ON THE POINT-DISTINGUISHING CHROMATIC INDEX
OF COMPLETE BIPARTITE GRAPHS

MIRKO HORNAK AND NORMA ZAGAGLIA SALVI

ABSTRACT. The point-distinguishing chromatic index of a graph G, in sym-
bols x0(G), is the smallest number of colours in a (not necessarily proper)
edge colouring of G such that any two distinct vertices of G are distinguished
by sets of colours of their adjacent edges. The exact value of xo(Km,n) is
found if either m < 10 or n > 8m2 —2m + 1.

1. INTRODUCTION

Let G be a finite simple graph with no component K> and at most one
component K;. Consider a general edge colouring of G (colour classes are
not necessarily independent) using k colours as a mapping ¢ : E(G) —
{1,.--,k}. The colour set of a vertex z € V(G) is the set of colours of
edges incident with z. The colouring ¢ is point-distinguishing if vertices of
G differ by their colour sets. The point-distinguishing chromatic index of
G is the smallest k such that there is a point-distinguishing colouring of
edges of G that uses & colours and is denoted xo(G). This graph invariant
has been introduced by Harary and Plantholt [1]. Among other things,
the exact values of xo(Kn), Xo(Pn), X0(Crn) and xo(Qn) are computed
in [1). As concerns complete bipartite graphs, a natural general bound
x0(G) 2 [logy [V(G)|] of [1] reads as xo(Kmq) 2 [loga(m +n)]. So, with
m < n we have

X0(Kmn) 2 [loga(2m)] = [logy m] + 1. (1)

The mentioned paper provides also an upper bound of xo(Km,») if [logy 1]
+1 < m < n, namely xo(Kmn) < [logn] + 2. A greater effort has been
concentrated on the determination of xo(Km m). Zagaglia Salvi [5] proved
that the sequence {xo(Km,m)}%5 is non-decreasing with jumps of value
1. As a consequence, there is an increasing sequence {n,}%2, of integers in
which ny =1 and, for any k > 3, xo(Kmm) =k if and only if ng_; +1 <
m < ng; it is easy to see that np < 2¥~!. Only few exact values of n
are known, namely n3 = 2,n4 = 5,n5 = 11,ng = 22 (see Zagaglia Salvi
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[4]) and n; = 46 (Horiidk and Sotdk [2]). According to [5], nky1 > 2nk,
and so the sequence {zrky}32, (as nondecreasing and upper bounded by
1) is convergent and 0.71875 = g < limgoeo —2-",,‘—_’51- < 1. Horfidk and Soték
[3] succeeded in showing that limk—_co zRr > 3 — v/5 = 0.763932... . The
question of whether the mentioned limit is strictly smaller than 1 is still
open. The aim of the present paper is to determine xo(Km,n) for all n
sufficiently large with respect to m. Since, trivially, xo(Ki,) = n for
any n > 2, we are interested in xo(Kmn) with m > 2. Let p,q € Z.
By [p, g] we denote the interval of all integers z with p < z < ¢, and by
[p, o0) the interval of all integers z with z > p. For k € [1,00) let (p)x
be the representative of the residue class p modulo k in [1,]. By [p,q]x
we denote the set of all integers (i), with ¢ € [p,g]. Consider an m x n
matrix A. For i € [1,m] and j € [1,7], let R;(A) and C;(A) be the sets of
elements in the ith row and in the jth column of A, respectively. Further,
put R(A) := Uiz, {R:i(4)} and C(A) := U;.,{C;(A)}; evidently, any set
of R(A) is non-disjoint with any set of C(A) (the element in the ith row
and the jth column is in R;(A4) N C;(A)). Let M), be the set of all
m X n matrices with entries from [1, k] such that |[R(A)UC(A)|=m+n
(which means that |R(A)] = m, [C(4)| = n and R(A)NC(A) = 0). If
there is a point-distinguishing colouring ¢ : E(Kma) — [1,k], then, by
(1), k > [logy m] + 1. Suppose that the bipartition of V(K ») is {{z; :
i € [1,m]}, {y; : 5 € [1,n]}}, and let F(¢p) be the m x n matrix whose ith
row and jth column element is ¢(z;y;). Clearly, the matrix F(y) belongs

to M,(,f),. and (as any m x n matrix) satisfies
Vi € [1,m] Vj € [1,n] Ri(F(p)) N C3(F(g)) # 0. )

