Face antimagic labelings of plane graphs P_a^b

Yuqing Lin and Kiki A. Sugeng School of Electrical Eng. and Comp. Science The University of Newcastle, NSW 2308, Australia

e-mail: {yqlin, kiki}@cs.newcastle.edu.au

Abstract

Suppose G is a finite plane graph with vertex set V(G), edge set E(G) and face set F(G). The paper deals with the problem of labeling the vertices, edges and faces of a plane graph G in such a way that the label of a face and labels of vertices and edges surrounding that face add up to a weight of that face. A labeling of a plane graph G is called d-antimagic if for every number s, the s-sided face weights form an arithmetic progression of difference d. In this paper we investigate the existence of d-antimagic labelings for special class of plane graphs.

1 Introduction

In this paper, we shall only consider the finite, simple undirected graphs. Given a simple undirected graph G, the vertex set is denoted by V(G) and the edge set is denoted by E(G) (for other graph theoretic notations, see [18] and [19]).

A labeling of type (1,1,1) assigns labels from the set $\{1,2,...,|V(G)|+|E(G)|+|F(G)|\}$ to the vertices, edges and faces of plane graph G in such a way that each vertex, edge and face receives exactly one label and each number is used exactly once as a label.

If we label only vertices (respectively edges, faces) we call such a labeling a vertex (respectively edge, face) labeling and alternatively the labeling is said to be of type(1,0,0) (respectively type(0,1,0), type(0,0,1)).

A labeling of type (1,1,0) is a bijection from the set $\{1,2,...,|V(G)|+1\}$

|E(G)| to the vertices and edges of plane graph G.

The weight of a face under a labeling is the sum of the labels (if present) carried by that face and the edges and vertices surrounding it.

A labeling of a plane graph G is called d-antimagic if for every number s, the set of s-sided face weights is $W_s = \{a_s, a_s + d, a_s + 2d, ..., a_s + (f_s - 1)d\}$ for some integers a_s and d, $d \ge 0$, where f_s is the number of s-sided faces. We allow different sets W_s for different s.

Other types of antimagic labelings were investigated by Hartsfield and Ringel in [14] and by Bodendiek and Walther in [9].

If d=0 then Ko-Wei Lih in [15] called such labelings magic (face magic). Ko-Wei Lih studied face magic labelings for wheels, friendship graphs and prisms. 0-antimagic labelings of type (1,1,1) for m-antiprisms, fans, bipyramids, Möbius ladders, grids graphs and honeycomb are described in [1, 2, 3, 4, 5]. 1-antimagic labeling for certain classes of plane graphs are given in [10, 11, 12]. d-antimagic labelings of prisms and generalized Petersen graphs P(n,2) can be found in [6, 8, 16]. Other results about face-antimagic labelings are shown in [7, 13, 17].

2 Plane graph P_a^b

Let a and b be integers, $a \geq 3$ and $b \geq 2$. Let y_1, y_2, \ldots, y_a be fixed verties, we connect the vertices y_i and y_{i+1} by means of b internally disjoint paths p_i^j of length i+1 each, $1 \leq i \leq a-1$, $1 \leq j \leq b$. Let $y_i, x_{i,j,1}, x_{i,j,2}, \ldots, x_{i,j,i}, y_{i+1}$ be the vertices of path p_i^j . The resulting graph embedded in the plane is denoted by P_a^b , where $V(P_a^b) = \{y_i : 1 \leq i \leq a\}$ $\bigcup \bigcup_{i=1}^{a-1} \bigcup_{j=1}^b \{x_{i,j,k} : 1 \leq k \leq i\}$ and $E(P_a^b) = \bigcup_{i=1}^{a-1} \{y_i x_{i,j,1} : 1 \leq j \leq b\}$ $\bigcup \bigcup_{i=1}^{a-1} \bigcup_{j=1}^b \{x_{i,j,k} x_{i,j,k+1} : 1 \leq k \leq i-1\} \bigcup \bigcup_{i=1}^{a-1} \{x_{i,j,i} y_{i+1} : 1 \leq j \leq b\}$.

The face set $F(P_a^b)$ contains b-1 (2i+2)-sided faces, $1 \le i \le a-1$, and one external infinite face. Let $v = |V(P_a^b)| = \frac{ab(a-1)}{2} + a$, $e = |E(P_a^b)| = \frac{b(a-1)(a+2)}{2}$ and $f = |F(P_a^b)| = (a-1)(b-1) + 1$.

