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Abstract

In this paper it has been proved that Kr, X Km, m 2 3, is hamiltonian
decomposable.

1 Introduction

A k-regular graph G has a hemiltonian decomposition if its edge set can
be partitioned into % Hamilton cycles when k is even, or into (k —1)/2
Hamilton cycles plus a 1-factor (or a perfect matching) when k is odd. We
write G=H\® Ho®...® Hy if Hy, Ha,..., H; are edge-disjoint subgraphs
of G and E(G) = E(H,)U E(H;)U...U E(Hy). The complete graph on m
vertices is denoted by K, and its complement is denoted by K.

For two simple graphs G and H their wreath product, denoted by G * H,
has vertex set V(G) x V(H) in which (g1,h;) and (g2, ka) are adjacent
whenever 9193 € B(G), or g = g3 and hihg € E(H). Similarly, G x H, the
tensor product (also called Kronecker product or direct product) of the graphs
G and H has vertex set V(G) x V(H) in which two vertices (g1,h1) and
(92,h2) are adjacent whenever g1g; € E(G) and hihy € E(H). 1t is well
known that the tensor product is commutative and distributive over edge-
disjoint union of graphs, that is, if G = H1 ® Ha® ... ® I, then G x H =
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(HixH)®H:xH)®...® (Hy x H).

We shall use the following notation throughout the paper. Let G and H
be simple graphs with V(G) = {z1,2,...,2»} and V(H) = {n,y2,..-,¥m}
Then V(Gx H) = V(G)x V(H). For our convenience, we write V(G)x V(H) =
UL, Xi, where X; stands for {x;} x V(H). Further, in the sequel, we shall
denote the vertices of X; as {z} | 1 < j < m}, where z;- stands for
the vertex (zi,y;)- Xi,1 £ 2 < n, is called the sth layer of G x H. If
V(G) = {%1,%2,...,Z,}, then we call G x H an n-partite graph with partite
sets X1,Xo,..., X,

Let G be a bipartite graph with bipartition (X,Y), where X =
{z1,%2,..., 2.}, Y = {v1,%2,...,9:}. If 2;y; is an edge of G, then z;y;
is called an edge of distance j —i if i < j, or n— (i —j) if i > j,
from X to Y. The same edge is said to be of distance i —j if ¢ > j,
or n—(j—1i) if i < 4, from Y to X. f G contains the set of edges
F(X)Y) = {z;1:4; | 1 £ j £ n}, 0< i £ n—1, where addition in the
subscript is taken modulo n with residues 1,2,...,n, then we say that G
has the 1-factor of distance ¢ from X to Y. Clearly, if G = K, , then
E(G) =4 Fi(X,Y). Note that Fi(Y,X)=F,_i(X,Y), 0< i< n—1. For
a digraph D, by A(D) we mean the arc set of D. Definitions which are not
seen here can be found in [4] or [8].

Let k be a positive integer and let L be a subset of {1,2,...,[]}. A
circulant X = X(k;L) is a graph with vertex set V(X) = {ug,u1,...,ux-1}
and edge set E(X) = {uju;4i | i € Zg, ! € L}. The edge usu;ys, where l € L,
is said to be of distance I, and L is called the edge distance set of the circulant
X. Then it is clear that if ged(k,l;) = 1, then the circulant X(k; {I;}) is a
Hamilton cycle. We shall denote a graph isomorphic to X(2r; {1,r}) by Wa,.

