# Hamiltonian decompositions of the tensor product of a complete graph and a complete bipartite graph

R.S. Manikandan and P. Paulraja
Department of Mathematics
Annamalai University
Annamalainagar 608 002
India

### Abstract

In this paper it has been proved that  $K_{r,r} \times K_m$ ,  $m \ge 3$ , is hamiltonian decomposable.

## 1 Introduction

A k-regular graph G has a hamiltonian decomposition if its edge set can be partitioned into  $\frac{k}{2}$  Hamilton cycles when k is even, or into (k-1)/2 Hamilton cycles plus a 1-factor (or a perfect matching) when k is odd. We write  $G = H_1 \oplus H_2 \oplus \ldots \oplus H_k$  if  $H_1, H_2, \ldots, H_k$  are edge-disjoint subgraphs of G and  $E(G) = E(H_1) \cup E(H_2) \cup \ldots \cup E(H_k)$ . The complete graph on m vertices is denoted by  $K_m$  and its complement is denoted by  $\overline{K}_m$ .

For two simple graphs G and H their wreath product, denoted by G \* H, has vertex set  $V(G) \times V(H)$  in which  $(g_1,h_1)$  and  $(g_2,h_2)$  are adjacent whenever  $g_1g_2 \in E(G)$ , or  $g_1 = g_2$  and  $h_1h_2 \in E(H)$ . Similarly,  $G \times H$ , the tensor product (also called Kronecker product or direct product) of the graphs G and H has vertex set  $V(G) \times V(H)$  in which two vertices  $(g_1,h_1)$  and  $(g_2,h_2)$  are adjacent whenever  $g_1g_2 \in E(G)$  and  $h_1h_2 \in E(H)$ . It is well known that the tensor product is commutative and distributive over edge-disjoint union of graphs, that is, if  $G = H_1 \oplus H_2 \oplus \ldots \oplus H_k$ , then  $G \times H =$ 

 $(H_1 \times H) \oplus (H_2 \times H) \oplus \ldots \oplus (H_k \times H).$ 

We shall use the following notation throughout the paper. Let G and H be simple graphs with  $V(G) = \{x_1, x_2, \ldots, x_n\}$  and  $V(H) = \{y_1, y_2, \ldots, y_m\}$ . Then  $V(G \times H) = V(G) \times V(H)$ . For our convenience, we write  $V(G) \times V(H) = \bigcup_{i=1}^n X_i$ , where  $X_i$  stands for  $\{x_i\} \times V(H)$ . Further, in the sequel, we shall denote the vertices of  $X_i$  as  $\{x_j^i \mid 1 \leq j \leq m\}$ , where  $x_j^i$  stands for the vertex  $(x_i, y_j)$ .  $X_i, 1 \leq i \leq n$ , is called the *i*th layer of  $G \times H$ . If  $V(G) = \{x_1, x_2, \ldots, x_n\}$ , then we call  $G \times H$  an n-partite graph with partite sets  $X_1, X_2, \ldots, X_n$ .

Let G be a bipartite graph with bipartition (X,Y), where  $X = \{x_1, x_2, \ldots, x_n\}$ ,  $Y = \{y_1, y_2, \ldots, y_n\}$ . If  $x_i y_j$  is an edge of G, then  $x_i y_j$  is called an edge of distance j-i if  $i \leq j$ , or n-(i-j) if i > j, from X to Y. The same edge is said to be of distance i-j if  $i \geq j$ , or n-(j-i) if i < j, from Y to X. If G contains the set of edges  $F_i(X,Y) = \{x_j y_{i+j} \mid 1 \leq j \leq n\}$ ,  $0 \leq i \leq n-1$ , where addition in the subscript is taken modulo n with residues  $1,2,\ldots,n$ , then we say that G has the 1-factor of distance i from X to Y. Clearly, if  $G = K_{n,n}$ , then  $E(G) = \bigcup_{i=0}^{n-1} F_i(X,Y)$ . Note that  $F_i(Y,X) = F_{n-i}(X,Y)$ ,  $0 \leq i \leq n-1$ . For a digraph D, by A(D) we mean the arc set of D. Definitions which are not seen here can be found in [4] or [8].

Let k be a positive integer and let L be a subset of  $\{1,2,\ldots,\lfloor\frac{k}{2}\rfloor\}$ . A circulant X=X(k;L) is a graph with vertex set  $V(X)=\{u_0,u_1,\ldots,u_{k-1}\}$  and edge set  $E(X)=\{u_iu_{i+l}\mid i\in Z_k,l\in L\}$ . The edge  $u_iu_{i+l}$ , where  $l\in L$ , is said to be of distance l, and L is called the edge distance set of the circulant X. Then it is clear that if  $gcd(k,l_i)=1$ , then the circulant  $X(k;\{l_i\})$  is a Hamilton cycle. We shall denote a graph isomorphic to  $X(2r;\{1,r\})$  by  $W_{2r}$ .

