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Abstract

The complexity of determining if a Steiner triple system on v =
6n + 3 points contains a parallel class, is currently unknown. In this
paper, we show that the problem of determining if a partial Steiner
triple system on v = 6n + 3 points contains a parallel class is NP-
complete. We also consider the problem of determining the chromatic
index of a partial Steiner triple system and show that this problem
is N P-hard.

1 Introduction

In this paper, we provide several computational-complexity results related
to the problem of coloring the blocks of (partial) Steiner triple systems. In
1982, Colbourn (1] presented a depth-first branch-and-bound algorithm for
computing the chromatic index of Steiner triple systems. In 1983, Colbourn
[2] presented two greedy algorithms for approximating the chromatic index.
However, the complexity of computing the chromatic index of a Steiner
triple system is still unknown. In addition, the complexity of determining
the existence of a parallel class in Steiner triple system is also unknown.
Define a set system as a pair (X, B) where X is a finite set of points,
and B is a collection of subsets of X, called blocks. A (v, A) triple system is
a set system (X, B) where |X| = v, such that each unordered pair from X
occurs in exactly A triples of B. If A = 1, (X, B) is called a Steiner triple
system (on v points), which we denote by ST'S(v). We denote |X| as the
order of the triple system. A partial (v,A) triple system is a set system
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(X, B) where |X| = v, such that each unordered pair from X occurs in at
most X triples of B. A partial Steiner triple system is a partial (v,1) triple
S)‘r'stem. If V is a set of elements, we denote the family of k-subsets of V' by
).

It is known that a Steiner triple system of order v exists if and only if
v =1, 3 (mod 6). In addition, if a ST'S(v) exists, then it must have exactly

1’-&—1)- triples and each element occurs in exactly *3= 2=1 triples of the system.
For an up-to-date, extensive collection of results on triple systems, see (3].

Given a STS(v) where v = 6n + 3, we are interested in determining
if the system contains a set of § triples such that it partitions the 6n + 3
points. Such a set of triples is called a resolution (or parallel) class of the
system. It is not known if this decision problem is N P-complete or not [3].
If we relax the condition from a ST'S(v) to a partial ST'S(v), then we can
show that this revised decision problem is N P-complete. We formally state
this problem as follow:

Problem (PSTS-1-RES): Given a partial STS(6n + 3), does it contain
a parallel class?

In the Section 2 we prove that this problem is N P-complete. In Section
3, we show that determining the chromatic index of a partial Steiner triple
system is N P-hard. In Section 4, conclusions and future work are given.

2 NP-completeness of PSTS-1-RES

We begin by proving that the PSTS-1-RES problem is N P-complete using
a polynomial time transformation from the EXACT COVER BY 3-SETS
(X3C) problem. The decision version of X3C can be formulated as follow:
“Suppose V is a set of points where V|=3q and B is a family of triples from
(%). Does B contain a subset B' such that |B'| = g and Ug g B = V?
This decision problem is known to be NP-complete [4]. From this point
or\;ward, if V is a set of elements, we denote the family of k-subsets of V' by
(k)A useful way of interpreting a partial Steiner triple system is to think
of the points as vertices of a graph where each triple is represented by a
triangle in the graph. Since each pair of points may occur at most once and
each point occurs at most (v — 1)/2 times, each edge in the graph belongs
to exactly one triangle and each vertex of the graph has a degree at most
(v —1)/2. Conversely, if a graph with these two properties exist, then we
can extract a partial Steiner triple system from it. The graph obtained in
this manner will be called the graph representation of the partial Steiner
triple system. We now proceed to show that PSTS-1-RES is N P-complete.
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Figure 1: The component graph for a triple ¢; = {z;,%i, 2:}. The subscript
i is not shown in the diagram

Theorem 2.1 PSTS-1-RES is N P-complete

Proof. 1t is clear that PSTS-1-RES is in NP. We now introduce a polyno-
mial transformation from X3C to PSTS-1-RES. Let (X,C) be an instance
of X3C, where | X| = 3¢, for some ¢ € N. We will construct a graph rep-
resentation of a PSTS using the triples of C. In this graph, each edge will
belong to exactly one triangle. In addition, each vertex in the graph must
have degree at most 252, where v is yet to be determined.