On the other hand, if M,(,f),. # 0, then xo(Kmn) < k. Indeed, if F =
(fi5) € M.S.-ﬁ),., then the colouring ¢ : E(Kmn) — [1,k], determined by
(ziy;) = fi,j, is point-distinguishing. Throughout the whole article we
suppose (if not explicitly stated otherwise) that k, I, m, n are integers with
2 < m < n, | =[logym] and k > min(l + 1, 3) (note that with two colours
we can distinguish only three vertices of a connected graph); the equality
I = [log, m] is equivalent to

2"l <amg 2.
As usual, for a set X we denote by 2% the system of all subsets of X.

2. MATRIX CONSTRUCTION

In this section we provide an upper bound for xo(Xm,). For that pur-
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pose define, for positive integers k, m,

2m, if k <m,
ds,'f)¢= 2m -1, ifk=m+1,
m, ifk>m+2,

® S~ (%) _ m
k) =" ;) 4

i=0

I8 o= pl=1) 4 1, (0],

The summation term in the definition of bs,'f) gives the number of subsets
of k items with up to m elements; this then gives the maximum possible
number of distinguishing sets that can be assigned to vertices of the partite
set with n elements. The adjustment made by subtracting d'® will become
clear in the proof. '

Theorem 1. Ifne I,(,'f), then xo(Kmn) < k.

Proof. (a) Assume first that n > k > 4 and let r := [£], s ;= min(m, ),
Ay = [Lk], A =Lk - {i—1}, i = 2,...,s Bj = [§,5 +5— 1]k,
Jg=1,...,k—1, By := [2,s]U {k} and B’ := {B; : j € [1,k]}. All 2%
subsets of [1,k] can be organized into 25! pairs of complementary sets
(Ai, [1,k] — Ay), i=1,...,2%, such that for any i, 7 € [1,25"!] we have

|As| 2 [[2, k] — Al ; (3
i <j=|Ai 2|4l 4)
i<m= {A;[L,k] - A}NB =0 (5)

(note that Ay, ..., A, satisfy (3)-(5)). In fact, the only problem could be
with (5). If m < k-1, then, by (3) and (4), |A;] > k—1and |[1,k]-A;| < 1
for any i € [1,7m)], and, since B’ consists of s-element sets with 2 < s <
r = [§] < k-2, (5) is trivially true. On the other hand, if m > k, to
fulfill (5) we only have to be sure that m + k < 25! if k is odd and that
m+£+1 < 2% if kiseven (if k = 2, B’ contains g—1 complementary pairs
(7,0 +g=1]2q, [1+9,5+29—1]2), 5 =1,...,9—1). However, for an odd &
the assumption m > 2¥~! —k+1 yields 2* > 2m+n > 3m > 3(2¥~1—k+1)
and 3(k — 1) > 2%~ in contradiction with k > 5. Analogously, if k is even
and m > 251 — £ then 2% > 3(2¥~! — £) and 3k > 2*, which contradicts
k > 4. We now put A := {A; : i € [1,m]} and show that B’ can be
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extended by subsets of [1, k] of cardinality < m to B = {B; : j € [1,n]}
satisfying AN B =0 and

Vie[l,m]Vje[l,n] AinB;#0 (6)