The following result of Bermond et al [7] will be used throughout the paper.
Theorem 1.1. Any connected circulant of degree 4 can be decomposed into
Hamilton cycles. | |

Remark 1.2. Ezamples of circulants of degree 4 that are connected include the
circulants of the forms X (k; {l,1+1}), X(k; {20 — 1,20 +1}), and if k is odd,
X(k; {21,201+ 2}), see [14]. n

In this paper, we study the hamiltonian decomposition of Ky, x Km.
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The problem of finding hamiltonian decompositions of product graphs is not
new. Hamiltonian decompositions of various product graphs have been studied,
see (1], {6] and [9]. For example, it has been conjectured [6] that if both G and
H are Hamilton cycle decomposable, then GO H is hamiltonian decomposable,
where [J denotes the cartesian product of graphs [1]. This conjucture has been
verified to be true for a large class of graphs [15]. Baranyai and Szasz [5] proved
that if both G and H are even-regular hamiltonian decomposable graphs, then
G x H is hamiltonian decomposable. In [13] Ng has obtained a partial solution
to the following conjecture of Alspach et al [1): If Dy and Do are directed
Hamilton cycle decomposable digraphs, then D; * D, is directed Hamilton
cycle decomposable. Jha [10] has raised the following conjecture: if both G
and H are hamiltonian decomposable and G x H is connected, then G x H
is hamiltonian decomposable. But this conjecture is disproved in [3]. Because
of this, finding a hamiltonian decomposition of tensor product of hamiltonian
decomposable graphs is considered to be difficult. In (2] it has been proved
that K, x K, is bamiltonian decomposable. Here we prove that K, x K, is
hamiltonian decomposable. In fact, we have obtained the following main

Theorem 1.3. For m >3, Ky, X Km has a hamiltonian decomposition.
2 Proof of the main theorem

First we prove a few lemmas. Then using them we prove the main result of this
paper.

Lemma 2.1. Let r > 3 be odd. Then K., can be decomposed into Hamilton
cycles and one copy of Wa, (22 X(2r;{1,7})).

Proof. Let A = {ug,u3,...,u2,—2} and B = {u1,us,...,us—1} be the
bipartition of K, ,. Place these vertices in the cyclic order ug, u1,u2,...,u2r_1-
Thus K,, is isomorphic to the circulant X(2r;{2i ~1|1 < i < (r +1)/2}).
We divide the proof into two cases.

Case 1. r= 1 (mod 4).

We decompose K, into circulants as follows:

Kvr = (@57 X (2r; {4i—1,4i+1}))® X(2r; {r—2})® X(2r; {1,7}). Bach
circulant, except the last two, in the above expression is connected and 4-
regular and hence cach of them can be decomposed into two Hamilton cycles, by
Theorem 1.1 and Remark 1.2. The circulant X (2r; {r —2}) is a Hamilton cycle
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as ged(2r,r —2) =1 and the last circulant X (2r; {1,7}) is Wa,, by definition.
Case 2. r = 3 (mod 4).
We decompose K, into circulants as follows:

K.,= (@("3)/4){(21'; {4i—1,4i+1}))® X (2r; {1,r}). Each circulant, except
the last one, in the above expression is connected and 4-regular and hence each
of them can be decomposed into two Hamilton cycles, by Theorem 1.1 and
Remark 1.2. The last circulant X (27;{1,r}) is Wj,, by definition. [ ]

- Lemma 2.2. For m > 2 and k > 2, Ca %X Ka, has a hamiltonian
decomposition.

Proof. Let the partite sets of the 2k-partite graph Ca x Ka, be X; =
{z},24,...,%hn}, 1 < i < 2k. First we decompose Cai x Kz into 2m — 2
Hamilton cycles H,Ha,...,Han-2 and a 2-factor F such that F has two
cycles of equal length. Then we decompose F U Hj,,_2 into two Hamilton
cycles, say, H' and H”. Thus {H,,Ha,...,Ham—s,H',H"} is a hamiltonian
decomposition of Ca x Koy, .