The following result of Bermond et al [7] will be used throughout the paper.

Theorem 1.1. Any connected circulant of degree 4 can be decomposed into Hamilton cycles.

Remark 1.2. Examples of circulants of degree 4 that are connected include the circulants of the forms  $X(k;\{l,l+1\})$ ,  $X(k;\{2l-1,2l+1\})$ , and if k is odd,  $X(k;\{2l,2l+2\})$ , see [14].

In this paper, we study the hamiltonian decomposition of  $K_{r,r} \times K_m$ .

The problem of finding hamiltonian decompositions of product graphs is not new. Hamiltonian decompositions of various product graphs have been studied, see [1], [6] and [9]. For example, it has been conjectured [6] that if both G and H are Hamilton cycle decomposable, then  $G \square H$  is hamiltonian decomposable, where \( \text{\text{denotes}} \) denotes the cartesian product of graphs [1]. This conjucture has been verified to be true for a large class of graphs [15]. Baranyai and Szasz [5] proved that if both G and H are even-regular hamiltonian decomposable graphs, then G \* H is hamiltonian decomposable. In [13] Ng has obtained a partial solution to the following conjecture of Alspach et al [1]: If  $D_1$  and  $D_2$  are directed Hamilton cycle decomposable digraphs, then  $D_1 * D_2$  is directed Hamilton cycle decomposable. Jha [10] has raised the following conjecture: if both Gand H are hamiltonian decomposable and  $G \times H$  is connected, then  $G \times H$ is hamiltonian decomposable. But this conjecture is disproved in [3]. Because of this, finding a hamiltonian decomposition of tensor product of hamiltonian decomposable graphs is considered to be difficult. In [2] it has been proved that  $K_r \times K_s$  is hamiltonian decomposable. Here we prove that  $K_{r,r} \times K_m$  is hamiltonian decomposable. In fact, we have obtained the following main

Theorem 1.3. For  $m \geq 3$ ,  $K_{r,r} \times K_m$  has a hamiltonian decomposition.

### 2 Proof of the main theorem

First we prove a few lemmas. Then using them we prove the main result of this paper.

**Lemma 2.1.** Let  $r \geq 3$  be odd. Then  $K_{r,r}$  can be decomposed into Hamilton cycles and one copy of  $W_{2r} \cong X(2r;\{1,r\})$ .

Proof. Let  $A=\{u_0,u_2,\ldots,u_{2r-2}\}$  and  $B=\{u_1,u_3,\ldots,u_{2r-1}\}$  be the bipartition of  $K_{r,r}$ . Place these vertices in the cyclic order  $u_0,u_1,u_2,\ldots,u_{2r-1}$ . Thus  $K_{r,r}$  is isomorphic to the circulant  $X(2r;\{2i-1\mid 1\leq i\leq (r+1)/2\})$ . We divide the proof into two cases.

Case 1.  $r \equiv 1 \pmod{4}$ .

We decompose  $K_{r,r}$  into circulants as follows:

 $K_{r,r} = \left(\bigoplus_{i=1}^{(r-5)/4} X(2r; \{4i-1,4i+1\})\right) \oplus X(2r; \{r-2\}) \oplus X(2r; \{1,r\})$ . Each circulant, except the last two, in the above expression is connected and 4-regular and hence each of them can be decomposed into two Hamilton cycles, by Theorem 1.1 and Remark 1.2. The circulant  $X(2r; \{r-2\})$  is a Hamilton cycle

as gcd(2r, r-2) = 1 and the last circulant  $X(2r; \{1, r\})$  is  $W_{2r}$ , by definition. Case 2.  $r \equiv 3 \pmod{4}$ .

We decompose  $K_{r,r}$  into circulants as follows:

 $K_{r,r} = \left(\bigoplus_{i=1}^{(r-3)/4} X(2r; \{4i-1,4i+1\})\right) \oplus X(2r; \{1,r\})$ . Each circulant, except the last one, in the above expression is connected and 4-regular and hence each of them can be decomposed into two Hamilton cycles, by Theorem 1.1 and Remark 1.2. The last circulant  $X(2r; \{1,r\})$  is  $W_{2r}$ , by definition.

Lemma 2.2. For  $m \geq 2$  and  $k \geq 2$ ,  $C_{2k} \times K_{2m}$  has a hamiltonian decomposition.

Proof. Let the partite sets of the 2k-partite graph  $C_{2k} \times K_{2m}$  be  $X_i = \{x_1^i, x_2^i, \ldots, x_{2m}^i\}, 1 \leq i \leq 2k$ . First we decompose  $C_{2k} \times K_{2m}$  into 2m-2 Hamilton cycles  $H_1, H_2, \ldots, H_{2m-2}$  and a 2-factor F such that F has two cycles of equal length. Then we decompose  $F \cup H_{2m-2}$  into two Hamilton cycles, say, H' and H''. Thus  $\{H_1, H_2, \ldots, H_{2m-3}, H', H''\}$  is a hamiltonian decomposition of  $C_{2k} \times K_{2m}$ .