(note that from k > 4 it follows that B’ consists of k distinct sets). Namely,
B can contain any of sets A;, [1,k] — Ai, i € [m + 1,251 (if it is of
cardinality < m). Indeed, if ¢ := |An|, then, by (4), |A;| > t for any
i € [1,m], and, by (3), |B;| 2 min(¢,k —t) = k — . Thus, we have either
|As|+]Bj| > t+k—t = k and A;N B; # 0 by the Pigeonhole Principle (PP)
or |A;| =t, |B;| = k—t and A; N B; # 0 because of the fact that [1, k] — A;
does not belong to B. The number of subsets of [1, k] of cardinality < m
that cannot be in B is at most 2m (it corresponds to A; and [1, k] — A; for
i € [1,m]). However, if k = m+1, then |A;| = k > m (so that the bound 2m
has to be decreased to 2m —1), and, if k > m+2, |Ai| 2 |An|=k—-1>m
for any i € [1,m] (decrease 2m to m). Therefore, the above extension
of B' to B can be performed whenever n < Y™ (¥) — d¥ = o). We
prove our Theorem by constructing an m x n matrix F = (f; ;) such that
R(F) = A and C(F) = B, which means that F € M and xo(Kmn) < k.
We define f;; := (i+j — 1)k for i € [1,5] and j € [1,k — 1], fi,k := &,
and f;x = i for i € [2,s]. Let F' = (f;;) be the so far constructed
s x k matrix. Then R;(F') = [LLk] = Ay, Ri(F') = {(i+j -1k :J €
[Lk-1}U{i} =[i+k-1cV{i} =[1,k] - {i -1} = A; for i € 2, 5],
Ci(FY={(i+i-De:ie[Ls]}=[i+s—1e=B;forjel,k-1]
and Ci(F’') = {k} U [2,s] = Bx. Now suppose that m > s and consider
i€ [s+1,m). If j € Ay, define f;; := j, while for j € [1, k] — A; pick
fi,7 € A; N B; (which is possible due to (6)). For the so far defined m x k
matrix F” = (f; ;) we have Ri(F") = A;,i=1,...,m, and C;(F") = B;,
j=1,...,k (note that j € B; for every j € [1,k]). Finally, if n > k, we
extend F” to F as follows: consider j € [k + 1,n], set b; := |Bj;| (recall
that b; < m), and suppose that B; consists of elements Bj;(i), i € [1,b;],
satisfying
V‘il,ig (S [l,bj] (’I:I < 1:2 = Bj(il) < BJ(ZQ))

We put f; ; := B;(i) for each i € [1,b;], and we choose f; ; arbitrarily from
the set A;NB; # 0if i € [b;+1,m]. Then we have B;(1) € A; =[1,k} and,
for each i € [2,b5], Bj(§) = ¢ > i —1, so that B;(i) € [1,k] — {i — 1} = 4.
Therefore it is clear that R(F) = A and C(F) = B as required. (b) Suppose
thatn < k-1 fm<k—2thnk—1>n2b0 D +121+k-1+
(*31)-m+landk—-4>m-22 (*3') which is impossible for any k > 3.
Therefore, 2<m=n=k—-1, k-121+k-1+(*;") - (2k-3)+1
and 2k -1 > (";l), hence k < 4 and (k,m,n) € {(3,2,2),(4,3,3)}. In
this case xo(K2,2) = x0(Cs) = 3 (see [1]) and xo(K33) = 4 (see [4]). (c)
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If k = 3, then the only m, satisfying I$n [, 00) # 0, is m = 2 (we have
1) = [-1,2]). To see that xo(K2n) < 3 for n € I§ N [3,00) = [3,4]

l)eMz(_ss)and (2 81 1)eM§;’2. O

consider matrices 3
2 3 2 2 3 2 3

3. DEFINITIVE RESULTS

Returning to the proof of Theorem 1 we see that the constructed matrix
F in the “ordinary” case (a) has non-disjoint rows. Indeed, for any i,j €
(1,m], i 5 5, we have min(|A;],|4;]) > [£] (by (3)), and so either |4;| +
|A;] > k (and A;NA; # 0 by PP) or |A;| = |[Aj| = & (and then A;NA; # 0
since A; # [1,k]— A;). We shall see in Lemma 8 that a point-distinguishing
colouring ¢ : E(Kpm n) — [1, k] such that F(y) has non-disjoint rows cannot
do better than it does in Theorem 1. For positive | | integers k, m with
m < 2% let S,(,f) be the system of all systems of m distinct subsets of the
set [1,k], and for D € S%) put D:= {B: (AD e D)B C [1,k] - D}.

Propqsition 7. If k,m are positive integers with m < 2% and D € S,(,.'f),
then |D| > m.