First we obtain the Hamilton cycles Hy, Ha,..., H2,,—2 and the 2-factor F
as follows: for 1 < i < 2m —2, let H; = Fap (X1, X2) U Forp—i(X2,Xs) U
Fi(X3,Xa) U Fi1(Xa, Xs) U (Uis{Fi(Xa5-1, X25) U Fam—i(Xa;, X2541)})
and let F = F(X1,X2) U Fi(X3,X3) U Fon—1(X3,Xa) U Fi(X4, Xs) U
(U;ZS{FQ";_](XQJ'_1,X2,') U Fi(X2;,Xaj41)}), where the subscripts of X;'’s
are taken modulo 2k with residues 1,2,...,2k. Clearly H;’s are edge-disjoint
Hamilton cycles of Cax X Kam and F is a 2-factor of it consisting of two
cycles C’' and C” of equal length. In fact, the vertices z},z},2},...,23,,_,
are contained in a single cycle of F, say, C’, and the vertices z},z},z},...,23,
are contained in the other cycle of F, say, C”. Next we obtain two edge-disjoint
Hamilton cycles from Hg,,—o U F. From the construction of Hj,,_2, it is clear
that the edges ziz and z3z} are in Hj,,—3 and from the construction of
F the edges zlz} and z3z} arein F. Let H' = (Hym—3 — {zlz3,z32z3})U
{zlz3, z3z3} andlet H” = (F — {z}x3, z3z3}) U {x}x3},z323}. That H’ and
H" are indeed edge-disjoint Hamilton cycles of Cax x Ka,, as can be seen by
letting H = Hayn—2 and a =z}, b==12, ¢ =23, d = z3 in all the graphs of
Figure 1. This completes the proof. ]

Lemma 2.8. If n = 2 (mod4), n > 6 and m > 2, then W,, x Ky,, hasa
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Broken edges of Figure 1 (a) (Figure 1 (b)) represent the edges we

have deleted from H (F) for the construction of H'(H*).

Figure 1
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hamiltonian decomposition, where W, = X(n;{1,%}).

Proof. Throughout this lemma the subscripts of z;’s and X;’s are
taken modulo n» with residues 1,2,...,m Let the vertex set of W, be
{z1,%3,...,%n} taken in the cyclic order. Then its edge set can be described
a8 {Z;%iy1 | 1< i< n}U {zizisy | 1 < i< nf2}. Let the partite sets of the
n-partite graph W, x Ka,, be X; = {z},z},...,28,,}, 1 < i < n. By the
definition of the tensor product of graphs, the edge set of W, x Ka;,, can be
described as U, (UIm F5(Xi, Xie1)) U (URSUIZT Fi (X, Xivg)))-

Obtain a digraph D,, from W, as follows: replace the edge z;zi41, 1< i <
n, of W, by two directed arcs from z; to ;43 (that is, having the same tail
and head) and replace the edge z;zi+3, 1 < i < n/2, by a symmetric pair of
arcs. Thus we have a 3-regular directed graph D,,. We decompose D,, into
three directed Hamilton cycles ﬁl, I?a and I;a as follows: let
By = {(@ni-1, o) | 1€ < n/2}U {(ga2-1, 22-1) | 1 £ 6 < mf2),
I_{a= {(z2i,%as41) | 1 £ i < n/2}U {(z3i-1,%5+42-1) | 1 £ i < n/2}, and
Hy= {(zi,%i41) | 1 S 4 < n}.

Clearly, ﬁl, }_I; and f-_fs are arc-disjoint directed Hamilton cycles of D,,.
Using these three directed Hamilton cycles, we decompose W, x Ka, into
3m — 2 Hamilton cycles and a 1-factor. We divide the proof into two cases.
Casel. m=2.

From W, obtain D, and find I?l, ﬁz and I?s from D,, as above.
Corresponding to the directed Hamilton cycle ﬁ.-, i = 1,2, of D, we shall
obtain a Hamilton cycle, H;, i = 1,2, of W, x K., as follows:

let Hy = ( U Fi(X:, X;)) U B(Xy1,X3) and
(m4,39)€ (A(H1)—{(1,22)})

Hy=( U F(X;, X;)) U Fy(Xa, Xs).
(z025)€ (A(Ha)—{(22,:23)})

Corresponding to ﬁs, we obtain two edge-disjoint Hamilton cycles, say, Hg
and Hy of W, x K3, as follows:
let Hy = Fy(X1,X2)U Fi(Xa,Xs) U Fa(Xs,Xs) U (Ul_y Fa(Xi) Xiz1)) U
(Ur; Fa(X:, Xiy1)) and Hy = (Ui F5(Xs, Xi1)) U (U Fa(Xs, Xar1)) U
(U, Fs(X:, Xi41))- It is not difficult to check that Hj, Hj, Hs and H, are
edge-disjoint Hamilton cycles of W,, X Ka,, and the edges not covered by these
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Hamilton cycles form a 1-factor of it.

