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Abstract

Suppose G is a finite plane graph with vertex set V(G), edge
set E(G) and face set F(G). The paper deals with the problem of
labeling the vertices, edges and faces of a plane graph G in such a way
that the label of a face and labels of vertices and edges surrounding
that face add up to a weight of that face. A labeling of a plane
graph G is called d-antimagic if for every number s, the s-sided face
weights form an arithmetic progression of difference d. In this paper
we investigate the existence of d-antimagic labelings for special class
of plane graphs.

1 Introduction

In this paper, we shall only consider the finite, simple undirected graphs.
Given a simple undirected graph G, the vertex set is denoted by V(G) and
the edge set is denoted by E(G) (for other graph theoretic notations, see
[18] and [19]).

A labeling of type (1,1,1) assigns labels from the set {1,2,...,|V(G)| +
|E(G)| + |F(G)]|} to the vertices, edges and faces of plane graph G in such
a way that each vertex, edge and face receives exa.ctly one label and each
number is used exactly once as a label.

If we label only vertices (respectively edges, faces) we call such a labeling
a verter (respectively edge, face) labeling and alternatively the labeling is
said to be of type (1,0,0) (respectively ¢ype (0,1,0), type (0,0,1)).

A labeling of type (1,1,0) is a bijection from the set {1,2,...,|V(G)| +
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|E(G)|} to the vertices and edges of plane graph G.

The weight of a face under a labeling is the sum of the labels (if present)
carried by that face and the edges and vertices surrounding it.

A labeling of a plane graph G is called d-antimagic if for every number s,
the set of s-sided face weights is W,={a,,a; +d, a; +2d, ...,a; + (fs — 1)d}
for some integers a, and d, d > 0, where f, is the number of s-sided faces.
We allow different sets W, for different s.

Other types of antimagic labelings were investigated by Hartsfield and
Ringel in [14] and by Bodendiek and Walther in [9].

If d = 0 then Ko-Wei Lih in [15] called such labelings magic (face magic).
Ko-Wei Lih studied face magic labelings for wheels, friendship graphs and
prisms. 0-antimagic labelings of type (1, 1, 1) for m-antiprisms, fans, bipyra-
mids, Mébius ladders, grids graphs and honeycomb are described in [1, 2,
3, 4, 5). l-antimagic labeling for certain classes of plane graphs are given
in [10, 11, 12). d-antimagic labelings of prisms and generalized Petersen
graphs P(n,2) can be found in [6, 8, 16]. Other results about face-antimagic
labelings are shown in [7, 13, 17].

2 Plane graph P?

Let @ and b be integers, @ > 3 and b > 2. Let y;, y2,...,%. be fixed
verties, we connect the vertices y; and y;;1 by means of b internally dis-
joint paths p] of length i + 1 each, 1 < i < a-1,1< j < b Let
Yi» Ti i1, %i,5,25 - - - » Birji» Yis1 be the vertices of path p{ . The resulting graph
embedded in the plane is denoted by P?, where V(P?) = {y; : 1 <4 <
a} UV, Uiz i 1 S B < i} and E(PY) = Ui,y {wizign 1 1< 5 <
llg UULS Use {Bigamigint 1 1 S k< i = BUUS {@igayin 1 1 <5 <

The face set F(P!) contains b — 1 (2i+2)-sided faces, 1 <i < a—1, and

one external infinite face. Let v = |V(P?)| = -"i(‘-;'—l)- +a, e = |E(PY)| =
Me-1)(edd) ang f = |F(P)| = (a—1)(b—1) +1.

Kathiresan and Ganesan [12] described d-antimagic labelings of type (1,1,1)
for the plane graph P?,a >2,b>2and d € {0,1,2, 3,4, 6}.

In this paper, we investigate the existence of d-antimagic labelings of type
(1,1,1) for P? for many other values of parameter d.
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3 Using known labelings

Let {n] be the greatest integer smaller than or equal to n.

Kathu'esan and Ganesan [12] defined vertex and edge labelings of the plane
graph P;, a > 3, b > 2, in the following way:

o (s =g(i—1)(i—2)+i f 1<i<a.