Kathiresan and Ganesan [12] described d-antimagic labelings of type (1,1,1) for the plane graph P_a^b , $a \ge 2$, $b \ge 2$ and $d \in \{0,1,2,3,4,6\}$.

In this paper, we investigate the existence of d-antimagic labelings of type (1,1,1) for P_a^b for many other values of parameter d.

3 Using known labelings

Let [n] be the greatest integer smaller than or equal to n.

Kathiresan and Ganesan [12] defined vertex and edge labelings of the plane graph P_a^b , $a \ge 3$, $b \ge 2$, in the following way:

$$\alpha_1(y_i) = \frac{b}{2}(i-1)(i-2) + i \text{ if } 1 \le i \le a.$$

If $1 \le i \le a-1$ and $1 \le j \le b$ then

$$\alpha_1(x_{i,j,k}) = \begin{cases} \frac{bi(i-1)}{2} + i + 1 + \frac{j+1}{2} & \text{if } i \text{ and } j \text{ are odd, } k = 1\\ \frac{bi(i-1)}{2} + \lfloor \frac{b+1}{2} \rfloor + i + 1 + \frac{j}{2} & \text{if } i \text{ is odd, } j \text{ is even, } k = 1\\ \frac{bi(i-1)}{2} + i + 1 + j & \text{if } i \text{ is even and } k = 1\\ \frac{bi(i-1)}{2} + kb + i + 2 - j & \text{if } k \text{ is even, } 2 \le k \le i\\ \frac{bi(i-1)}{2} + (k-1)b + i + 1 + j & \text{if } k \text{ is odd, } 3 \le k \le i \end{cases}$$

$$\beta_1(y_i x_{i,j,1}) = \frac{b}{2}((i+1)i-2) + j$$
 if $1 \le i \le a-1$ and $1 \le j \le b$.

If $1 \le i \le a-1$ and $1 \le j \le b$ then

$$\beta_1(x_{i,j,k}x_{i,j,k+1}) = \begin{cases} \frac{bi(i+1)}{2} + kb + 1 - j & \text{if } k \text{ is odd, } 1 \le k < i \\ \frac{bi(i+1)}{2} + (k-1)b + j & \text{if } k \text{ is even, } 2 \le k < i \end{cases}$$

$$\beta_1(x_{i,j,i}y_{i+1}) = \begin{cases} \frac{bi(i+3)}{2} + 1 - j & \text{if } i \text{ is odd} \\ \frac{b((i+3)i-2)}{2} + \frac{j+1}{2} & \text{if } i \text{ is even and } j \text{ is odd} \\ \frac{bi(i+3)}{2} - \lfloor \frac{b}{2} \rfloor + \frac{j}{2} & \text{if } i \text{ and } j \text{ are even.} \end{cases}$$

It was proved in [12] that the vertex labeling α_1 and the edge labeling $v+\beta_1$ and the face labeling with values in the set $\{v+e+1, v+e+2, \ldots, v+e+f\}$ combine to 0-antimagic and 2-antimagic labeling of type (1,1,1).

Let us denote the weights of the (2i + 2)-sided faces of P_a^b under a vertex labeling α and an edge labeling β as follows:

If
$$1 \le i \le a-1$$
 and $1 \le j \le b-1$ then

$$w(f_{i,j}) = \alpha(y_i) + \beta(y_i x_{i,j,1}) + \alpha(x_{i,j,1}) + \beta(x_{i,j,1} x_{i,j,2}) + \alpha(x_{i,j,2}) + \dots + \\ + \alpha(x_{i,j,i}) + \beta(x_{i,j,i} y_{i+1}) + \alpha(y_{i+1}) + \beta(y_{i+1} x_{i,j+1,i}) + \alpha(x_{i,j+1,i}) + \\ + \beta(x_{i,j+1,i} x_{i,j+1,i-1}) + \alpha(x_{i,j+1,i-1}) + \dots + \alpha(x_{i,j+1,1}) + \beta(x_{i,j+1,1} y_i).$$

We will denote the external infinite face by f_{∞} .