For each ¢; = {z;,¥:, 2} € C, form the sub-graph given in Figure 1.
This sub-graph represents the following triples in the corresponding PSTS
problem instance: {z;,ai(1],a:(2]}, {ai[l], i3], a:[5]}, {@:[2],a:fd], ai[6]},
{ax(3], os[a], as[71}, {ws, os(8), as[91}, {as[8), as[10), ax[12]}, {as[9), a<[11], as(13]},
{a:[10], a:[11], as[14]}, {2, a:[15], a:[16]}, {a:[15], as[17], as[19]}, {a:[16], a;[18],
a;[20]}, {ai[17], ai[18], a;[21]} and {a;[7), a;[14], a;[21]}. Notice the only ver-
tices that could appear in more than one subgraph induced by C are those
vertices which are the elements of X.

There are a total of 3¢+ 21 #|C| vertices in the constructed graph, which
is divisible by 3. In addition, each edge of the graph appears in exactly one
triangle. In order to make this a PSTS(v) graph, we must ensure that each
vertex belongs to at most ¥z! triangles and v = 6n + 3 for some n € N.
To do this, simply introduce disjoint triangles into the graph until both
conditions are satisfied. It is clear that this transformation can be done in
polynomial time with respect to |C|.

We now show that C contains an exact cover if and only if the PSTS
graph contains a set of triangles that partition the vertices of the graph.

Suppose cy, ¢z, ..., & form an exact cover of X. For ¢; = {=zi, v, 2}
in the exact cover, choose the triangles: {z;,a;[1],a:[2]}, {v:,a:[8], 2:[9]},
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{24, a:[15], as[16]}, {os(5], as[13}, ac[20]}, {as[6], a:[12], as[19]}, {a[3], a:l4], a:[71},
{ai[10], a:[11], a;:[14]} and {a:[17], a;[18}, as[21]}. For ¢; = {z;, v, %} not in
the exact cover, choose the triangles {a;[1], a:[3], a:[5]}, {a:[2], a:[4], a:[6]},
{as(8], as[10], as[12]}, {as(], as[11], as[13]}, {a:[15], as{17], as[19]}, {as[16], a:(18],
a;[20]}, and {a;[7), a:[14], a;[21]}. Finally, for each of the disjoint triangles
added in (to satisfy the condition that each vertex belongs to at most v—1/2
triangles) , we trivially choose them to be in the partition. Clearly, this is
a partition of the vertices of the graph into disjoint triangles.

Conversely, suppose the graph can be partition into disjoint triangles.
We need to construct an exact cover of X. To do this, simple pick ¢; €
C where the triangle {a;[7], a:[14], a;[21]} is not in the partition. To see
that this leads to a exact cover of C, we note that {a;[7], a:[14], a;[21]}
is not in the partition if and only if {z;, ai[1], a:[2]}, {:,a:(8],:[9]} and
{2, ai[15), a;[16]} are in the partition. Hence the decision problem PSTS-
1-RES is N P-complete. : o

It is known that the X3C problem is still N P-complete under the re-
striction that each element appears in at most three triples, consequently,
the following result is immediate:

Corollary 2.2 The PSTS-1-RES problem is N P-complete under the as-
sumption that each element appears in at most three triples.

Proof. In the proof of Theorem 2.1, start with an arbitrary instance of
the X3C problem where each element occurs in at most three triples of the
instance. In the construction used in Theorem 2.1, all points in the partial
Steiner triple system of the form a;[j] belong to at most two triples. In ad-
dition, each occurrence of z; (in the X3C instance) causes it’s corresponding
element in the partial-STS to be contained in one triple. Since each element
occurs in at most three triples of C, no point in the partial-STS will be in
more than three triples. 1}

Consider the scenario where the PSTS-1-RES problem instances are
such that each element occurs in at most two triples. Let us denote this
restricted problem as PSTS-1-RES-2. This problem can be solved in poly-
nomial time. This result should not be surprising since the X3C problem
can be solved in polynomial time if each element occurs in at most two
triples.

Theorem 2.3 The PSTS-1-RES-2 problem can be solved in polynomial
time.

Proof. A simple way to show this is to realize that if you have an instance
of the PSTS-1-RES-2, it can be trivially reduced to an instance of the X3C
problem. There is a polynomial time algorithm to solve this X3C problem
instance, and hence solves the PSTS-1-RES-2 instance. |
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Consider the following question: “Given a partial STS(v), does it con-
tain (at least) two parallel classes?”” We do not attempt to answer this
question, but instead by answer the simpler question: “Given a partial
STS(v) where each element occurs at most two times, does it contain two
parallel classes?” Obviously, in order to have any hope of containing two
parallel classes, each element must occur exactly twice in the partial STS(v)
and hence we can assume the condition that each element occurs exactly
twice.