First we obtain the Hamilton cycles  $H_1, H_2, \ldots, H_{2m-2}$  and the 2-factor Fas follows: for  $1 \le i \le 2m-2$ , let  $H_i = F_{2m-i}(X_1, X_2) \cup F_{2m-i}(X_2, X_3) \cup F_{2m-i}(X_1, X_2) \cup F_{2m-i}(X_2, X_3) \cup F_{2m-i}(X_1, X_2) \cup F_{2m-i$  $F_i(X_3, X_4) \cup F_{i+1}(X_4, X_5) \cup \left(\bigcup_{i=3}^k \{F_i(X_{2j-1}, X_{2j}) \cup F_{2m-i}(X_{2j}, X_{2j+1})\}\right)$ and let  $F = F_1(X_1, X_2) \cup F_1(X_2, X_3) \cup F_{2m-1}(X_3, X_4) \cup F_1(X_4, X_5) \cup F_2(X_4, X_5) \cup F_2(X_5, X_$  $\left(\bigcup_{j=3}^{k} \{F_{2m-1}(X_{2j-1}, X_{2j}) \cup F_{1}(X_{2j}, X_{2j+1})\}\right)$ , where the subscripts of  $X_{i}$ 's are taken modulo 2k with residues  $1,2,\ldots,2k$ . Clearly  $H_i$ 's are edge-disjoint Hamilton cycles of  $C_{2k} \times K_{2m}$  and F is a 2-factor of it consisting of two cycles C' and C'' of equal length. In fact, the vertices  $x_1^1, x_3^1, x_5^1, \ldots, x_{2m-1}^1$ are contained in a single cycle of F, say, C', and the vertices  $x_2^1, x_4^1, x_6^1, \ldots, x_{2m}^1$ are contained in the other cycle of F, say, C''. Next we obtain two edge-disjoint Hamilton cycles from  $H_{2m-2} \cup F$ . From the construction of  $H_{2m-2}$ , it is clear that the edges  $x_1^1x_3^2$  and  $x_2^2x_4^3$  are in  $H_{2m-2}$  and from the construction of F the edges  $x_1^1x_2^2$  and  $x_3^2x_4^3$  are in F. Let  $H' = (H_{2m-2} - \{x_1^1x_3^2, x_2^2x_4^3\}) \cup$  $\{x_1^1x_2^2, x_3^2x_4^3\}$  and let  $H'' = (F - \{x_1^1x_2^2, x_3^2x_4^3\}) \cup \{x_1^1x_3^2, x_2^2x_4^3\}$ . That H' and H'' are indeed edge-disjoint Hamilton cycles of  $C_{2k} \times K_{2m}$  as can be seen by letting  $H=H_{2m-2}$  and  $a=x_1^1$ ,  $b=x_3^2$ ,  $c=x_2^2$ ,  $d=x_4^3$  in all the graphs of Figure 1. This completes the proof.

**Lemma 2.3.** If  $n \equiv 2 \pmod{4}$ ,  $n \geq 6$  and  $m \geq 2$ , then  $W_n \times K_{2m}$  has a



Figure 1 (a)



Figure 1 (b)

Broken edges of Figure 1 (a) (Figure 1 (b)) represent the edges we have deleted from H(F) for the construction of  $H'(H^*)$ .

Figure 1

hamiltonian decomposition, where  $W_n \cong X(n; \{1, \frac{n}{2}\})$ .

Proof. Throughout this lemma the subscripts of  $x_i$ 's and  $X_j$ 's are taken modulo n with residues  $1,2,\ldots,n$ . Let the vertex set of  $W_n$  be  $\{x_1,x_2,\ldots,x_n\}$  taken in the cyclic order. Then its edge set can be described as  $\{x_ix_{i+1} \mid 1 \leq i \leq n\} \cup \{x_ix_{i+\frac{n}{2}} \mid 1 \leq i \leq n/2\}$ . Let the partite sets of the n-partite graph  $W_n \times K_{2m}$  be  $X_i = \{x_1^i,x_2^i,\ldots,x_{2m}^i\}, 1 \leq i \leq n$ . By the definition of the tensor product of graphs, the edge set of  $W_n \times K_{2m}$  can be described as  $\bigcup_{i=1}^n \left(\bigcup_{j=1}^{2m-1} F_j(X_i,X_{i+1})\right) \cup \left(\bigcup_{i=1}^{n/2} \left(\bigcup_{j=1}^{2m-1} F_j(X_i,X_{i+\frac{n}{2}})\right)\right)$ .