For the investigation of antimagicness of the plane graph P_a^b , we shall only consider the face weights of (2i+2)-sided faces $f_{i,j}$, $1 \le i \le a-1$, $1 \le j \le b-1$. We will not specify the weight of the infinite face f_{∞} because there is only one such face.

In this section, we shall present d-antimagic labelings of a plane graph P_a^b for various values of d by using vertex labelings and edge labelings defined by Kathiresan and Ganesan [12].

Lemma 1 For $a \geq 3$ and $b \geq 2$, the plane graph P_a^b has an a-antimagic labeling and (a-2)-antimagic labeling of type (1,1,1).

Proof

It was proved in [12] that labelings α_1 and $\beta_1 + v$ combine to a labeling of type (1, 1, 0) and the weights of the (2i + 2)-sided faces are

$$w(f_{i,j}) = \left\{ \begin{array}{ll} A-b+\lfloor \frac{b+1}{2} \rfloor + j & \text{if i is odd, $1 \leq j \leq b-1$} \\ A-\lfloor \frac{b}{2} \rfloor + j & \text{if i is even and $1 \leq j \leq b-1$} \end{array} \right.$$

where

$$A = b(2i^3 + 4i^2 - i) + 6i + 2i^2 + 2 + (i+1)a(ba - b + 2).$$

Now we define face labelings γ_1 and γ_1' as bijections from the set $\{v+e+1, v+e+2, \ldots, v+e+f\}$ onto the faces of P_a^b as follows

$$\gamma_1(f_{i,j}) = v + e + (a-1)(j-1) + i$$
 for $1 \le i \le a-1$ and $1 \le j \le b-1$

$$\gamma_1'(f_{i,j}) = v + e + f - (a-1)(j-1) - i$$
 for $1 \le i \le a-1$ and $1 \le j \le b-1$

$$\gamma_1(f_{\infty}) = \gamma_1'(f_{\infty}) = v + e + f.$$

It can be seen that the labelings $\alpha_1, \beta_1 + v, \gamma_1$ and $\alpha_1, \beta_1 + v, \gamma_1'$ give an a-antimagic and (a-2)-antimagic labeling of type (1,1,1) respectively. \Box

We consider vertex labeling α_2 and edge labeling β_2 of P_a^b which were also defined by Kathiresan and Ganesan in [12] and used for proving that P_a^b has a 1-antimagic and 3-antimagic labeling of type (1,1,1).

$$\alpha_2(y_i) = \alpha_1(y_i)$$
 for $1 \le i \le a$

If $1 \le i \le a-1$, $1 \le j \le b$ and $1 \le k \le i$ then

$$\alpha_2(x_{i,j,k}) = \left\{ \begin{array}{ll} \frac{bi(i-1)}{2} + kb + i + 2 - j & \text{for } k \text{ even} \\ \frac{bi(i-1)}{2} + (k-1)b + i + 1 + j & \text{for } k \text{ odd} \end{array} \right.$$

$$\beta_2(y_i x_{i,j,1}) = \beta_1(y_i x_{i,j,1})$$

$$\beta_2(x_{i,j,k}x_{i,j,k+1}) = \beta_1(x_{i,j,k}x_{i,j,k+1})$$

$$\beta_2(x_{i,j,i}y_{i+1}) = \left\{ \begin{array}{ll} \frac{bi(i+3)}{2} + 1 - j & \text{if } i \text{ is odd} \\ \frac{b}{2}((i+3)i - 2) + j & \text{if } i \text{ is even.} \end{array} \right.$$

Lemma 2 For $a \geq 3$ and $b \geq 2$, the plane graph P_a^b has an (a+1)-antimagic labeling and (a-3)-antimagic labeling of type (1,1,1).

Proof

Label the vertices and edges of P_a^b by α_2 and $\beta_2 + v$, respectively, resulting in a labeling of type (1, 1, 0). The weights of the (2i + 2)-sided faces are

$$w(f_{i,j}) = 2v(i+1) + bi(2i^2 + 4i - 1) - b + 2i^2 + 6i + 2 + 2j$$
 for $1 < i < a - 1$ and $1 < j < b - 1$.

If we complete face labeling γ_1 and γ_1' then the labelings α_2 , $\beta_2 + v$, γ_1 and α_2 , $\beta_2 + v$, γ_1' combine to (a + 1)-antimagic and (a - 3)-antimagic labeling of type (1, 1, 1), respectively.