Proof. For any D € 8 set D := {l1,k] - D : D € D}. Clearly, D 2 D,
and we have [D| > |D|=|D|=m. O

Lemma 8. If a point-distinguishing colouring ¢ : E(Kmn) — [1, k] is such
that the sets in R(F(yp)) are poirwise non-disjoint, then n < AR

Proof. Denote for short R = R(F(y)) and C = C(F()). (This convention
will be applied in the sequel whenever working with a point-distinguishing
colouring ¢.) Then, by the assumption of our Lemma, RN R = 0, and,
with respect to (2), RNC = §. The colouring ¢ is point-distinguishing, and
so RNC = 0. By Proposition 7, |R| > m (note that m < 2! < 2¢-1), (a)
Assume that k < m+ 1. Then n+2m = |C|+ |R|+m < |C| + |R|+ |R| =
ICURUR| < |2(LK]) = 2% hence n+2m < 37 (*)ifk <mandn+2m <
Yo () +1if k= m+ 1, which results in n < 7 (%) — & = b
in both cases. (b) Let k& > m + 2. Consider a set R € R of minimum

cardinality . Any subset of [1,k] — R belongs to R, hence it is out of
C. The system C contains exclusively subsets of [1, k] of cardinality < m,

thereforen = |C] < o ()= (*77). If r < k—m, then k—r > mand
n< Yo (-0 (™) < =70 (¥) —m—2 = b —2. On the other hand,
7 2 k—m+1 means that, for any ReR,R| < I[1,k]-R|=k-r <m-—1.
Thus C and R are disjoint subsystems of the system of all subsets of [1, ]
with cardinality < m, so that n + d% = ICil+m <|[C]+|R|=|CUR| <
Yro(®)andn <. O
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Theorem 9. The inequality xo(Kmn) 2 k + 1 follows from either of the
assumptions

l.k<m+landn>28-—m-1I;

2. k>m+2andn > b +1.

Proof. Suppose that one of the mentioned conditions is fulfilled and there
is a point-distinguishing colouring ¢ : E(Kmn) — [1,k]. 1. Let S be
the system of 1-element sets in RUC, S := {c € [1,k] : {c} € S}, and
s:=|S|(=15]). Then2* -l <m+n=|R|+[C|] < s+ Y2y (f), hence
s2 ko5 -Tr,(¥) =12 1+k-12>2 Clearly, since ¢ is point-
distinguishing, (2) implies that all sets of S are either in R or in C. If they
are in R, then, by (2), sets in C are distinguished only by k — s colours of
the set [1, k] ~ S, and so 2¥ —m—1 < n =|C| £ 25~¢ < 252, Sincem < n,
we have 2: 252> m+n> 2k -l and I > 25! > 2, a contradiction Now
suppose that all sets of S are in C. Sets in R are distinguished only by k—s
colours of the set [1,k] — S, hence 2=* >m > 2" k—s>1-1,k—-s2>1
and s < k — ! in contradiction with the above inequality s > 1+ k& —1. 2.
The result comes from Lemma 8 because of the circumstance that its proof
did not use the fact that sets in R(F(y)) are pairwise disjoint. O

Lemma 10. Ifn > b +1 and xo(Kmn) < k, then k < 21.

Proof. Because of the inequality n > bﬁ,‘f) + 1, from Lemma 8 it follows
that for any point-distinguishing colouring ¢ : E(Km») — [1, k] there are
R',R" € R with " N R” = 0. We can choose those sets in such a way
that v’ := |R/| < |R"| =: v". By (2), CN R’ # 0 for any C € C, hence
Cn2lLk-R =@ and

n=|C| < 2% -2k, (7)

Since n > 370 (¥) = d%¥) +1 =25 —2m 41 for any k < m+1, (7) yields
om > 2 41— (2F — 257y > 2k, (8)

With respect to m < 2! then (8) leads to 2/+! > 257" 1 4+1 >k —7' and
k <l+7r" <1+ k/2 (which follows from ' < 7’ and 7' + 7" < k). Asa
consequence, k <2l. O

Theorem 11. The equivalence Xo(Kmun) = k & n € piles follows from
any of the assumptions

1. k>21+2;
2. me {2,3}.