Obtain a digraph  $D_n$  from  $W_n$  as follows: replace the edge  $x_ix_{i+1}$ ,  $1 \le i \le n$ , of  $W_n$  by two directed arcs from  $x_i$  to  $x_{i+1}$  (that is, having the same tail and head) and replace the edge  $x_ix_{i+\frac{n}{2}}$ ,  $1 \le i \le n/2$ , by a symmetric pair of arcs. Thus we have a 3-regular directed graph  $D_n$ . We decompose  $D_n$  into three directed Hamilton cycles  $\overrightarrow{H_1}$ ,  $\overrightarrow{H_2}$  and  $\overrightarrow{H_3}$  as follows: let

$$ec{H_1} = \{(x_{2i-1}, x_{2i}) \mid 1 \leq i \leq n/2\} \cup \{(x_{\frac{n}{2}+2i-1}, x_{2i-1}) \mid 1 \leq i \leq n/2\},\ ec{H_2} = \{(x_{2i}, x_{2i+1}) \mid 1 \leq i \leq n/2\} \cup \{(x_{2i-1}, x_{\frac{n}{2}+2i-1}) \mid 1 \leq i \leq n/2\}, \text{ and } ec{H_3} = \{(x_i, x_{i+1}) \mid 1 \leq i \leq n\}.$$

Clearly,  $\vec{H_1}$ ,  $\vec{H_2}$  and  $\vec{H_3}$  are arc-disjoint directed Hamilton cycles of  $D_n$ . Using these three directed Hamilton cycles, we decompose  $W_n \times K_{2m}$  into 3m-2 Hamilton cycles and a 1-factor. We divide the proof into two cases. Case 1. m=2.

From  $W_n$  obtain  $D_n$  and find  $\overrightarrow{H}_1$ ,  $\overrightarrow{H}_2$  and  $\overrightarrow{H}_3$  from  $D_n$ , as above. Corresponding to the directed Hamilton cycle  $\overrightarrow{H}_i$ , i=1,2, of  $D_n$  we shall obtain a Hamilton cycle,  $H_i$ , i=1,2, of  $W_n \times K_{2m}$  as follows:

let 
$$H_1 = ig( igcup_{(x_i, x_j) \in (A(\vec{H_1}) - \{(x_1, x_2)\})} F_1(X_i, X_j) ig) \cup F_2(X_1, X_2)$$
 and

$$H_2 = \left( \bigcup_{(x_i, x_j) \in (A(\vec{H_2}) - \{(x_2, x_3)\})} F_1(X_i, X_j) \right) \cup F_2(X_2, X_3).$$

Corresponding to  $\overrightarrow{H}_3$ , we obtain two edge-disjoint Hamilton cycles, say,  $H_3$  and  $H_4$  of  $W_n \times K_{2m}$  as follows:

let 
$$H_3 = F_1(X_1, X_2) \cup F_1(X_2, X_3) \cup F_2(X_3, X_4) \cup \left(\bigcup_{i=4}^6 F_3(X_i, X_{i+1})\right) \cup \left(\bigcup_{i=7}^n F_2(X_i, X_{i+1})\right)$$
 and  $H_4 = \left(\bigcup_{i=1}^3 F_3(X_i, X_{i+1})\right) \cup \left(\bigcup_{i=4}^6 F_2(X_i, X_{i+1})\right) \cup \left(\bigcup_{i=7}^n F_3(X_i, X_{i+1})\right)$ . It is not difficult to check that  $H_1, H_2, H_3$  and  $H_4$  are edge-disjoint Hamilton cycles of  $W_n \times K_{2m}$  and the edges not covered by these

Hamilton cycles form a 1-factor of it.

Case 2.  $m \geq 3$ .

As above, obtain  $\mathcal{D}_n$  and  $\vec{H_1}$ ,  $\vec{H_2}$  and  $\vec{H_3}$ . First we decompose the graph  $W_n \times K_{2m}$  into four spanning subgraphs, say,  $G_1$ ,  $G_2$ ,  $G_3$  and F', where F' is a 1-factor of it. Then we find a hamiltonian decomposition of each  $G_i$ ,  $1 \leq i \leq 3$ . First we construct our  $G_i$  's.

Let 
$$G_1 = \bigcup_{(x_i, x_i) \in A(\vec{H}_i)} (\bigcup_{k=1}^{m-1} F_k(X_i, X_j)),$$

$$G_2 = \bigcup_{(x_i, x_j) \in A(\vec{H_2})} (\bigcup_{k=1}^{m-1} F_k(X_i, X_j)),$$

$$G_3 = \bigcup_{i=1}^n \left( \bigcup_{k=m}^{2m-1} F_k(X_i, X_{i+1}) \right)$$
 and  $F' = \bigcup_{i=1}^{n/2} F_m(X_i, X_{\frac{n}{2}+i})$ . Note that

F' is a 1-factor of  $W_n \times K_{2m}$ . Clearly,  $G_1$  and  $G_2$  are isomorphic to G, where  $G = \bigcup_{i=1}^n \left( \bigcup_{k=1}^{m-1} F_k(X_i, X_{i+1}) \right)$ . As mentioned above, to complete the proof, it is enough to decompose G and  $G_3$  into Hamilton cycles. This is achieved by considering two subcases.