The following labelings α_3 and β_3 were defined in [12].

$$\alpha_3(y_i) = \alpha_1(y_i)$$

for $1 \le i \le a$.

If $1 \le i \le a-1$ and $1 \le j \le b$ then

$$\alpha_3(x_{i,j,k}) =$$

$$\begin{cases} \frac{bi(i-1)}{2} + i + 1 + \frac{j+1}{2} & \text{if } i \text{ and } j \text{ are odd and } k = 1 \\ \frac{bi(i-1)}{2} + \lfloor \frac{b+1}{2} \rfloor + i + 1 + \frac{j}{2} & \text{if } i \text{ is odd, } j \text{ is even and } k = 1 \\ \frac{bi(i-1)}{2} + i + 1 + j & \text{if } i \text{ is even and } k = 1 \\ \frac{bi(i-1)}{2} + kb + i + 2 - j & \text{if } k \text{ is even and } 4 \le k \le i \\ \frac{b}{2}(i^2 - i + 4) + i + 2 - j & \text{if } i \text{ is odd and } k = 2 \\ \frac{b}{2}(i^2 - i + 2) + i + 1 + j & \text{if } i \text{ is even } k = 2 \\ \frac{bi(i-1)}{2} + (k-1)b + i + 1 + j & \text{if } k \text{ is odd and } 3 \le k \le i. \end{cases}$$

$$\beta_3(y_i x_{i,j,1}) = \beta_1(y_i x_{i,j,1})$$

$$\beta_3(x_{i,j,k}x_{i,j,k+1}) = \beta_1(x_{i,j,k}x_{i,j,k+1})$$

$$\beta_3(x_{i,j,i}y_{i+1}) = \begin{cases} \frac{\frac{b}{2}(i^2 + 3i - 2) + j & \text{if } i \text{ is odd} \\ \frac{b}{2}(i^2 + 3i - 2) + \frac{j+1}{2} & \text{if } i \text{ is even and } j \text{ is odd} \\ \frac{bi(i+3)}{2} - \lfloor \frac{b}{2} \rfloor + \frac{j}{2} & \text{if } i \text{ and } j \text{ are even.} \end{cases}$$

Lemma 3 For $a \ge 3$ and $b \ge 2$, the plane graph P_a^b has a (a+4)-antimagic labeling and |(a-6)|-antimagic labeling of type (1,1,1).

Proof

Kathiresan and Ganesan in [12] showed that combining the vertex labeling α_3 and the edge labeling $\beta_3 + v$ gives a 5-antimagic labeling of type (1, 1, 0).

Let the weights of the (2i + 2)-sided faces under a 5-antimagic labeling of type (1, 1, 0) be

$$w(f_{i,j}) = A(i) + 5j$$
 for $1 \le i \le a - 1$ and $1 \le j \le b - 1$.

Complete the face labeling with γ_1 and γ_1' . We can see that the resulting labeling determined by labelings α_3 , $\beta_3 + v$, γ_1 and α_3 , $\beta_3 + v$, γ_1' is (a+4)-antimagic labeling and |(a-6)|-antimagic labeling of type (1,1,1), respectively.

4 New labelings and results

In this section we construct new vertex and edge and face labelings of plane graph P_a^b and prove d-antimagicness of P_a^b for some values of the parameter d.

Lemma 4 If $a \geq 3$ and $b \geq 2$ then the plane graph P_a^b has a 6-antimagic labeling of type (1,1,0).

Proof

Define the vertex labeling $\alpha_4: V(P_a^b) \to \{1, 2, \dots, v\}$ and the edge labeling $\beta_4: E(P_a^b) \to \{1, 2, \dots, e\}$ in the following way.

$$\alpha_4(y_i) = \alpha_1(y_i)$$
 for $1 \le i \le a$.