Case 2. m > 3. .

As above, obtain D,, and ﬁl, H, and Hs . First we decompose the graph
W, x Kan, into four spanning subgraphs, say, Gi, G2, G3 and F’, where
F' is a 1-factor of it. Then we find a hamiltonian decomposition of each
G;, 1 € i £ 3. First we construct our G;’s.

Let Gi1=U (Urs' B(X:, X5)),

(1‘ 2’)6 A(H )

n—1
Gz = U(m ;)€ A(Ha) (Uim R(X, X5)),

Cs = Ur, (Uinn! Fu(X:, Xip1)) and  F' = P2 Fru(Xi, X3.4:)- Note that

F’ ig a 1-factor of W, x Ky,,. Clearly, G1 and G; are isomorphic to G, where
=l ;"___'11 Fy(X;, Xiy1)). As mentioned above, to complete the proof, it
is enough to decompose G and G into Hamilton cycles. This is achieved by
considering two subcases.

Subcase 2.1. m >4 is even.

To obtain a hamiltonian decomposition of G (X Gi, G2), we first obtain a
decomposition of G into m — 2 Hamilton cycles, say, Hy,Hs,...,H,,_; and
a 2-factor F. Again, we decompose F U Hj into two Hamilton cycles, say, H’
and H”. Then {H', H”, Hs, Hy, ..., Hn_1} is a hamiltonian decomposition
of G.

Now we define our required F and Ha, Hs,...,H,,_1, as follows:
let F=F(X1,X2)UF1(Xa,X3)U Frn_1(X3, X4)U Fp1(X4, Xs)U Fi (X5, Xe)
U Fi(Xe, X1)U (U7 (Fi(Xajrs, Xaj+4)U Fi(Xag 44, Xa545)U Frao1 (Xejas,
Xq,-.;.c) U] Fm_1(X4,-+e,X4j+7))), and let
H; = Fi(X1,X3)U Fi(X2,X3) U Frm_i(Xs, X4) U Fro_i(X4, Xs) U Fi(Xs, Xs)U
Fon_i1(Xe, X7) U (US4 (Fi(Xa543) Xaj4a) U Fi(Xgj1a, Xajs) U Fmei
Xajes: Xaji8)U Frui( X546, X4j47)))s 2< i< m—1.

Indeed, each H;, 2 €< i £ m — 1, is a Hamilton cycle of G, H;’s are
edge-disjoint and F is a 2-factor of G consisting of two cycles of equal
length. In fact, the vertices z},z},...,z},_, are contained in a single cycle
of F, say, C' and the vertices z},z},...,z},, are contained in the other
cycle of F, say, C”. Next we obtain two edge-disjoint Hamilton cycles of
G from FU H,. Let H' = (H; — {zlx}, 23z3}) U {22, 2323} and H” =
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(F — {z1z3, z3z3}) U {z}x}, z3z3}. Clearly, H’ and H” are Hamilton cycles
of G as can be seen by letting H = Hy and a =2}, b=2%,c =2},d =z}
in all the graphs of Figure 1. Thus {H’,H”,Hs,Hy,...,Hn—1} is a required
hamiltonian decomposition of G. :

Next we decompose Gg into m Hamilton cycles Hy, Ho,...,H,, as follows:
let Hy = (U3, Fn(Xj,X;41)) U Fam-1(Xe, X7) U (Ujy Fn(Xj, Xj+1)) and
H; = Frnyi1(X1, X2)U Foi-1(X2, X3)U Farn—it1(X3, X4)U Fam—i+1(X4, Xs)
U Fnti-1(Xs, X6) U Fam—i(Xe, X7) U ( UZT™* (Frntic1(Xajas, Xajaa) U
Frtic1(Xaj+4, X4545) U Fam—i41(Xaj+5, Xaj+6) U Fam—i+1(Xaj+6, X4j47)))
2 < i < m. Clearly, Hy,H,...,H,,, are edge-disjoint Hamilton cycles of Gj.
Subcase 2.2, m >3 is odd.

