STRUCTURAL PROPERTIES OF HYPER-STARS
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ABSTRACT. Star graphs were introduced by [1] as a competitive model
to the n-cubes. Then hyper-stars were introduced in [9] to be a com-
petitive model to both n-cubes and star graphs. In this paper we
discuss strong connectivity properties and orientability of the hyper-
stars.
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1. INTRODUCTION AND PRELIMINARIES

Interconnection networks are important in parallel computing. The first
major class is the classical n-cubes. Star graphs were introduced by [1] as
a competitive model to the n-cubes. The hyper-stars were introduced in
[9] to be a competitive model to both n-cubes and star graphs. In par-
ticular, it was shown that the hyper-stars and their “folded” version have
lower network cost (using standard degree x diameter as measure) than
the n-cubes and their “folded” version and other variants. Both the n-
cubes and star graphs have been studied and many of their properties are
known, and star graphs have proven to be superior to the n-cubes. Since
the star graphs have order n!, for a particular network application using
the star graph topology, one may be faced with the choice of either too
few or too many available vertices. T'wo generalizations were introduced
in [5] and (7] to address this issue. Another approach is via augmenta-
tion of star graphs given in [3). The introduction of hyper-star graphs
(hyper-stars for short) provides another interesting class of interconnection
networks addressing this issue. Since n-cubes and star graphs have the de-
sirable tightly super-connectedness property, the hyper-stars should have
this property to be competitive. We will indeed establish this in this paper.
Directed interconnection networks have also gained much attention in the
area of interconnection networks. In particular, [4] gave an application and
an architectural model for the studies of unidirectional graph topologies.
Furthermore [6] proposed the use of oriented n-cubes as the basis for high
speed networking. In this paper, we propose a good orientation for the
hyper-stars.

The hyper-star HS(n, k) with 1 < k < n — 1 is defined as follows: its
vertex-set is the set of {0, 1}-strings of length n with exactly & 1’s, and two
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vertices are adjacent if and only if one can be obtained from the other by
exchanging the first symbol with a different symbol (1 with 0, or 0 with
1) in another position. Hence it is a bipartite graph with bipartition sets
Vo(n, k) and V;(n, k), where Vg(n, k) (resp. Vi(n, k)) is the set of vertices of
HS(n, k) with O (resp. 1) in the first position. We may use V; and V; instead
of Vo(n, k) and Vi(n, k) if it is clear from the context. Hence HS(n, k) has
(:) vertices, every vertex in Vp has degree k and every vertex in V) has
degree n — k. So HS(n, k) is regular if and only if n = 2k. Figure 1 gives
HS(6,3). Note that it is “interconnected” by a graph isomorphic to HS(5,2)
(the left subgraph with 1 in the 6th position) and a graph isomorphic to
HS(5,3) (the right subgraph with 0 in the 6th position). Another simple
but useful fact that can be easily checked is that HS(n, k) has no 4-cycles.

100011 011010

10100 100110
001101 ) 101100

101001 10010} 011100 001110

FIGURE 1. HS(6,3)

Ficure 2. UHS(6,3)
In [8, 9] the diameter of HS(n, k) is obtained and more specific results are

mentioned/proved for HS(2n,n), as regularity is often desirable. Their re-
sults concentrate on fault-diameter, w-diameter and a broadcasting scheme
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for HS(2n,n). In this paper we study stronger structural properties than
mere connectivity. A graph G is mazimally connected if its connectivity is
4(G), the minimum degree in G. A maximally connected graph is tightly
super-connected if the deletion of every minimum disconnecting set (of ver-
tices) will always result in a graph with two components, one of which has
only one vertex. This is a much stronger property than requiring the graph
to be maximally connected. In the literature of interconnection networks,
the deleted vertices are called faults. The notion of superness, first intro-
duced in [2], is & good measure of the severity of the disconnectedness in
interconnection networks when faults occur. In this paper we prove that
HS(2n,n), the regular hyper-star, is tightly super-connected except for de-
generate cases. In fact, we will prove the same for HS(n, k). The second
problem that we address in the paper is the orientability of HS(n, k).