Subcase 2.1.  $m \ge 4$  is even.

To obtain a hamiltonian decomposition of  $G \cong G_1, G_2$ , we first obtain a decomposition of G into m-2 Hamilton cycles, say,  $H_2, H_3, \ldots, H_{m-1}$  and a 2-factor F. Again, we decompose  $F \cup H_2$  into two Hamilton cycles, say, H' and H''. Then  $\{H', H'', H_3, H_4, \ldots, H_{m-1}\}$  is a hamiltonian decomposition of G.

Now we define our required F and  $H_2, H_3, \ldots, H_{m-1}$ , as follows:

let  $F = F_1(X_1, X_2) \cup F_1(X_2, X_3) \cup F_{m-1}(X_3, X_4) \cup F_{m-1}(X_4, X_5) \cup F_1(X_5, X_6)$  $\cup F_1(X_6, X_7) \cup \left(\bigcup_{j=1}^{(n-6)/4} (F_1(X_{4j+3}, X_{4j+4}) \cup F_1(X_{4j+4}, X_{4j+5}) \cup F_{m-1}(X_{4j+5}, X_{4j+6}) \cup F_{m-1}(X_{4j+6}, X_{4j+7})\right)\right)$ , and let

$$H_{i} = F_{i}(X_{1}, X_{2}) \cup F_{i}(X_{2}, X_{3}) \cup F_{m-i}(X_{3}, X_{4}) \cup F_{m-i}(X_{4}, X_{5}) \cup F_{i}(X_{5}, X_{6}) \cup F_{m-i+1}(X_{6}, X_{7}) \cup \left(\bigcup_{j=1}^{(n-6)/4} (F_{i}(X_{4j+3}, X_{4j+4}) \cup F_{i}(X_{4j+4}, X_{4j+5}) \cup F_{m-i}(X_{4j+5}, X_{4j+6}) \cup F_{m-i}(X_{4j+6}, X_{4j+7})\right), 2 \leq i \leq m-1.$$

Indeed, each  $H_i$ ,  $2 \le i \le m-1$ , is a Hamilton cycle of G,  $H_i$ 's are edge-disjoint and F is a 2-factor of G consisting of two cycles of equal length. In fact, the vertices  $x_1^1, x_3^1, \ldots, x_{2m-1}^1$  are contained in a single cycle of F, say, C' and the vertices  $x_2^1, x_4^1, \ldots, x_{2m}^1$  are contained in the other cycle of F, say, C''. Next we obtain two edge-disjoint Hamilton cycles of G from  $F \cup H_2$ . Let  $H' = (H_2 - \{x_1^1 x_3^2, x_2^2 x_4^3\}) \cup \{x_1^1 x_2^2, x_3^2 x_4^3\}$  and H'' =

 $(F - \{x_1^1 x_2^2, x_3^2 x_4^3\}) \cup \{x_1^1 x_3^2, x_2^2 x_4^3\}$ . Clearly, H' and H'' are Hamilton cycles of G as can be seen by letting  $H = H_2$  and  $a = x_1^1$ ,  $b = x_3^2$ ,  $c = x_2^2$ ,  $d = x_4^3$  in all the graphs of Figure 1. Thus  $\{H', H'', H_3, H_4, \ldots, H_{m-1}\}$  is a required hamiltonian decomposition of G.

Next we decompose  $G_3$  into m Hamilton cycles  $H_1, H_2, \ldots, H_m$  as follows: let  $H_1 = \left(\bigcup_{j=1}^5 F_m(X_j, X_{j+1})\right) \cup F_{2m-1}(X_6, X_7) \cup \left(\bigcup_{j=7}^n F_m(X_j, X_{j+1})\right)$  and  $H_i = F_{m+i-1}(X_1, X_2) \cup F_{m+i-1}(X_2, X_3) \cup F_{2m-i+1}(X_3, X_4) \cup F_{2m-i+1}(X_4, X_5)$   $\cup F_{m+i-1}(X_5, X_6) \cup F_{2m-i}(X_6, X_7) \cup \left(\bigcup_{j=1}^{(n-6)/4} \left(F_{m+i-1}(X_{4j+3}, X_{4j+4}) \cup F_{m+i-1}(X_{4j+4}, X_{4j+5}) \cup F_{2m-i+1}(X_{4j+5}, X_{4j+6}) \cup F_{2m-i+1}(X_{4j+6}, X_{4j+7})\right)\right),$   $2 \leq i \leq m$ . Clearly,  $H_1, H_2, \ldots, H_m$ , are edge-disjoint Hamilton cycles of  $G_3$ . Subcase 2.2.  $m \geq 3$  is odd.