Ifl1<i<a—1land1l<j<bthen

BEL g4y 242 if i and § are odd, k= 1

—"-“—11+L2ﬂj+z+1+1 if i is odd, j is even, k =1
oy (zi,5,) = -—'(3_—1+z+1+,7 ifiisevenand k=1

BED g iva - - if kis even, 2 < k < i

(*2—12+(k Db+i+1+j ifkisodd, 3<k<i

Brlyizijn) = 3((i+1)i-2)+j ifl1<i<a-land1<j<b
If1<i<a—1and1<j<bthen

Br (B3 4% 5 001) = W) kh+1—j  ifkisodd, 1<k<i
1\Z4,5,kTi,7,k+1 ﬁ‘zﬁu+(k—1)b+j if k is even, 2 < k < i

M+1—J if i is odd
Br(zij,iyie1) = uni-2) + 4L ifiis even and j is odd
M) &) + i if i and j are even.

It was proved in [12] that the vertex labeling a; and the edge labeling v+ f;
and the face labeling with values in the set {v+e+1,v+e+2,...,v+e+f}
combine to 0-antimagic and 2-antimagic labeling of type (1,1,1).

Let us denote the weights of the (2i + 2)-sided faces of P? under a vertex
labeling « and an edge labeling § as follows:

fl1<i<aea-1land1<j<b-—1then
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w(fiz) = a(ys) + Bz i) + (@) + B(®ij12i42) + o(Tig2) +...+
+0(Zi i) + B(@iji¥ir1) + a(Uir1) + BUitaTig1,) + ATija1,)+
+B(@i j1,iTi j41,i-1) + (i ja,i-1) + -+ AT j11,1) + B(@ij41,195)-
We will denote the external infinite face by foo.

For the investigation of antimagicness of the plane graph P?, we shall only
consider the face weights of (2¢ + 2)-sided faces f;,1<i<a-1,1<j <
b — 1. We will not specify the weight of the infinite face fo, because there
is only one such face.

In this section, we shall present d-antimagic labelings of a plane graph P}
for various values of d by using vertex labelings and edge labelings defined
by Kathiresan and Ganesan [12].

Lemma 1 Fora > 3 and b > 2, the plane graph Pt has an a-antimagic
labeling and (a — 2)-antimagic labeling of type (1,1,1).

Proof

It was proved in [12] that labelings a; and B + v combine to a labeling of
type (1,1,0) and the weights of the (2i + 2)-sided faces are

w(fi;) = A-b+ |8 +j ifiisodd,1<j<b-1
WIT A= %]+ ifiisevenand 1<j<b-1

where
A=b(2%+4i2 — i) + 6i + 22 + 2 + (i + 1)a(ba — b+ 2).

Now we define face labelings v, and +; as bijections from the set {v + e +
l,v+e+2,...,v+e+ f} onto the faces of P? as follows

n(fij)= v+e+(a-1)(j—-1)+i forl1<i<a—-land1<j<b-1

n(fis)=v+e+tf—(a-1)@G-1)—i
forl<i<a-land1<j<b-1

1 (foo) = 'Yi(foo) =v+e+f.
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It can be seen that the labelings 1,61 + v,1 and a1, +v,7; give an
a-antimagic and (e — 2)-antimagic labeling of type (1,1,1) respectively. O

We consider vertex labeling a; and edge labeling f; of P? which were also

defined by Kathiresan and Ganesan in [12] and used for proving that P?
has a l-antimagic and 3-antimagic labeling of type (1,1,1).

az(yi))=ai(y;) for1<i<a
Fl1<i<a-1,1<j<band1<k<1then

o) = | e Beire ke
2\Tigk) = bnz—l +(k—1)b+i+1+j for kodd

Ba(yizi 1) = Pr(¥izi i)

B2(Zij ki j k1) = Br(%i 5,5%i 5,k+1)

LCS R if i is odd

TR = 2
Ba(®iiyina) { b((i+3)i—2)+j ifiiseven

Lemma 2 For a > 3 and b > 2, the plane graph P} has an (a + 1)-
antimagic labeling and (a — 3)-antimagic labeling of type (1,1,1).

Proof
Label the vertices and edges of P? by a2 and B2 + v, respectively, resulting

in a labeling of type (1,1,0). The weights of the (2 + 2)-sided faces are
w(fi;) =20+ 1)+ bi(2% +4i—1) —b+ 2> +6i +2+2j
forl1<i<a—land1<j<b—-1

If we complete face labeling 1 and v; then the labelings a2, f2 +v, 11 and
az, P2 + v, 7] combine to (a + 1)-antimagic and (a — 3)-antimagic labeling
of type (1,1, 1), respectively. a
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The following labelings a3 and B3 were defined in [12].

o3(y:) = aa(yi)
for1<i<a.