Proof. 1. Suppose first that n € I$¥). By Theorem 1, xo(Kma) < k. If
k > m+3, then k—1 > m+2, hence the incquality n > bs,'f'l) + 1 together
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with Theorem 9.2 imply xo(Kmn) = k. If kK < m+2, then 2{+1 < k-1, and
son >b% Y 41 with respect to Lemma 10 means that xo(Kma) < k—1
is impossible. Thus, for n € I, xo (Kmn) = k. ;From m > 2!=! we have
m>1and b7 = 70 () —2m +1=2' -~ 2m + 1 < 1, hence the integer
interval [m, o) is covered by the system {I,(,f Vike [t +1,00)} of pairwise
disjoint integer intervals. Therefore, if n € [m, c0) — I,(,f), there is a unique
k' € [l +1,00) — {k} such that n € I&¥?. If & > 21+ 2, by the first part
of the proof, xo(Km) = k' # k. On the other hand, if ¥’ < 2! + 1, then,
by Theorem 1, xo(Kmn) < k' < 20+1 < k. 2. If m € {2,3}, we have
Ig“) N[m,oc0) = 0. Thus, by Theorem 11.1 it is sufficient to treat the cases
k € 142,20+ 1] so that (k,m) can only be one of the pairs (3, 2), (4, 3) and
(5,3). Theorem 9.1 then yields xo(Kmn) = k for any n € % (satisfying
n > m), hence xo(Kmn) =k forn e 1) and we are done. O

For some values of m and n Theorem 11 yields an explicit formula for
X0(Kmn)-

Corollary 12. Ifm € [7,00) and n € [2-4! — 2m + 1,2™+! — 2m), then
Xo(Km,n) = [loga(n + 2m)]. In particular, xo(Kmmn) = [loga(n + 2m)] if
n € [8m? — 2m + 1,2™+! — 2m).

Proof. We have 2l + 1 < m: for m € [7,9] the inequality can be directly
checked, and for m € [10, c0) it suffices to show that m — 2logom — 3 > 0.
Therefore, 2-4' —2m +1 =22+ _2m 4+ 1=37 (¥+) - d¥*V 1=
bia ) +1, and, as 2™ —2m = T (") - (@m - 1) = 67V, n
belongs to exactly one of the intervals IS with k € [2l +2,m 4+ 1]. Since
k—1<m wehaven > Yo (7)) —d(k - 1,m) +1 =281 —2m 4 1.
On the other hand, 3% o (¥) = d%) = 28 —2m for any k € 2l +2,m + 1),
and so n < 2% — 2m. The pair of inequalities 25! - 2m+1 < n < 2F - 2m
is equivalent to 2! 4+ 1 < n + 2m < 2%, and also, by Theorem 11, with
[logy(n+2m)] = k = xo(Kmn)- The second claim of the Corollary follows
from the inequality 8m? > 2 - 4! (coming from m > 2!~1), O

From Theorem 11 and Corollary 12 it is clear that the value of x0(Km n)
is exactly determined for any m > 7and n > 2-4! -~ 2m + 1 (and so for
n > 8m? — 2m + 1), though for n > 2™+! — 2m + 1 we have no explicit
formula.

Proposition 13. [fm > 4 and k € [ + 2,20 + 1), then bV +1 <
2k=1 _m -1 < b0,

Proof. From k < 21+ 1 we obtain k — 1 < 20 < m + 1: the last inequality
is easy to check for m € [4,6] and for m > 7 we can use the inequality
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2l + 1 < m from the proof of Corollary 12. As k —1 < m + 1, we have
B = (571 —dS ™ = 2¥~1 —2m, and so b D41 = 251 —2m+
1 < 251 _m — 1 —1, since the last 1nequa11ty 1s equivalent to [ + 2 < m.
On the other hand, if k < m+1, then b%) = 7 (¥) — d%) = 25 —2m >
2k—1 _m —l whlch follows from 2%¥—1 41 > 2"‘1 > o >m. lfk=m+2,
then b = 7 ("F2)-drt? = 2mH2_(m42)—1-m = 2™+2-2m—3 >
om+l _m _ |, as a consequence of 2™t +1>m+3. O

By Proposition 13, with m >4 and k < 20+ 1, the interval 1) decom-
poses into two subintervals, the left one, L(") [b(‘“*l) +1,26=1 —m—1-1],
and the right one, R%) := = [2k1 — (k)]

Theorem 14. The equality Xo(Km,n) = k follows from either of the as-
sumptions

1. ke[l+220+1] andn € R®;
(k)

2.k=Il+1andne lx’.
Proof. 1. Since R® ¢ I® from Theorem 1 it follows that xo(Kmn) < k.
As in the proof of Proposition 13, k—1 < m+1. Therelfore, the inequality
n > 251 — m — | with respect to Theorem 9.1 implies xo(Kmn) = k. 2.
Use (1) and Theorem 1. O '

Proposition 15. If k € [+ 2,20+ 1] and n € LY, then xo(Kmn) €
{k—1,k}.