We use standard graph theory terminology found in books such as [11].
The following definition will aid our presentation in subsequent sections:
For v € Vp (resp. v € V;), the edge between v and the vertex obtained
by exchanging the 0 (resp. 1) in the first position and the ith 1 (resp. 0)
counting from the left will be called an i-edge from v. For example, the
edge between 00010011 and 10010001 is a 2-edge from 00010011 but a 5-
edge from 10010001.

2. CONNECTIVITY AND BEYOND

The connectivity of HS(2n, n) is discussed in [9], and the vertex-transitivity
of HS(2n, n) is proved in (8]. In this section, we prove that HS(n, k) is edge-
transitive and maximally connected. In fact, we will prove that it is tightly
super-connected.

Theorem 2.1. HS(n,k) is edge-transitive and has at most two vertezr-
transitive classes.

Proof. If either k or n — k is 1, then the graph is K} n—; and the claim is
clearly true. Hence we may assume k,n — k > 2.

Since HS(n, k) is connected, it is enough to prove that two adjacent edges
are in the same edge-transitive class. Without loss of generality, we may
assume that the two adjacent edges are e; = (101a4as . ..apn,011a4as5...a,)
and ez = (0lla4as...an,110a4a5...a,). Let ¢ be the bijective function
defined by ¢(ai1az2a3a4...a,) = ajasazay...a, for every ajazazas...a,
in V(HS(n,k)). Then it is easy to check that ¢ preserves adjacency and
maps the end-vertices of e; to the end-vertices of e;. Hence HS(n, k) is
edge-transitive.

We claim that all vertices in V) belong to the same vertex-transitive class
and all vertices in V are in the same vertex-transitive class. Since HS(n, k)
is connected and bipartite with bipartition Vp and V4, it is enough to prove
that two vertices of distance 2 apart are in the same vertex-transitive class.
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To see the first claim, we observe that ¢ constructed above is the desired
automorphism. The second claim can be proved similarly. a

Corollary 2.2. If k # %, then HS(n,k) has ezactly two vertez-transitive
classes. Moreover, HS(2n,n) is vertez-transitive.

Proof. If k # %, then the claim follows easily from Theorem 2.1 as vertices
in Vp and V; have different degrees. To prove the second part, it follows
from Theorem 2.1 that it is enough to prove that 1*0" and 01" belong to
the same vertex-transitive class. Let ¢ be the function that switch a 0 to a
1 and vice versa. Then ¢ is the desired automorphism. 0O

A theorem of Watkins [10] says that a connected edge-transitive graph
with minimum degree r is r-connected. Using this and Theorem 2.1, we
have the following result:

Theorem 2.3. HS(n,k) is mazimally connected, that is, the connectivity
of HS(n,k) is min{k,n — k}.

As we mentioned in Section 1, it is important to look at the severity of
the disconnection when faults are present. It will be ideal for HS(n, k) to be
tightly super-connected. We note that HS(2,1) is K, which is a complete
graph and HS(3,1) (which is isomorphic to HS(3,2)) is K 2 which is tightly
super-connected. So we assume n > 4. If k or n — k is 1, then HS(n, k) is
isomorphic to K »-1; so clearly it is not tightly super-connected. It is also
easy to see that HS(4, 2) is a 6-cycle which is not tightly super-connected.
The next result shows that these are the only exceptional cases.

Theorem 2.4. Let k,n — k > 2. Then HS(n, k) is tightly super-connected
ifn > 5.

Proof. We observe that HS(n, 2) can be obtained by subdividing every edge
in K, once (that is, every edge is replaced by a path of length 2). It is
easy to check that it is tightly super-connected for n > 5. Hence we may
assume k,n — k > 3. In fact we may assume n — k > k > 3 by symmetry.

Let G° be the subgraph of HS(n, k) with 0 in the nth position and G! be
the subgraph of HS(n, k) with 1 in the nth position. Then GV is isomorphic
to HS(n—1, k) and G* is isomorphic to HS(n — 1,k —1). (See, for example,
Figure 1.) We note that only some vertices in G° are adjacent to vertices
in G! and vice versa. In fact, only the vertices in G® with 1 in the first
position have a neighbour in G!, and only the vertices in G* with 0 in the
first position have a neighbour in G°; hence there are (3_3) such edges and
they are independent. Let T be a set of faults with |T'| = k. Our first goal
is to prove that either HS(n, k) —T is connected or T is the neighbour-set of
a vertex; moreover, there is only one non-singleton component if the graph
is disconnected. Let Tp = TN V(G°) and T} = T N V(G'). We consider
three cases.
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Case 1: |Tp| < min{n — 1 — k,k} and |T}| < min{n — k,k — 1}. Then
G® — Ty and G — T} are connected by Theorem 2.3. There are (}-?)
independent edgés between G and G* and it is easy to see that (7-2) > k
asn—k > k > 3. Hence HS(n,k) — T is connected.