If i is even, $2 \le i < a$ and k = 1 then

$$\alpha_4(x_{i,j,k}) = \frac{bi(i-1)}{2} + i + 1 + j \text{ for } 1 \le j \le b.$$

If i and k are even or i and k are odd, $1 \le i < a, 1 \le k \le i$ then

$$\alpha_4(x_{i,j,k}) = \frac{bi(i-1)}{2} + i + 1 + (k-1)b + j \text{ for } 1 \leq j \leq b.$$

If i is even and k is odd or i is odd and k is even, $1 \le i < a$ and $2 \le k \le i$, then

$$\alpha_4(x_{i,j,k}) = \frac{bi(i-1)}{2} + i + 2 + kb - j \text{ for } 1 \le j \le b.$$

If $1 \le i \le a-1$ and $1 \le j \le b$ then

$$eta_4(y_i x_{i,j,1}) = eta_1(y_i x_{i,j,1})$$
 $eta_4(x_{i,j,k} x_{i,j,k+1}) = eta_1(x_{i,j,k} x_{i,j,k+1})$
 $eta_4(x_{i,j,i} y_{i+1}) = rac{bi(i+3)}{2} - b + j.$

Label the vertices and the edges of P_a^b by α_4 and $\beta_4 + v$, respectively. These labelings realize a labeling of type (1,1,0) and the weights of the (2i+2)-sided faces are

$$w(f_{i,j}) = 2v(i+1) + bi(2i^2 + 4i - 1) + 2i^2 + 6i - 3b + 2 + 6j$$

where $1 \le i \le a - 1$ and $1 \le j \le b - 1$.

We can see that the resulting labeling is 6-antimagic.

Theorem 1 For $a \ge 3$, $b \ge 2$ and $d \in \{5,7,|a-7|,a+5\}$, the plane graph P_a^b has a d-antimagic labeling of type (1,1,1).

Proof

Define the face labelings γ_2 and γ_3 from the set $\{v+e+1, v+e+2, \ldots, v+e+f\}$ onto the faces of P_a^b as follows

$$\gamma_2(f_{i,j}) = v + e + f - (b-1)(i-1) - j$$

$$\gamma_3(f_{i,j}) = v + e + (b-1)(i-1) + j$$

$$\gamma_2(f_{\infty}) = \gamma_3(f_{\infty}) = v + e + f.$$

If we combine 6-antimagic labeling of type (1, 1, 0) from Lemma 4, and face labeling γ_2 or γ_3 , we obtain a 5-antimagic labeling or 7-antimagic labeling of type (1, 1, 1), respectively.

On the other hand, if we complete the 6-antimagic labeling of type (1,1,0) by face labelings γ_1 or γ'_1 , then the resulting labeling is (a+5)-antimagic or |(a-7)|-antimagic labeling of type (1,1,1), respectively.

Lemma 5 If $a \geq 3$ and $b \geq 2$ then the graph P_a^b has a 3-antimagic labeling of type (1,1,0).

Proof

Let $\alpha_5:V(P_a^b)\to\{1,2,\ldots,v\}$ be the vertex labeling and $\beta_5:E(P_a^b)\to\{1,2,\ldots,e\}$ be the edge labeling of P_a^b where

$$\alpha_5(y_i) = \alpha_1(y_i)$$

and

$$\alpha_5(x_{i,j,k}) = \alpha_3(x_{i,j,k}).$$

If $1 \le i \le a-1$, $1 \le j \le b$ and $1 \le k < i$ then

$$\beta_5(y_ix_{i,j,1}) = \frac{bi(i+1)}{2} + 1 - j$$

$$\beta_5(x_{i,j,k}x_{i,j,k+1}) = \begin{cases} \frac{bi(i+1)}{2} + (k-1)b + j & \text{if } k \text{ is odd} \\ \frac{bi(i+1)}{2} + kb - j + 1 & \text{if } k \text{ is even} \end{cases}$$

$$\beta_5(x_{i,j,i}y_{i+1}) = \begin{cases} \frac{bi(i+3)}{2} - j + 1 & \text{if } i \text{ is odd} \\ \frac{bi(i+3)}{2} - \frac{j}{2} + 1 & \text{if } i \text{ and } j \text{ are even} \\ \frac{bi(i+3)}{2} - \lfloor \frac{b}{2} \rfloor - \frac{j-1}{2} & \text{if } i \text{ is even and } j \text{ is odd.} \end{cases}$$

It can be seen that the labelings α_5 and β_5 are bijections and that α_5 and $\beta_5 + v$ give a labeling of type (1,1,0). The weights of the (2*i* + 2)-sided faces form an arithmetical progression with difference d = 3.

Theorem 2 For $a \geq 3$, $b \geq 2$, the plane graph P_a^b has |(a-4)|-antimagic labeling and (a+2)-antimagic labeling of type (1,1,1).