Proof. Again, from L( ) Con () we obtain X0(Kmmn) < k. If k 2 143, then
n>bEVp1=5m (5 -dE D +1=251—2m 12252 —m -,
because the last inequality is equivalent to 26~2414+1 > m and 2F~2+14+1 >
2414141 > 2m+Il+1 > m. Since k—2 < 20—1, we have also k—2 < m+1.
Thus, by Theorem 9.1, xo(Kmn) = k- 1. If K = 1 + 2, then, by (1),
XoKmn) 2l +1=k-1. O

From Theorems 11 and 14 and from Proposition 15 we see that if n €
I (k), then xo(Km,n) is either k — 1 or k. All definitive results we have
proved so far are such that xo(Kmn) = k. There are, however, also pairs
(m,n) for which the former possibility applies.

Theorem 16. If m € [4,10] and n € LE, then xo(Km,n) = k — 1 if and
only if (k,m,n) = (6,10,13).

Proof. Consider systems A = {A; : i € [1,10]} and B = {B; : j € [1,13]}
of subsets of the set [1,5], in which A; := [1,5), A; :={1,5] — {i — 1} for
i € [2,6], A,---, Ao are successively {1,2,4}, {1,2,5}, {1,3,4}, {2,5},
B; =[5, + 2s for j € [1,4], and Bs,--- , Bi3 are successively {2,3,5},
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{1i3t 5}1 {2’4: 5}) {1)2}1 {1’5}’ {2: 3}’ {2!4}' {3; 5}: {4x 5}' We can apply
to A and B the construction of Theorem 1 with k = 5 (though 13 ¢ I §3’),
since the sets A;, ¢ € [1,3], and Bj, j € [1,5), are defined in the same
way as there and A; N B; 5 @ holds for any ¢ € [1,10) and j € [1,13].
The constructed matrix F belongs to Ml(g,)m, hence xo(K10,13) < 5, and,

by Proposition 15 (as 13 € Lg%) and xo(K10,13) € {5,6}), xo(K10,13) = 5.

For every m € [4,10] there are only few values of n for which xo(Kmn)

could be equal (by Proposition 15) to k — 1. More precisely, xo(Km,n) is

undetermined (by the statements preceding Theorem 16) only if n € U,

[mn, oo)nUi'_"}il L. For example, Uyo = Ube ng), where ng) = [13,17],
LY = [45,49], L{®) = [109,113] and L{) = [237,241]. Suppose that there