To decompose G into Hamilton cycles, we first obtain two 2-factors, say, Fy
and F3, and m — 3 Hamilton cycles Hs, Hy,...,Hy—1; then we decompose
Fi U Fy into two Hamilton cycles. Now we define our F;’s and H;’s.

Let Fy = F1(X1, X2)U Fy (X2, X3)U Frn—1(X3, X4)U Fia—1(X4, Xs)U F1 (X5, Xe)
U Fa(Xe, X7)U (US4 (F1 (X ag43 Xaj+a)U Fi(X g4, Xaj18)U Frne1 (Xaja5,
X4,'+s) U F, _.1(X4,'+5,X4j+7))) and let

Fy = P (X1, X2)V Fo(X2,X3)U Fr_2(Xs, X4)U Fr—2(X4,X5) U Fa(X5, Xe6)U
Fi(Xe, X7)U ( U§';I“” Y Fa(X i3, Xaj+a) U Fa(Xajia, Xaji5)U Fraoa(Xajts,
Xajr6) U Frn-a(X4i+6, X4j47))). For 3< i< m—1, let

H; = F,'(Xl,Xz)U E(Xg,Xs)U Fm-e(X3,X4)U Fm_,’(X4,X5)U F,'(Xs,XQ)U
Friva(Xe, X7) U (U;Ssm (Fi(Xaj+3, X4j+4) U Fi(Xaj4a, X4j45) U Frni (

X445, X145+6) U Frn_i(X4j46, X447)))-

It is clear that Hs, Hy,...,Hm—1, are edge-disjoint Hamilton cycles of G
and F; and F, are edge-disjoint 2-factors of G. If ged(3, 2m) =1, then Fy
and F; are Hamilton cycles, and in this case {Fy, Fs, Hs,Hy,...,Hn-1} is &
required hamiltonian decomposition of G. If gcd(3, 2m) = 3, then each of the
F;, i = 1,2, consists of three cycles of equal length and in fact, the vertices
-'ti.,.s,-. 0 € j < (2m — 3)/3, are in a single cycle, say, C} of F;, the vertices
23,350 € j < (2m — 3)/3, are in another cycle, say, C?, and the vertices

23,35, 0 < j < (2m —3)/3, are in the remaining cycle, say, C} of F;.

We obtain two edge-disjoint Hamilton cycles H’ and H” from FiU F; as
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follows: let H' = (F—{z}z%, z3z}, x§23, z223}) U {zlx}, xix?, 23x], 2323}

and let H" = (F, — {2123, z}a?, 2323, 2323}) U {2123, 23}, zlad, 2223 ).
Clearly, H' and H” are Hamilton cycles of G, see Figure 2. Hence {H’, H”,

Hj,Hy,...,Hpm 1} is a hamiltonian decomposition of G.