Case 2: |Ty| > min{n—k,k—1}. Since k < n—k, min{n—k, k—1} = k-1,
thus |Ty| is either k — 1 or k. Suppose |Tj| = k. Then Tp = @, hence
G® — Ty, = G° is connected. Let X be the component of HS(n,k) — T
containing G°, and let Y be a component of G! —T}. If Y is not a singleton,
then it has at least one edge, hence it has a vertex of the form Oaz...a,-11.
Now this vertex has a unique neighbour in G°, namely la; .. .a,—10, which
isnot in T. Hence Y is part of X. Suppose Y is a singleton with vertex y.
If ¥ has 0 in the first position, then y is adjacent to a vertex in G° = G°—T,
hence Y is part of X. If y has 1 in the first position, then the degree of y in
Glis(n—1)—(k—1)=n—k > k. But Y is a component, hence we have
found all the vertices in T} and they are the neighbours of y. (Note that
since the degree is n — k > k, this actually occurs only when n = 2k; in
the other cases, Y is part of X.) Therefore the only possible components,
other than X, in HS(n, k) — T are singleton components, and T is the set
of neighbours of a vertex.

Now suppose |T;| = k — 1. We use a similar argument, but the analysis
is slightly tighter. In this case, |To| = 1. Since G° is isomorphic to HS(n —
1,k) and n — k,k > 3, G® has connectivity min{n — 1 — k,k} > 2 by
Theorem 2.3, hence G® — T is connected. Let X be the component of
HS(n, k) — T containing G® — Tp. If Y is a component other than X, then
Y is a component of G! — T;. We claim that ¥ has a vertex with 0 in its
first position. If not, then Y must be a singleton with a vertex with 1 in
its first position. Let this vertex be v. Since v is a singleton in G — T, all
its neighbours are in 7. But v has n — k > k neighbours and |T}| = k - 1,
a contradiction. Hence we may assume z = 0as...a,—11 is a vertex in
Y. Now this vertex has a neighbour in G°, namely w = laz...a,-10. If
w & T, then Y is part of X, so suppose w € T. Now 2 has k— 1 neighbours
in G!, and each of them has a 1 in the first position. So each of its n—k—1
neighbours different from z has a neighbour in G° different from w as the
graph has no 4-cycles. Since the graph has no 4-cycles, the tree of depth 2
rooted at z with k£ — 1 vertices at level 1 and (k — 1)(n — k — 1) vertices at
level 2 are all distinct. Since n — k > k > 3, either z and hence X is part
of Y, or all paths from 2z to X contain a vertex in T. This can only happen
if all k£ — 1 neighbours of z are in T}, since |T1|=k—-1landn—-k-1>2.
This completely identifies 77, and together with w, we have T equal to the
set of neighbours of 2. So Y must be singleton component.

Case 3: |[Tp| 2 min{n—1—k, k}. By assumption n—k > k. We consider
two subcases: n—k >kandn—k=k.
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Suppose n — k > k. Then min{n — 1 — k,k} = k, hence T} = @. Thus
G! — T, = G is connected. Let X be the component of HS(n,k) — T
containing G!, and let Y be a component of G®—Tp. If Y is not a singleton,
then it has at least one edge, hence it has a vertex of the form 1as...a,—;0.
Now this vertex has a neighbour in G*, namely Oas .. .a,-11, which is not
in T, hence Y is part of X. Suppose Y is a singleton with vertex y. If y
has 1 in the first position, then y is adjacent to a vertex in G! = G - T,
hence Y is part of X. If y has 0 in the first position, then the degree of y in
GO is k. But Y is a component, hence we have found all the vertices in Tp
and they are the neighbours of y. Therefore the only possible components,
other than X, in HS(n, k) — T are singleton components, and T is the set
of neighbours of a vertex.