isn € Up — {13} such that n € L 0) and x(Kion) = k — 1. Consider a
point-distinguishing colouring ¢ : E(K10,n) — [1,k—1]. Forp € [1, k—1] let
7p (cp, Tespectively) be the number of p-element sets in the system R (in C).
Since n > b('c R +1, by Lemma 8 there are two disjoint sets in R, so that,
using (2), ¢ = 0. Let first k = 6. Clearly, r; > 2 is impossible, for then
25-71 < 8 < n (sets in C differ only in colours out of smgleton colour sets).
Assume that r; = 1, and that, say, {1} €R. As 21_1(7‘1 +¢)=10+n,
we have rp 4+ ¢ = 104+ n—1— Yo a(ri + ) > 9+n—zz=3(‘:’) =
n —7 > 7, hence at least three out of six 2-element subsets of [2, 5] (which
cannot be in C) are in R. If two of those 2-element subsets in R are
disjoint, then, by (2), |C] < (22 = 1)2 = 9 < n, a contradiction. Assume
that three of those 2-element subsets in R have a common colour, say
{2,3},{2,4}, {2,5} € R. Then, evidently, each C € C is a superset of either
{1,2} or {1,3,4,5}, and |C} < 22 + 1 = 9 < n, a contradiction. Finally,
we may suppose without loss of generality that {2,3},{2,4},{3,4} € R.
Then any set C' € C contains 1 and at least two colours of [2,4], hence
Icl < ((3) + (3)) - 2 = 8 < m, a contradiction again. Thus r; = 0 and
ro+cg > n—6 > 8. If there are two disjoint 2-element sets in R, then
c2 £2-2=4and rp > 8 — ¢y > 4. Consider graphs G, G(R) and G(C)
with V(G) = V(G(R)) = V(G(C)) = [1,5], whose edge sets consist of
2-element sets in R UC, R and C, respectively. Let p € [1,5] be such
that d := degg(r)(p) = A(G(R)). From |E(G(R))| = r2 > 4 we obtain
d > f(2-4)/5] = 2, and so, by (2) (which means that any edge of G(C) is
adjacent to any edge of G(R) in G), it is easy to see that co < 2. Therefore
re > 6 and d > [(2-6)/5] = 3. Then, again by (2), cp <1 and 7, > 7.
Complements (in the set [1, 5]) of 2-element sets of R can only be in R, and,
as r3 < 10 — r, the number of 3-element subsets of [1,5] that are out of
RUC is at least 7 — (10—73) > 4. So, [RUC| < Y20, (3) -4 = 22 < 104n,
a contradiction. The last possibility is that there are disjoint sets in R of
cardinalities 2 and 3, say {1, 2}, [3,5] € R. Since rz + cz > 8 and 2-element
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subsets of [3,5] are not in C, at least one of them is in R and we have the
situation from above. Now assume that k € {7,9) and let 7 € [1, | (k—1)/2]]
be such that there are disjoint sets R, R € R with r = |R| < |R|. For any
C € C both sets CN R and C N ([1,k — 1] — R) 2 C N R are nonempty,
andson=|C| < (2" - 1)(2F"1-" —1) =2k"1 —2k=1-r _ 27 1 1. We have
n> b 1= 300 (¥71) - 20+ 1 = 2571 — 19, hence 27 + 2%~ < 20,
and it is easy to see that this is possible only if k = 7 and r = 3. Evidently,
r1 > 0 implies |C| < 26~ < 2% < n, a contradiction. Thus r; = 0 and
(g) >ro+c>104n— Ef:a (f) =n — 32 > 13. Therefore, if (say) {1, 3]
- and [4,6] are in R, at least one of 2-element subsets of [4,6] (which are
all out of C) must be in R, but then |C] < (28 —1)(22~1) -2 =42 < 7,
a contradiction. In a similar (and simpler) way it is possible to treat the
cases m € [4,9]. The analysis is left to the reader. O

4. CONCLUDING REMARKS

We have seen that triples (k, m,n) such that n € L and x0(Kmn) =
k — 1 appear quite rarely. In spite of this fact the number of those triples
is infinite. Recall the number n; related to xo(Km,m) and mentioned in
the introductory section. From results of [5] it follows that xo(Km,m) =
k for all m € [|2¥/3),n], hence, using n7 = 46 and ngyy > 2nk, we
obtain ni > 23 . 25~¢ for every k € [7,00). Suppose that k € [8,00) and
m € [[2¥-1/3],23 - 25=7). Then Xo(Kmm) = k-1, for |2571/3] < m <
23.2%-7 < n,_ ;. We have also k — 1 < m, as a consequence of k < 2¥~1/3.
Therefore, m > b0 +1 =37, (*7!) = 2m+ 1 =21 —2m + 1, since
this inequality is equivalent to either of 3m > 2¢~! + 1, 3m > 2k-1 and
m > [2%¥~1/3]. On the other hand, [ = [log, m] < [logy 23+k—7] = k-2,
Om+1+1<23.-266 4 k1< 261 =232.286 andsom < 2F! -
m-—1-1. Thusm € Lﬁ,’f), and, as mentioned above, xo(Kmm) = k — 1.
With fixed k > 8 the number of integers in the interval [[25~1/3],23.2%~7)
is > 23287 _2k-1/3 = 5.2%-7/3 > 3, and so the number of triples
(k,m,m) such that m € L) and X0(Km,m) =k —1is infinite. If n € I
and xo(Kmn) = k — 1, then, by Theorems 11 and 14, k € [l + 2,21 + 1]
and n € LS,'f) . In the above infinite sequence of examples of this type we
have m = n, and from m > [2%¥-1/3] > 2k-1/3 > 2k-3 it follows that
k-3 <logym, k—2 <1, and so k = I+ 2. In the only exceptional case of
Theorem 16 the involved parameters are m = 10, n =13 and k =6 = [+2.
Thus, the following could be of interest:

Problem. Decide whether there is a triple of integers (k, m,n) such that
m>11, ke [l+3,20+1), ne L% and xo(Kmn) = k- 1.
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