To decompose G into Hamilton cycles, we first obtain two 2-factors, say,  $F_1$  and  $F_2$ , and m-3 Hamilton cycles  $H_3, H_4, \ldots, H_{m-1}$ ; then we decompose  $F_1 \cup F_2$  into two Hamilton cycles. Now we define our  $F_i$  's and  $H_j$  's.

Let 
$$F_1 = F_1(X_1, X_2) \cup F_1(X_2, X_3) \cup F_{m-1}(X_3, X_4) \cup F_{m-1}(X_4, X_5) \cup F_1(X_5, X_6)$$
  
 $\cup F_2(X_6, X_7) \cup \left(\bigcup_{j=1}^{(n-6)/4} (F_1(X_{4j+3}, X_{4j+4}) \cup F_1(X_{4j+4}, X_{4j+5}) \cup F_{m-1}(X_{4j+5}, X_{4j+6}) \cup F_{m-1}(X_{4j+6}, X_{4j+7})\right)\right)$  and let

 $F_{2} = F_{2}(X_{1}, X_{2}) \cup F_{2}(X_{2}, X_{3}) \cup F_{m-2}(X_{3}, X_{4}) \cup F_{m-2}(X_{4}, X_{5}) \cup F_{2}(X_{5}, X_{6}) \cup F_{1}(X_{6}, X_{7}) \cup \left(\bigcup_{j=1}^{(n-6)/4} (F_{2}(X_{4j+3}, X_{4j+4}) \cup F_{2}(X_{4j+4}, X_{4j+5}) \cup F_{m-2}(X_{4j+5}, X_{4j+6}) \cup F_{m-2}(X_{4j+6}, X_{4j+7})\right). \text{ For } 3 \leq i \leq m-1, \text{ let}$ 

$$H_{i} = F_{i}(X_{1}, X_{2}) \cup F_{i}(X_{2}, X_{3}) \cup F_{m-i}(X_{3}, X_{4}) \cup F_{m-i}(X_{4}, X_{5}) \cup F_{i}(X_{5}, X_{6}) \cup F_{m-i+2}(X_{6}, X_{7}) \cup \left(\bigcup_{j=1}^{(n-6)/4} \left(F_{i}(X_{4j+3}, X_{4j+4}) \cup F_{i}(X_{4j+4}, X_{4j+5}) \cup F_{m-i}(X_{4j+5}, X_{4j+6}) \cup F_{m-i}(X_{4j+6}, X_{4j+7})\right)\right).$$

It is clear that  $H_3, H_4, \ldots, H_{m-1}$ , are edge-disjoint Hamilton cycles of G and  $F_1$  and  $F_2$  are edge-disjoint 2-factors of G. If gcd(3, 2m) = 1, then  $F_1$  and  $F_2$  are Hamilton cycles, and in this case  $\{F_1, F_2, H_3, H_4, \ldots, H_{m-1}\}$  is a required hamiltonian decomposition of G. If gcd(3, 2m) = 3, then each of the  $F_i$ , i = 1, 2, consists of three cycles of equal length and in fact, the vertices  $x_{1+3j}^1$ ,  $0 \le j \le (2m-3)/3$ , are in a single cycle, say,  $C_i^1$  of  $F_i$ , the vertices  $x_{2+3j}^1$ ,  $0 \le j \le (2m-3)/3$ , are in another cycle, say,  $C_i^2$ , and the vertices  $x_{3+3j}^1$ ,  $0 \le j \le (2m-3)/3$ , are in the remaining cycle, say,  $C_i^3$  of  $F_i$ .

We obtain two edge-disjoint Hamilton cycles H' and H'' from  $F_1 \cup F_2$  as

follows: let  $H' = (F_1 - \{x_1^1 x_2^2, x_3^2 x_4^3, x_3^1 x_4^2, x_6^2 x_6^3\}) \cup \{x_1^1 x_3^2, x_3^1 x_6^2, x_2^2 x_4^3, x_4^2 x_6^3\}$  and let  $H'' = (F_2 - \{x_1^1 x_3^2, x_3^1 x_6^2, x_2^2 x_4^3, x_4^2 x_6^3\}) \cup \{x_1^1 x_2^2, x_3^2 x_4^3, x_3^1 x_4^2, x_6^2 x_6^3\}$ . Clearly, H' and H'' are Hamilton cycles of G, see Figure 2. Hence  $\{H', H'', H_3, H_4, \ldots, H_{m-1}\}$  is a hamiltonian decomposition of G.