Theorem 2.4 Given a partial STS(v) where each element occurs ezactly
two times, a polynomial time algorithm ezists to determine if it contains
two (disjoint) parallel classes.

Proof. By Theorem 2.3, it can be determine in polynomial time whether
the partial STS(v) contains a parallel class or not. If it does, then clearly
it will contain two parallel classes, as each element occurs exactly twice.
Otherwise, if it does not contain a parallel class, it surely will not contain
two parallel classes. a

We end this section by showing that it is not possible to approximate
(in polynomial time) a solution that is at most some fixed constant away
from an optimal solution for the optimization version (PSTS-1-RES-OPT)
of the PSTS-1-RES problem. Given a polynomial time algorithm A and an
instance I, let A(Z) denote the “size” of the approximate solution computed
by A and let OPT(I) denote the size of an optimal solution of I.

Problem (PSTS-1-RES-OPT): Given a partial STS(6n + 3), find the
largest partial parallel class it contains.

Theorem 2.5 If P # NP, then no polynomial time algorithm A for the
PSTS-1-RES-OPT problem can guarantee

OPT(I) - A(I) < k

Jor an instance I and for a fixed constant k.

Proof. Suppose not. That is, suppose a polynomial time algorithm A
exists that satisfies the conditions stated above. We will use A to derive
a polynomial time algorithm for solving the PSTS-1-RES decision problem
and hence contradicting P ¥ NP. Given an instance I = (X, B), we
construct k + 1 disjoint isomorphic copies of I. We will denote this new
instance by J = (Y,C). We note that OPT(J) = (k + 1)OPT(I). Now, we
construct a partial parallel class for I of size at least [A(J)/(k + 1)], by
taking the largest partial parallel class among the disjoint copies of I. As

49



(k+1)OPT(I)— A(J) = OPT(J) — A(J) < k, dividing by k+ 1, we obtain
OPT(I)-1< %_112 < OPT(I), and consequently OPT(I) = [%_11)-] This
means the constructed partial parallel class for I must be optimal. Hence
we have designed a polynomial time algorithm (based on the algorithm A)
for computing the optimal size of a partial parallel class in I, which implies
P = NP. This is a contradiction. 1]

3 Chromatic index of partial Steiner triple
systems

We say that a partial STS(v) can be (properly) k-colored if the blocks of the
systems can be colored such that no two intersecting triples have the same
color. Given a partial STS(v), its chromatic indez is the smallest value of
k such that it can be properly k-colored. In this section we provide some
results about the chromatic index of partial Steiner triple systems under
certain restrictions. We begin by showing that determining if the triples of
a partial Steiner triple system can be properly 3-colored is N P-complete.
In order to do this, we will use the result by Holyer [5] that deciding if a
(3-regular) graph is (edge) 3-colorable is N P-complete.

Lemma 3.1 Deciding whether the blocks of a partial Steiner triple system
can be properly 3-colored is N P-complete.

Proof. The problem clearly belongs in N P. We will construct a polynomial-
time reduction from the 3-colorability of 3-regular graphs problem to our
problem. Suppose G = (V, E) is a 3-regular graph. For each edge e; =
{u,v} € E, introduce a new point co; and construct the triple {co;, u,v}.
It is easy to see that the set system (X, B) where

X=VU<U{ooi})

e;€EE
and

B= U {{o0i,u,v}}
e;={u,v}€E
is a partial Steiner triple system. If the value of |X| is not admissible,
simply add points to X until it becomes admissible. This transformation
can be done in polynomial time.

If G can be (properly) 3-colored, then color the triple {oo;,u,v} the
same color as the edge e; = {u,v} € E. Clearly this is a 3-coloring of the
blocks of B. Conversely, if the blocks of B can be 3-colored, then for each
block {oo;,u,v} € B, color the corresponding edge e; = {u,v} € E the
same color. This properly 3-colors the graph G. ]
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This immediately leads to the following result, assuming P # NP.

Corollary 3.2 Determining the chromatic indez of a partial Steiner sys-
tem is NP-Hard.

4 Conclusions

In this paper, we have derived several complexity results on partial Steiner
triple systems and parallel classes. We would like to be able to extend these
results to (full) Steiner triple systems. The difficulty arises from the fact
that it is difficult to identify a known N P-complete problem from which
a polynomial time reduction to instances of the Steiner triple system can
be derived. Another possible research direction is to consider developing
better approximation algorithms for approximating the chromatic index of
partial Steiner triple systems than those currently available.
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