Proof

Define the face labelings γ_4 and γ_5 from the set $\{v+e+1, v+e+2, ldots, v+e+f\}$ onto the faces of P_a^b as follows

$$\gamma_4(f_{i,j}) = \begin{cases} v + e + f - (a-1)(j-1) - i \\ \text{if } i \text{ is odd, } 1 \le i \le a-1, \ 1 \le j \le b-1 \\ v + e + f - (a-1)(b-j-1) - i \\ \text{if } i \text{ is even, } 2 \le i \le a-1, \ 1 \le j \le b-1 \end{cases}$$

$$\gamma_5(f_{i,j}) = \begin{cases} v + e + (a-1)(j-1) + i \\ & \text{if } i \text{ is odd, } 1 \le i \le a-1, 1 \le j \le b-1 \\ v + e + + (a-1)(b-j-1) + i \\ & \text{if } i \text{ is even, } 2 \le i \le a-1, 1 \le j \le b-1 \end{cases}$$

$$\gamma_4(f_{\infty}) = \gamma_5(f_i n f t y) = v + e + f.$$

Label the vertices and edges and faces by labeling $\alpha_5, \beta_5 + v$ and γ_4 or $\alpha_5, \beta_5 + v$ and γ_5 , respectively. From previous lemma follows that the labelings γ_5 and $\beta_5 + v$ give the 3-antimagic labeling of type (1, 1, 0), and thus labelings $\alpha_5, \beta_5 + v$ and γ_4 combine to (a + 2)-antimagic labeling and $\alpha_5, \beta_5 + v$ and γ_5 combine to (|a - 4|)-antimagic labeling of type (1, 1, 1).

Lemma 6 If $a \ge 3$ and $b \ge 2$ then the graph P_a^b has a (2a-2)-antimagic labeling of type (1,1,0).

Proof

Define the bijections α_6 and β_6 as follows:

$$\alpha_6: V(P_a^b) \to \{1, 2, \dots, v\}, \, \beta_6: E(P_a^b) \to \{1, 2, \dots, e\},$$

$$\alpha_6(y_i) = i \text{ for } 1 \leq i \leq a.$$

If $1 \le i \le a-1$, $1 \le j \le b$ and $1 \le k < i$ then

$$\alpha_6(x_{i,j,k}) = \begin{cases} j(a-1)+1+i & \text{if } k=1\\ a(b+1)+b/2(i^2-3i+2k-4)+j & \text{if } k \text{ is even}\\ a(b+1)+b/2(i^2-3i+2k-2)-j+1 & \text{if } k \text{ is odd, } k \geq 3 \end{cases}$$

$$\beta_6(y_ix_{i,j,1})=\beta_1(y_ix_{i,j,1})$$

$$\beta_6(x_{i,j,k}x_{i,j,k+1}) = \beta_1(x_{i,j,k}x_{i,j,k+1})$$

$$\beta_6(x_{i,j,i}y_{i+1}) = \frac{bi(i+3)}{2} - j + 1.$$

Label the vertices and edges of P_a^b by α_6 and $\beta_6 + v$. By direct computation we obtain that the set of weights of the (2i + 2)-sided faces form an arithmetic progression with difference 2a - 2. Thus the resulting labeling is (2a - 2)-antimagic labeling of type (1, 1, 0).

Theorem 3 For $a \geq 3$, $b \geq 2$ and $d \in \{2a-3, 2a-1, a-1, 3a-3\}$, the plane graph P_a^b has a d-antimagic labeling of type (1,1,1).

Proof

In light of Lemma 6, it follows that

- Labelings α_6 , $\beta_6 + v$ and γ_2 combine to (2a 3)-antimagic labeling of type (1, 1, 1).
- Labelings α_6 , $\beta_6 + v$ and γ_3 combine to (2a 1)-antimagic labeling of type (1, 1, 1).
- Labelings α_6 , $\beta_6 + v$ and γ_1 combine to (3a 3)-antimagic labeling of type (1, 1, 1).
- Labelings α_6 , $\beta_6 + v$ and γ_1' combine to (a-1)-antimagic labeling of type (1,1,1).

Lemma 7 If $a \geq 3$, $b \geq 2$ then plane graph P_a^b has a (2a + 2)-antimagic labeling of type (1,1,0).