To decompose  $G_3$  into Hamilton cycles, we first decompose  $G_3$  into m-1 Hamilton cycles  $H_2, H_3, \ldots, H_m$  and a 2-factor F. Then we decompose  $F \cup H_2$  into two Hamilton cycles. For  $2 \le i \le m$ , let

 $H_{i} = F_{m+i-1}(X_{1}, X_{2}) \cup F_{m+i-1}(X_{2}, X_{3}) \cup F_{2m-i}(X_{3}, X_{4}) \cup F_{2m-i}(X_{4}, X_{5}) \cup F_{m+i-1}(X_{5}, X_{6}) \cup F_{2m-i+1}(X_{6}, X_{7}) \cup \left(\bigcup_{j=1}^{(n-6)/4}(F_{m+i-1}(X_{4j+3}, X_{4j+4}) \cup F_{m+i-1}(X_{4j+4}, X_{4j+5}) \cup F_{2m-i+1}(X_{4j+6}, X_{4j+6}) \cup F_{2m-i+1}(X_{4j+6}, X_{4j+7})\right)$  and  $F = F_{m}(X_{1}, X_{2}) \cup F_{m}(X_{2}, X_{3}) \cup F_{2m-1}(X_{3}, X_{4}) \cup F_{2m-1}(X_{4}, X_{5}) \cup F_{m}(X_{5}, X_{6}) \cup F_{m}(X_{6}, X_{7}) \cup \left(\bigcup_{j=7}^{m} F_{m}(X_{j}, X_{j+1})\right)$ . Clearly  $H_{2}, H_{3}, \ldots, H_{m}$  are edge-disjoint Hamilton cycles of  $G_{3}$  and F is a 2-factor consisting of two cycles of equal length. In fact, the vertices  $x_{1}^{1}, x_{3}^{1}, \ldots, x_{2m-1}^{1}$  are contained in a single cycle of F, say, C', and the vertices  $x_{2}^{1}, x_{4}^{1}, \ldots, x_{2m}^{1}$  are contained in the other cycle, say, C'' of F. Next we obtain two edge-disjoint Hamilton cycles of  $G_{3}$  from  $F \cup H_{2}$  as follows: let  $H' = (H_{2} - \{x_{1}^{1}x_{m+2}^{2}, x_{m+1}^{2}x_{2}^{3}\}) \cup \{x_{1}^{1}x_{m+1}^{2}, x_{m+2}^{2}x_{2}^{3}\}$  and let  $H'' = (F - \{x_{1}^{1}x_{m+1}^{2}, x_{m+2}^{2}x_{2}^{3}\}) \cup \{x_{1}^{1}x_{m+2}^{2}, x_{m+1}^{2}x_{2}^{3}\}$ . Clearly, H' and H'' are Hamilton cycles of  $G_{3}$  as can be seen by letting  $H = H_{2}$  and  $a = x_{1}^{1}, b = x_{m+2}^{2}, c = x_{m+1}^{2}, d = x_{2}^{3}$  in all the graphs of Figure 1. Thus  $\{H', H'', H_{3}, H_{4}, \ldots, H_{m}\}$  is a hamiltonian decomposion of  $G_{3}$ . This completes the proof.

# Lemma 2.4. For $k \ge 1$ , $C_{2k+1} \times K_{r,r} \cong C_{2(2k+1)} * \overline{K}_r$ .

Proof. Let X and Y be the bipartition of  $K_{r,r}$ . Let  $V(C_{2k+1}) = \{v_1, v_2, \ldots, v_{2k+1}\}$ . Clearly,  $V(C_{2k+1} \times K_{r,r}) = \bigcup_{i=1}^{2k+1} \{(v_i \times X) \cup (v_i \times Y)\}$ . From the definition of the tensor product of graphs, the subgraphs induced by  $(v_i \times X) \cup (v_{i+1} \times Y)$  and  $(v_i \times Y) \cup (v_{i+1} \times X)$  are complete bipartite subgraphs of  $C_{2k+1} \times K_{r,r}$ . Then  $C_{2k+1} \times K_{r,r}$  is isomorphic to  $C_{2(2k+1)} \times \overline{K_r}$ ; this can be seen by arranging the vertex subsets  $(v_1 \times X), (v_2 \times Y), (v_3 \times X), \ldots, (v_{2k+1} \times X), (v_1 \times Y), (v_2 \times X), (v_3 \times Y), \ldots, (v_{2k+1} \times Y)$ , in order, wherein any two consecutive subsets, taken in the cyclic order, induce a complete bipartite graph.

Proof of Theorem 1.3. We prove this theorem in two cases.



H' Figure 2 (a)



Figure 2 (b)

Broken edges of Figure 2 (a) (Figure 2 (b)) represent the edges we have deleted from  $F_1(F_2)$  for the construction of H'(H'').

Figure 2

Case 1. r is even.