Ifl1<i<a-1landl1l<j<bthen

03(Zi k) =

'—'(-‘2'—1+z+1+-7—— if i and j are odd and k=1
M';l+[‘—”ﬂj+z+1+1 if i is odd, j is even and k=1
M+z+1+] ifiisevenand k=1

] —'(’-—l)-+kb+z+2 j ifkisevenand 4<k<i
-%—(z —i+4)+i+2-j if i is odd and k = 2
3@ —i+2)+i+1+j ifiis even k=2

| 26D 4 (k—1)b4+i+1+j ifkisoddand 3<k<i.

Bs(yizij,1) = Pr(yizi )

B3(s 5,k %i5,k+1) = P1(%:,5,kTi 5,k41)

b(2+3i-2)+3 if ¢ is odd
B3(zi j,i%it1) = g('z +3i-2)+ & if ¢ is even and j is odd
2AE) _ (844 if ¢ and j are even.

Lemma 3 Fora > 3 and b > 2, the plane graph P? has a (a+4)-antimagic
ladbeling and |(a — 6)|-antimagic labeling of type (1,1,1).
Proof

Kathiresan and Ganesan in [12] showed that combining the vertex labeling
a3 and the edge labeling B3 +v gives a 5-antimagic labeling of type (1, 1,0).

Let the weights of the (2i + 2)-sided faces under a 5-antimagic labeling of
type (1,1,0) be
w(fij)=A@)+5jfor1<i<a—-land1<j<b-1.

Complete the face labeling with 7; and 9{. We can see that the result-
ing labeling determined by labelings a3, f3 + v, 71 and as, f3 + v, 7] is
(a + 4)-antimagic labeling and |(a — 6)|-antimagic labeling of type (1,1,1),
respectively.
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4 New labelings and results

In this section we construct new vertex and edge and face labelings of plane
graph P? and prove d-antimagicness of P? for some values of the parameter
d. :

Lemma 4 Ifa > 3 and b > 2 then the plane graph P? has a 6-antimagic
labeling of type (1,1,0).

Proof
Define the vertex labeling a4 : V(P?) = {1,2,...,v} and the edge labeling

Bs: E(P?) = {1,2,...,€} in the following way.
as(y;) =ai(y;) for 1< i< a

Ifiiseven,2<i <aand k=1 then

ay(z; %) = bz(zz— 1) +i4+l4+jfor1<j<b.

Ifiand k areevenor i and k areodd, 1 <i<a,1 <k <1ithen

aq(zij,k) = bz(zz— 1) +i+1+(k—1)b+jfor1<j<b

Ifiisevenand kisodd oriisodd and kiseven,1 <i<aand 2<k <1,
then

bi(i — 1)

L +it2+kb—jlor1<j<b.

04 (23 jk) =
fl<i<a-land1<j<bthen

Ba(yizi ) = Br(yizi i)
Ba(Zi 5,k Ti5,k+1) = B1(i 5 x%i,5,k41)

bi(i+3
Ba(2i ,iyi41) = % b+
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Label the vertices and the edges of P? by a4 and B4 + v, respectively.
These labelings realize a labeling of type (1,1,0) and the weights of the
(2¢ + 2)-sided faces are

w(fi;) =2v(E+1) +bi(2i% +4i— 1) + 262 +6i —3b+ 2 + 65
where1<i<a—land1<j<b-1.

We can see that the resulting labeling is 6-antimagic. m]

Theorem 1 Fora>3,b>2 andd € {5,7,|a—7|,a+5}, the plane graph
P? has a d-antimagic labeling of type (1,1,1).
Proof

Define the face labelings v, and ;3 from the set {v+e+1,v+e+2,...,v+
e+ f} onto the faces of P! as follows

Y(fij)=vte+f-(b-1(E-1)-j
vs(fij)=v+e+(b-1)(i-1)+j
T2(foo) = 13(fo) =v+ e+ f.

If we combine 6-antimagic labeling of type (1,1, 0) from Lemma 4, and face
labeling 72 or 3, we obtain a 5-antimagic labeling or 7-antimagic labeling
of type (1,1, 1), respectively.

On the other hand, if we complete the 6-antimagic labeling of type (1,1, 0)
by face labelings 7, or -;, then the resulting labeling is (e + 5)-antimagic
or |(a — 7)|]-antimagic labeling of type (1,1,1), respectively. o

Lemma 5 Ifa> 3 and b > 2 then the graph PP has a 3-antimagic labeling
of type (1,1,0).