Proof

We label the vertices of P_a^b by $\alpha_7(y_i) = \alpha_4(y_i)$ and $\alpha_7(x_{i,j,k}) = \alpha_4(x_{i,j,k})$. If $1 \le i \le a-1$, $1 \le j \le b$ and $1 \le k < i$ then we label the edges by $\beta_7 + v$ where

$$\beta_7(y_ix_{i,j,1}) = (j-1)(a-1) + i$$

$$\beta_7(x_{i,j,k}x_{i,j,k+1}) = \begin{cases} \frac{bi(i-1)}{2} + (a-2+k)b + j & \text{if } k \text{ is odd} \\ \frac{bi(i-1)}{2} + (a-1+k)b - j + 1 & \text{if } k \text{ is even} \end{cases}$$

$$\beta_7(x_{i,j,i}y_{i+1}) = \begin{cases} \frac{bi(i+1)}{2} + j + b(a-2) & \text{if } i \text{ is odd} \\ \frac{bi(i+1)}{2} + 1 - j + b(a-1) & \text{if } i \text{ is even.} \end{cases}$$

It is not difficult to check that the values of α_7 are 1, 2, ..., v and the values of β_7 are 1, 2, ..., e. By direct computation we obtain that under the labelings α_7 and $\beta_7 + v$, the weights of the (2i + 2)-sided faces form an arithmetical progression with difference 2a + 2.

Theorem 4 For $a \geq 3$, $b \geq 2$ and $d \in \{a+3, 2a+1, 2a+3, 3a+1\}$, the plane graph P_a^b has a d-antimagic labeling of type (1,1,1).

Proof

In light of Lemma 7, it follows that

- Labelings α_7 , $\beta_7 + v$ and γ_2 combine to (2a + 1)-antimagic labeling of type (1, 1, 1).
- Labelings α_7 , $\beta_7 + v$ and γ_3 combine to (2a + 3)-antimagic labeling of type (1, 1, 1).
- Labelings α_7 , $\beta_7 + v$ and γ_1 combine to (3a + 1)-antimagic labeling of type (1, 1, 1).
- Labelings α_7 , $\beta_7 + v$ and γ_1' combine to (a+3)-antimagic labeling of type (1,1,1).

Lemma 8 If $a \geq 3$, $b \geq 2$ then plane graph P_a^b has a (4a-2)-antimagic labeling of type (1,1,0).

Proof

We label the vertices of P_a^b by $\alpha_8(y_i) = \alpha_6(y_i)$ and $\alpha_8(x_{i,j,k}) = \alpha_6(x_{i,j,k})$ and label the edges by $\beta_8(y_ix_{i,j,1}) = \beta_7(y_ix_{i,j,1})$, $\beta_8(x_{i,j,k}x_{i,j,k+1}) = \beta_7(x_{i,j,k}x_{i,j,k+1})$.

It is easy to check that we get the desired results.

Theorem 5 For $a \geq 3$, $b \geq 2$ and $d \in \{4a-1, 4a-3, 5a-3, 3a-1\}$, the plane graph P_a^b has a d-antimagic labeling of type (1,1,1).

Proof

In light of Lemma 8, it follows that

- Labelings α_8 , $\beta_8 + v$ and γ_2 combine to (4a 3)-antimagic labeling of type (1, 1, 1).
- Labelings α_8 , $\beta_8 + v$ and γ_3 combine to (4a 1)-antimagic labeling of type (1, 1, 1).
- Labelings α_8 , $\beta_8 + v$ and γ_1 combine to (5a 3)-antimagic labeling of type (1, 1, 1).
- Labelings α_8 , $\beta_8 + v$ and γ_1' combine to (3a 1)-antimagic labeling of type (1, 1, 1).

Lemma 9 If $a \geq 3$ and $b \geq 2$ then plane graph P_a^b has a (6a-6)-antimagic labeling of type (1,1,0).

Proof

We label the vertices of P_a^b by $\alpha_9(y_i) = \alpha_6(y_i)$ and $\alpha_9(x_{i,j,k}) = \alpha_6(x_{i,j,k})$.