To decompose G3 into Hamilton cycles, we first decompose Gs into m — 1
Hamilton cycles Hy, Hg,. .., H,, and a 2-factor F. Then we decompose FU Hj
into two Hamilton cycles. For 2 < i < m, let
H; = Frppi—1(X1,X3) U Fppic1(Xo, X3) U Fop—i(X3, X4) U Forn—i (X4, X5) U
Fnti-1(X5,X6) U Fam—is1(Xe, X7) U (U1 (Frnsic1(Xajas) Xaj+a) U
Frtio1(Xaj+4, Xaj48) U Fam—it1(Xaj+5, Xaj16) U Fam—is1(Xajr6, Xaj+7)))
and F = Fp(X1,X2) U Fra(Xa2,X3) U Fapn_1(X3, X4) U Fapn—1(X4, Xs) U
Fm(Xa,Xc) U Fm(Xs,X7) U ( ;-‘=7 Fm(X,',Xj+1)). Clearly H,,Hj,...,H,,
are edge-disjoint Hamilton cycles of G3 and F is a 2-factor consisting
of two cycles of equal length. In fact, the vertices z},z},...,z},,_, are
contained in a single cycle of F, say, C’, and the vertices z3,zi,...,x3,
are contained in the other cycle, say, C” of F. Next we obtain two
edge-disjoint Hamilton cycles of Gs from F U H; as follows: let H' =
(Ha — {lahs2, 2hyd)) U {olehupn, shogael) and let H" = (F -
{122, 11, 22, 923}) U {z}22, 4, 22,173}, Clearly, H' and H” are Hamilton
cycles of Gs as can be seen by letting H = Hy and a =z}, b=22 9, c=
z2,,1, d= 23 in all the graphs of Figure 1. Thus {H’,H”,Hs,Hy,...,Hn} is
a hamiltonian decomposion of G3. This completes the proof. ]

Lemma 2.4. For k21, Caq1 X Kpp & C2(2k+1) * K.

Proof. Let X and Y be the bipartition of K. Let V(Cax41) = {v1, v3,.

vaks1}. Clearly, V(Caky1 x Krr) = UZF {(vs x X)U (o x Y)}. Erom
the definition of the temsor product of graphs, the subgraphs induced by
(vi x X)U (%41 x Y) and (v; X Y)U (v;41 X X) are complete bipartite
subgraphs of Cai41 X Kyr. Then Caiyy X Ky, is isomorphic to Cagxi1) * Kr;
this can be seen by arranging the vertex subsets (v; x X), (va x Y), (v3 x
X), ooy (var1x X), (1x Y), (vax X), (vs3x Y),...,(vak+1 x Y), in order,
wherein any two consecutive subsets, taken in the cyclic order, induce a complete
bipartite graph. [

Proof of Theorem 1.3. We prove this theorem in two cases.
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Case 1. r is even.

As K, , is hamiltonian decomposable, (a hamiltonian decomposition of K., is
Fo; oU Fy;,, i ='1,2,...,7/2, where Fj denotes the 1-factor of distance k&
from one part to the other), Ky, = H1® H2®...® H,j9, where H;’s are
Hamilton cycles of K, .. As the tensor product is distributive over edge-disjoint
subgraphs, K, X Km = @3 (H; x Km). If m is odd, then H; x Km can
be decomposed into Hamilton cycles by Lemma 3.2 of [12]. If m is even, then
H; x K,, can be decomposed into Hamilton cycles by Lemma 2.2.

Case 2. r is odd.

If 7 =1, then the result is obvious as K1 x K,, & K., — F, where F is
a 1-factor of Kpmm. So we may assume that r > 3. We complete the proof of
Case 2 in two subcases.

Subcase 2.1. m >3 is odd.

As K, is hamiltonian decomposable, K;y = H1 ® H2 @ ... ® H(m-1)/2,
where H;’s are Hamilton cycles of K. Now K., x Km & Kn x K, =
@i;‘fl)/z(H,- X Ker). Hix Kyt 2 Cam* K, by Lemma 2.4, and Cym «K,
has a hamiltonian decomposition (11], the result follows.

Subcase 2.2. m >4 is even.

Now K., =H1® H;®...® H(,_3)/3® Wa,, where H;’s are Hamilton cycles
of K,, and Wy, = X(2r; {1,7}) by Lemma 2.1. K, ,x Km = @73/ *(H, x
Kn,) & (War x Ky). The graph H; x K, has a hamiltonian decomposition by
Lemma 2.2. The graph W3, x K, is hamiltonian decomposable by Lemma 2.3.
This completes the proof. [ ]
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