We now consider the subcase when n—k = k. Then min{n—-1-k,k} =
n—k—1=k—1, hence |T}| = 1. Since G is isomorphic to HS(n—1,k—1)
and n—k, k > 3, G* has connectivity min{n—k,k—1} > 2 by Theorem 2.3,
thus G! — T} is connected. Let X be the component of HS(n,k) — T
containing G! — 7). If Y be another component, then Y is a component
of G® — Tp. Since any vertex in G® — T with 0 in its first position has k
neighbours in G%, and |[To| =n—k—1=k—1,Y is not a singleton with
a vertex with O in its first position. Thus Y has a vertex with 1 in its first
position. Hence we may assume z = lap...a,—10 is a vertex in Y. Now
this vertex has a neighbour in G, namely w = 0az...ap—11. If w ¢ T,
then Y is part of X, so suppose w € T. Now z has n — 1 — k neighbours
in G and each of them has a 0 in the first position, so each of its k — 1
neighbours different from z has a neighbour in G! different from w as the
graph has no 4-cycles. Since the graph has no 4-cycles, the tree of depth 2
rooted at z with n — 1 — k vertices at level 1 and (n — 1 — k)(k — 1) vertices
at level 2 are all distinct. Since n—k > k > 3, either z and hence X is part
of Y, or all paths from z to X contain a vertex in T'. This can only happen
if all n — k — 1 neighbours of z are in Tp, since [Tp| =n—-k-1=k-12 2.
This completely identifies Ty, and together with w, we have T equal to the
set of neighbours of z; hence Y is a singleton component.

Now if there are at least two singleton components, then the deleted
vertices form the set of neighbours of two vertices. This is impossible, since
k,n -k > 3, and HS(n, k) has no 4-cycles. ]

3. UNIDIRECTIONAL HYPER-STARS

In this section, we orient HS(n, k) such that the difference of in-degree
and out-degree of every vertex is at most 1 in the resulting directed graph,
that is, the orientation is “balanced.” Moreover, this orientation is de-
termined by a local orientation rule, that is, the orientation of an edge is
given by the labels of its two ends. Let v be a vertex in HS(n, k). Define
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¥(v) to be the number of 0’s, except the first 0 from the left, in odd po-
sitions. In other words, ¥(v) is the number of 0’s of v in odd positions,
excluding the first 0 from the left if it is in an odd position. For example,
%(01100) = 1,+(11000) = 1, and #(10000) = 2. Since HS(n, k) is a bipar-
tite graph, it is enough to give the orientation rule for edges incident to
vertices in Vj. Let v € Vp, and let u be its neighbour through an i-edge
from v. If 9(v) is even, then v — u! if i is even and v «— wu if ¢ is odd. If
¥(v) is odd, then v — w if i is odd and v «— u if i is even. In other words,
v — u if and only if ¥(v) and ¢ have the same parity. Denote the resulting
directed graph by UHS(n, k) and call it the unidirectional hyper-star. Fig-
ure 2 shows UHS(6,3). We note that UHS(n, k) is “interconnected” by two
directed graphs isomorphic to two unidirectional hyper-stars of smaller or-
der or one with the orientation reversed. In fact, the subgraph G° (defined
in the proof of Theorem 2.4) is directed to be isomorphic to UHS(n — 1, k)
and the subgraph G! is directed to be isomorphic to UHS(n — 1,k —~ 1) or
one with the orientation reversed. Our next result shows that this orienta-
tion is “balanced” in terms of the in-degree and out-degree of a vertex. To
aid the presentation of the paper, we let f(v) be the position of the first 0
in v.

Theorem 3.1. Let v be a vertex in UHS(n,k). Suppose v € Vp (V1).
If ¥(v) + f(v) is even (odd), then the in-degree and out-degree of v in
UHS(n,k) are [£] ([25%]) and |&] (|25%]), respectively, and vice versa
if P(v) + f(v) is odd (even).