Proof
Let a5 : V(P?) = {1,2,...,v} be the vertex labeling and 85 : E(FP?) —
{1,2,...,e} be the edge labeling of P where

as(yi) = a1(y:)
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and
a5($i,j,k) =a3 (xi»j»k)'

Hl<i<a-1,1<j<bandl<k<ithen

Bs (yizi i) = M(i; ) +1

M) 4 (k—1)b+j if kis odd
ﬂ5(mi,j,kmi,j,k+l) = l!$+1! + kb J + 1 if k is even

BOES) _ 41 if 4 is odd
Bs (i j,i¥i41) = _b_ga;-_sz 1+1 if i and j are even
bifs43) ""3 [ J— &2 ifiisevenand jis odd.

It can be seen that the labelings a5 and S5 are bijections and that ag and
Bs +v give a labeling of type (1,1,0). The weights of the (2¢+ 2)-sided faces
form an arithmetical progression with difference d = 3. a

Theorem 2 Fora > 3, b > 2, the plane graph P? has |(a — 4)|-antimagic
labeling and (a + 2)-antimagic labeling of type (1,1,1).

Proof

Define the face labelings 44 and 75 from the set {v+e+1,v+e+2,ldots, v+
e+ f} onto the faces of P! as follows

v+e+f—(a-1)(F—-1)~1
_ ifiisodd, 1<i<a-1,1<j<b—1
WD =\ vtetf—(a-Db=j-1)—i
ifiiseven,2<i<a~-1,1<j<b-

v+e+(a—1)(F—1)+1i
3 ifiisodd, 1<i<a-1,1<j<b-1
s(fig) = v+e++(a-1)b-7—-1)+i
ifiiseven,2<i<a-1,1<j<b-1

267



Ta(foo) = V5 (finfty) =v+e+ f.

Label the vertices and edges and faces by labeling as,85 + v and 4 or
as, Bs + v and s, respectively. From previous lemma. follows that the
labelings s and 85 + v give the 3-antimagic labeling of type (1,1,0), and
thus labelings a5, 85 + v and 74 combine to (e + 2)-antimagic labeling and
as, Bs + v and <5 combine to (Ja — 4|)-antimagic labeling of type (1,1,1).0

Lemma 6 Ifa > 3 and b > 2 then the graph P? has a (2a — 2)-antimagic

labeling of type (1,1,0).

Proof
Define the bijections ag and B as follows:

ag: V(P?) = {1,2,...,v}, Bs : E(P?) = {1,2,...,¢},
ag(y;) =ifor1 <i<a.

Ifl1<i<a-1,1<j<band1<k<ithen

jla-1)+1+1
as(z;,j,k) = a(b+ 1) +b/2(i2 -3i+2k - 4) +3
a(b+1) +b/2(i2 — 3i+2k—2) —j+1

Be(yizi,j1) = P1(¥ii,j,1)
Be(i,5,k%:,5,k+1) = B1(%i 5,65 5,k+1)

bi(i+3 .
Be(z:,5,:9i41) = (T) -j+1

ifk=1
if k is even
ifkisodd, k>3

Label the vertices and edges of P? by ag and B +v. By direct computa-
tion we obtain that the set of weights of the (27 + 2)-sided faces form an
arithmetic progression with difference 2a — 2. Thus the resulting labeling

is (2a — 2)-antimagic labeling of type (1,1,0).
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Theorem 3 Fora>3,b> 2 andd € {22 —3,2a — 1,a — 1,3a — 3}, the
plane graph P? has a d-antimagic labeling of type (1,1,1).

Proof

In light of Lemma 6, it follows that

e Labelings ag, s + v and 7, combine to (2a — 3)-antimagic labeling
of type (1,1,1).

e Labelings ag, s + v and 73 combine to (2a — 1)-antimagic labeling
of type (1,1,1).

e Labelings ag, fs + v and v, combine to (3a — 3)-antimagic labeling
of type (1,1,1).

e Labelings ag, ¢ + v and 7} combine to (a — 1)-antimagic labeling of
type (1,1,1).