Now, we construct the edge labeling $\beta_9: E(P_a^b) \to \{1, 2, \ldots, e\}$ in the following way

$$\beta_9(y_ix_{i,j,1}) = \beta_7(y_ix_{i,j,1}).$$

If $1 \le i \le a-1$, $1 \le j \le b$ and $1 \le k < i$ then

$$\beta_9(x_{i,j,i}y_{i+1}) = (a-1)(b+j-1)+i$$

 $\beta_9(x_{i,j,k}x_{i,j,k+1}) =$

$$\left\{\begin{array}{ll} \frac{bi(i-3)}{2}+(2a-1+k)b-j+1 & \text{if i is odd, $i\geq 3$, and k is even}\\ & \text{or if i is even and k is odd}\\ \frac{bi(i-3)}{2}+(2a-2+k)b+j & \text{if b oth i and k are even}\\ & \text{or both i and k are odd, $i\geq 3$.} \end{array}\right.$$

It is not difficult to check that the vertex labeling α_9 and the edge labeling $\beta_9 + v$ give us a (6a - 6)-antimagic labeling of type (1, 1, 0).

Theorem 6 For $a \ge 3$, $b \ge 2$ and $d \in \{6a-5, 6a-7, 7a-7, 5a-5\}$, the plane graph P_a^b has a d-antimagic labeling of type (1,1,1).

Proof

In light of Lemma 9, it follows that

- Labelings α_9 , $\beta_9 + v$ and γ_2 combine to (6a 7)-antimagic labeling of type (1, 1, 1).
- Labelings α_9 , $\beta_9 + v$ and γ_3 combine to (6a 5)-antimagic labeling of type (1, 1, 1).
- Labelings α_9 , $\beta_9 + v$ and γ_1 combine to (7a 7)-antimagic labeling of type (1, 1, 1).
- Labelings α_9 , $\beta_9 + v$ and γ_1' combine to (5a 5)-antimagic labeling of type (1, 1, 1).

References

- [1] M. Bača, Labelings of n-antiprisms. Ars Combin. 28 (1989) 242-245.
- [2] M. Bača, On magic labelings and consecutive labelings for the special classes of plane graphs. *Utilitas Math* 32 (1987) 59-65.
- [3] M. Bača, On magic labelings of Mőbius ladders. J. Franklin Inst. 326 (1989) 885-888.
- [4] M. Bača, On magic labelings of grid graphs. Ars Combin. 33 (1992) 295-299.
- [5] M. Bača, On magic labelings of honeycomb. Discrete Math. 105 (1992) 305-311.
- [6] M. Bača, S. Jendrol, M. Miller and J. Ryan, Antimagic labelings of generalized Petersen graphs. Ars Combin. to appear.
- [7] M. Bača, J.A. MacDougall, M. Miller, Slamin and W.D. Wallis, Survey of certain valuations of graphs. *Discuss Math. Graph Theory* 20 (2000) 219-229.
- [8] M. Bača and M. Miller, On d-antimagic labelings of type (1,1,1) for prisms. JCMCC 44 (2003), 86-92.

- [9] R. Bodendiek and G. Walther, On number theoretical methods in graph labelings. Res. Exp. Math. 21 (1995) 3-25.
- [10] K.M. Kathiresan, S. Muthuvel and V.N. Nagasubbu, Consecutive labelings for two classes of plane graphs. *Utilitas Math.* 55 (1999) 237-241.
- [11] K.M. Kathiresan and S. Gokulakrishnan, On magic labelings of type (1,1,1) for the special classes of plane graphs, *Utilitas Math.* 63 (2003), 25-32.
- [12] K.M. Kathiresan and R. Ganesan, d-antimagic labelings of plane graph P_a^b . JCMCC to appear.
- [13] J. A. Gallian, A dynamic survey of graph labeling. The Electronic Journal of Combinatorics 5 (2000) #DS6.
- [14] N. Hartsfield and G. Ringel, Pearls in Graph Theory. Academic Press, Boston - San Diego - New York - London, 1990.
- [15] KoWei Lih, On magic and consecutive labelings of plane graphs. Utilitas Math. 24 (1983) 165-197.
- [16] Y. Lin, Slamin, M. Bača and M. Miller, On d-antimagic labelings of prisms. Ars Combin. to appear.
- [17] A.J. Qu, On complementary consecutive labelings of octahedra. Ars Combin. 51 (1999) 287-294.
- [18] W.D. Wallis, Magic Graphs. Birkháuser, Boston Basel -Berlin, 2001.
- [19] D.B. West, An Introduction to Graph Theory. Prentice Hall, 1996.