Proof. The statement concerning the in-degree and out-degree of a vertex
in Vp follows directly from the definition of the orientation of edges as
flv) =1

Let v € V). The cases when ¥(v) is even and 1(v) is odd are similar,
so we will only give the argument for one of them. Assume v(v) is even.
It is enough to show that the i-edges from v are oriented to and away
from v alternately, and the “first” edge is oriented toward v if and only if
f(v) is odd. Suppose f(v) is odd. Then v is of the form 112:+10q, where
1%+1 denotes 2i + 1 1’s and « is some {0, 1}-string. Then the first edge is
between v and u = 01%+!1a. This is a 1-edge from v, but a (2i + 2)-edge
from u. Since ¥(v) = (u), ¥(u) is also even. So the orientation is ux —» v.
Similarly, the orientation is u «— v if f(v) is even.

The next step is to show that the orientation of the i-edges from v are
oriented alternately to and away from v. Let v be of the form 1a01703,
where the 0 before 17 is the ith 0 from the left, and a, 8 are some {0,1}-
strings of appropriate sizes. Therefore, the neighbours from v through the i-
edge from v and the (i+1)-edge from v are u; = 011708 and us = 0201713,

I This signifies that the edge is oriented from v to u.
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respectively. Observe that u; and ug are almost the same, and that if v is
the neighbour of u; via a p-edge from u; for some p, then v is the neighbour
of up via a (p + j)-edge from uy. Now if j is even, then %(u;) and ¥ (u2)
are of different parity, so the i-edge and (i + 1)-edge from b are oriented
in opposite directions. If j is odd, then %(u;) and ¥(uz2) are of the same
parity, and again these two edges are oriented in opposite directions. O

The definition that we gave for the orientation rule is asymmetric but
illuminating. An equivalent symmetric (though more cryptic) definition
exists, and it can be easily extracted from the statement and proof of The-
orem 3.1. This is given in the next result without proof.

Corollary 3.2. Let v be a vertex in HS(n,k). Then UHS(n, k) is obtained
by applying the following rule on the edge between v and u via an i-edge
from v: v — u if and only if Y(v) and f(v) + ¢ have opposite parity.

The orientation will be useless if UHS(n, k) is not strongly connected.
Since HS(n, k) is connected, the next result implies that UHS(n, k) is strongly
connected.

Proposition 3.3. Suppose n—k,k > 2. Then every arc in UHS(n,k) lies
on either a directed 6-cycle or a directed 8-cycle.

Proof. Consider the arc between two vertices u and v, where u is of the
form 1a08, and v is of the form 0algB. Since n — k > 2, there is another 0
in u. We consider two cases.

Case 1: In u, the next 0 to the right of the given 0 is separated by a
sequence of 1’s or the next 0 to the left of the given 0 is separated by a se-
quence of 1’s. We will assume the first scenario as the other is symmetrical.
We consider two subcases.

The first subcase is when u is of the form 1a01%108. Then it follows
from the orientation rule that the following vertices form a directed 6-cycle:
1a01%108, 00:11%1083, 12112008, 0a11%014,

12012013, 0201%113.

The second subcase is when u is of the form 100121103. Then it follows
from the orientation rule that the following vertices form a directed 8-cycle:
1a01%1108, 021121108, 1211%0108,
0a11%0118, 121120018, 021121018, 120121018, 0a01%1114.

Case 2: In u, there is a block of 0’s to the left and to the right of the
given 0. This is also straightforward and we omit the proof. O

The most relevant unidirectional hyper-star is perhaps the regular one,
UHS(4n,2n). In this case, one can apply the following easy result (see,
for example, [3]): Let H = (V, E) be a (2k)-regular (2k)-edge-connected
graph, and let G be an orientation of H. If G is k-regular, then G is
k-arc-connected. Summarizing, we have the following result:
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Theorem 3.4. Suppose n—k,k > 2. Then UHS(n, k) is strongly connected.
Moreover, UHS(n,k) is mazimally arc-connected if n = 2k and k is even.

4. CONCLUDING REMARKS

In this paper, we proved that HS(n,k) is tightly super-connect.:1 and
showed that it can be oriented in a nice way. Although the regular uni-
directional hyper-stars are the most relevant, and they are mr~ximally arc-
connected for our orientation, perhaps an interesting questiun is whether
every UHS(n, k) is maximally arc-connected or even maximally (vertex)-
connected.
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