Lemma 7 Ifa > 3, b > 2 then plane graph P? has a (2a + 2)-antimagic
labeling of type (1,1,0).
f
Proof
We label the vertices of P? by ar(y:) = aa(y:) and a7 (i j,k) = aa(®ijk)-

If1<i<a-1,1<j<band1 <k <ithen we label the edges by 87 +v
where

Br(yizign) = (G — D{a—-1)+4

Br (@5 g s1) = HOZD 4 (@ -2+ k)b+j if k is odd
TRIETLIRET mg_i'*’(a“l"‘k)b j+1 ifkiseven

BG4 5 4 b(a - 2) if 1 is odd

br(@iivin) = { —(——)-"H +1—j+be—1) ifiiseven.
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It is not difficult to check that the values of a7 are 1,2,...,v and the
values of 87 are 1,2,...,e. By direct computation we obtain that under
the labelings a7 and 87 + v, the weights of the (2¢ + 2)-sided faces form an
arithmetical progression with difference 2a + 2. m]

Theorem 4 Fora>3,b>2andd € {a+3,2a+1,2a+3,3a+ 1}, the
plane graph P? has a d-antimagic labeling of type (1,1,1).
Proof
In light of Lemma 7, it follows that
e Labelings a7, f7 + v and 72 combine to (2a + 1)-antimagic labeling
of type (1,1,1).

e Labelings a7, f7 + v and 73 combine to (2a + 3)-antimagic labeling
of type (1,1,1).

e Labelings a7, 87 + v and v, combine to (3a + 1)-antimagic labeling
of type (1,1,1).

o Labelings a7, 87 + v and 7 combine to (a + 3)-antimagic labeling of
type (1,1,1).

Lemma 8 Ifa > 3, b > 2 then plane graph P? has a (4a — 2)-antimagic
labeling of type (1,1,0).
Proof

We label the vertices of P? by as(y:) = ag(y:) and as(z:i jk) = as(zi, ;i)
and label the edges by Bs(vizij1) = Br(viTijai) » Be(ZijkTijk+1) =
Br(@ij ki 5k+1) and Pe(Zi jivi41) = Br(Tij,i¥i+1)-

It is easy to check that we get the desired results. m]

Theorem 5 Fora>3,b>2 andd € {4a —1,4a — 3,5a — 3,3a — 1}, the
plane graph P! has a d-antimagic labeling of type (1,1,1).

Proof
In light of Lemma 8, it follows that
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e Labelings as, s + v and 2 combine to (4a — 3)-antimagic labeling
of type (1,1,1).

o Labelings as, 83 + v and 73 combine to (4a — 1)-antimagic labeling
of type (1,1,1).

¢ Labelings ag, 8z + v and <; combine to (5e¢ — 3)-antimagic labeling
of type (1,1,1).

¢ Labelings ag, fs + v and ; combine to (3a — 1)-antimagic labeling
of type (1,1,1).

(m]
Lemma 9 Ifa > 3 and b > 2 then plane graph P? has a (6a—6)-antimagic
labeling of type (1,1,0).

Proof
We label the vertices of P? by ag(y:) = ae(y:) and ag(zi jx) = ae(Zi,jk)-
Now, we construct the edge labeling 8y : E(P?) — {1,2,...,e} in the

following way

Bo(yizi i) = Br(vimija)-
fl1<i<a-1,1<j<bandl<k<ithen
Bo (i jiyi41) = (@—1)(b+5 —1) +4
ﬂs(zi,j,kzi,j,k-i-l) =
M3 4 (2a—-1+kb—j+1 ifiisodd,i>3, and kiseven
or if i is even and k is odd

HES) 4 (2a—2+k)b+j if both i and k are even
or both 7 and k are odd, i > 3.

It is not difficult to check that the vertex labeling ap and the edge labeling
Bs + v give us a (6a — 6)-antimagic labeling of type (1,1,0). o

Theorem 6 Fora>3,b>2 andd € {6a—5,6a —7,7a — 7,5a — 5}, the
plane graph P? has a d-antimagic labeling of type (1,1,1).
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Proof
In light of Lemma 9, it follows that
e Labelings a9, B9 + v and 2 combine to (6a — 7)-antimagic labeling
of type (1,1,1).

e Labelings ag, 8 + v and 73 combine to (6a — 5)-antimagic labeling
of type (1,1,1).

e Labelings ay, f + v and 7; combine to (7a — 7)-antimagic labeling
of type (1,1,1).

e Labelings ay, By + v and ; combine to (5a — 5)-antimagic labeling
of type (1,1,1).
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