As  $K_{r,r}$  is hamiltonian decomposable, (a hamiltonian decomposition of  $K_{r,r}$  is  $F_{2i-2} \cup F_{2i-1}$ ,  $i=1,2,\ldots,r/2$ , where  $F_k$  denotes the 1-factor of distance k from one part to the other),  $K_{r,r} = H_1 \oplus H_2 \oplus \ldots \oplus H_{r/2}$ , where  $H_i$ 's are Hamilton cycles of  $K_{r,r}$ . As the tensor product is distributive over edge-disjoint subgraphs,  $K_{r,r} \times K_m = \bigoplus_{i=1}^{r/2} (H_i \times K_m)$ . If m is odd, then  $H_i \times K_m$  can be decomposed into Hamilton cycles by Lemma 3.2 of [12]. If m is even, then  $H_i \times K_m$  can be decomposed into Hamilton cycles by Lemma 2.2.

Case 2. r is odd.

If r=1, then the result is obvious as  $K_{1,1} \times K_m \cong K_{m,m} - F$ , where F is a 1-factor of  $K_{m,m}$ . So we may assume that  $r \geq 3$ . We complete the proof of Case 2 in two subcases.

Subcase 2.1.  $m \ge 3$  is odd.

As  $K_m$  is hamiltonian decomposable,  $K_m = H_1 \oplus H_2 \oplus \ldots \oplus H_{(m-1)/2}$ , where  $H_i$ 's are Hamilton cycles of  $K_m$ . Now  $K_{r,r} \times K_m \cong K_m \times K_{r,r} = \bigoplus_{i=1}^{(m-1)/2} (H_i \times K_{r,r})$ .  $H_i \times K_{r,r} \cong C_{2m} * \overline{K}_r$  by Lemma 2.4, and  $C_{2m} * \overline{K}_r$  has a hamiltonian decomposition [11], the result follows.

Subcase 2.2.  $m \ge 4$  is even.

Now  $K_{r,r} = H_1 \oplus H_2 \oplus \ldots \oplus H_{(r-3)/2} \oplus W_{2r}$ , where  $H_i$ 's are Hamilton cycles of  $K_{r,r}$  and  $W_{2r} \cong X(2r; \{1,r\})$  by Lemma 2.1.  $K_{r,r} \times K_m = \bigoplus_{i=1}^{(r-3)/2} (H_i \times K_m) \oplus (W_{2r} \times K_m)$ . The graph  $H_i \times K_m$  has a hamiltonian decomposition by Lemma 2.2. The graph  $W_{2r} \times K_m$  is hamiltonian decomposable by Lemma 2.3. This completes the proof.

Acknowledgement: This research is partially supported by Department of Science and Technology (DST), Government of India, New Delhi; Project grant No: SR/S4/MS: 217/03. The authors thank the DST for financial support.

### References

- B. Alspach, J.-C. Bermond, D. Sotteau, In: G. Hahn et al (Eds.), Decompositions into cycles I: Hamilton decompositions: in Cycles and Rays, Kluwer Academic Press, Dordrecht, (1990), pp. 9-18.
- [2] R. Balakrishnan, J.-C. Bermond, P. Paulraja and M.-L. Yu, On Hamilton cycle decompositions of the tensor product of complete graphs, Discrete Math. 268 (2003) 49-58.

- [3] R. Balakrishnan and P. Paulraja, Hamilton cycles in tensor product of graphs, Discrete Math. 186 (1998) 1-13.
- [4] R. Balakrishnan and K. Ranganathan, A text book of graph theory, Springer-Verlag, New York (2000).
- [5] Z. Baranyai and G. Szasz, Hamiltonian decompositions of lexicographic product, J. Combin. Theory (B) 31 (1981) 253-261.
- [6] J.-C. Bermond, Hamiltonian decompositions of graphs, digraphs and hypergraphs, Ann. Discrete Math. 3 (1978) 21-28.
- [7] J.-C. Bermond, O. Favaron, M. Maheo, Hamiltonian decomposition of Cayley graphs of degree 4, J. Combin. Theory (B) 46 (1989) 142-153.
- [8] J. A. Bondy and U. S. R. Murty, Graph theory with applications, Elsevier, New York (1976).
- [9] J. Bosak, Decompositions of graphs, Kluwer Academic Press, Dordrecht, 1990.
- [10] P. Jha, Hamilton decompositions of product of cycles, Indian J. Pure Appl. Math. 23 (1992) 723-729.
- [11] R. Laskar, Decomposition of some composite graphs into hamiltonian cycles, Proc. 5th Hungarian Coll. Keszthely 1976, North Holland, 1978, 705-716.
- [12] A. Muthusamy, P. Paulraja, Factorizations of product graphs into cycles of uniform length, Graphs and Combin. 11 (1995) 69-90.
- [13] L. Ng, Hamiltonian decomposition of lexicographic products of digraphs, J. Combin. Theory (B) 73 (1998) 119-129.
- [14] M. Šajna, Cycle decompositions III: Complete graphs and fixed length cycles, J. Combin. Designs 10 (2002) 27-78.
- [15] R. Stong, Hamilton decomositions of cartesian product of graphs, Discrete Math. 90 (1991) 169-190.