and hence the quota of uv can be adjusted to =% 15 + 2 % + 4 &% = -11—0 =s.
If d(f2) # 4, then f, fi, f' and fo must be the configuration as shown in
Flgure 3. By Rgs, the weight transferred across from f to fo is at most
T, here, f» is a minimal 5- face ad_]acent to a 41-faoe Therefore, both %
that is unused quota of v and § - (§ — %) = 135 that is half of the unused
quota of vw may be donated to uv, and the quota of uv can be adjusted

Lol 1 13 1
o+t =10">10=9%

Al S fo

t u v w
Figure 3: The situation of d(u) = 3,d(v) = 4,d(f1) = 4 and d(f;) # 4

Before proving the following case, we first give a useful observation.
Observation 10 Let fo, fi, f' and fo be the faces adjacent to f at four
consecutive edges st, tu, uv and vw on b(f). If there is a configuration as
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shown in Figure 4 with a light 5-face f', then uv can get at least 316 from
the edges and vertices on the path from s to u on b(f).

S 1 +_ f w
Figure 4: Subconfiguration as described in Observation 10

Proof: By Lemma 2, fi must be incident with a 4+-vertex. We will prove
this Observation according to the degree of ¢.

Ifd(t) =3, d(fo) > 10 by O, and Os, and by Re,, f transfers 7% to fi,
then 4 5° 1- %- that is half of the unused quota of st can be donated to
v,

Ifd(t) = 4 and fy is a non—mmzmal 4-face, then by Ry, the weight
transferred from f to f1 is at most 3—0-, and hence both 2 go that is half of the
unused quota of t and § - (& — #5) = g that is half of the unused quota
of tu can be donated to wv.

If d(t) = 4 and f) is a minimal 4-face, then fo must be either a non-
minimal 4-face by Lemma 3 or a 5+-face. If fo is a 5+-face, then 7 that
is the unused quota of ¢ can be donated to uwv. If fp is a non-minimal
4-face(see Figure 5) then # = 3 (f — 35) that is half of the unused quota
of st by Re, and 2 3 35 that is half of the unused quota of ¢ can be donated

to uv.

.....

.
.,

r +_ w
Figure 5: Subconfiguration as described in Observation 10

If d(t) = 5, and either d(fo) > 5 or d(fo) = 4 but d(f”) # 5 or
d(f") # 4(see Figure 5), then 35, the unused quota of ¢ can be donated
to uv. In the case that d(t) = 5, d(fo) = 4, d(f") = 5 and d(f") = 4,
we have, by Og(a 5-face is not adjacent to any 4,-face) and Og(a 4;-face is
adjacent to at most one 5-face), all faces incident with ¢ are 6+-fac$ except

fo and fi. Therefore, |Fa(t)] = 2 and |F5(t)] =0, w*(t) =w(t) — 2=} by
(Rs), and {5 = § - § that is the unused weight of ¢ can be donated to uv.

Now we consider the case when d(t) > 6. We call a symmetric config-
uration induced by f, fo and f; as shown in Figure 5 as a butterfly. By
an easy calculation, one may find that if ¢t is incident with ! butterflies,
then the number of 6*-faces incident with ¢ is at least ! + 2, and hence
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w*(t) = w(t) — ﬂfl;'—_z- = 444320 5 1. By a similar argument to that of
d(t) = 5, the unused weight and quota of ¢ are enough to cover the demands
as claimed in Observation 10. 1

Now, we return back to the proof of our main theorem.

Case 2: f’ is a 5-face adjacent to 4;-faces. Since G contains neither
8-circuits nor 9-circuits, at most one of fi and f, is a 4-face.

By Rez and Res, f transfers § to f' if f' is a light 5—face, and transfers
a5 to f if f' is a non-light 5-face with d(u) = d(v) =

If neither f) nor fyis a 4—face, then d(f,) > 10 and d( f2) > 10(as shown
m Figure 6(a)), both 3 - & = 45 that is half of the unused quota of tu and
3-0- that is half of the unused quota of vw may be donated to uv, and then
thequotaofuvcanbeadjustedto +§5+§-> §=8> so

+.
> v 10%-f v »
a

Figure 6: Two configurations of Case 2

If one of f; and f,, say fi by symmetry, is a 4-face, then d( fg) > 10(as
shown in Figure 6(b)). By Observation 10, uv can be donated 55 from the
vertices and edges on the left of u. By adding i 5§ 'i" that is half of the
unused quota of edge vw, we get that the quota of uv can also be adjusted
to 11?;'+3115+311$> §-=s.

In all of the above cases, the weight transferred from f to f’ across wv
is less or equal to adjusted quota. This ends the proof of Claim 5.

By Claims 1 to 5, we get that w*(z) > 0 foreachz € VUF, i.e,,

0< Z w*(z) = Z w(z) = -2

zeVUF zeVUF

This contraction completes the proof. [ |
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