ON THE POINT-DISTINGUISHING CHROMATIC INDEX OF COMPLETE BIPARTITE GRAPHS

Mirko Horňák and Norma Zagaglia Salvi

ABSTRACT. The point-distinguishing chromatic index of a graph G, in symbols $\chi_0(G)$, is the smallest number of colours in a (not necessarily proper) edge colouring of G such that any two distinct vertices of G are distinguished by sets of colours of their adjacent edges. The exact value of $\chi_0(K_{m,n})$ is found if either $m \leq 10$ or $n \geq 8m^2 - 2m + 1$.

1. Introduction

Let G be a finite simple graph with no component K_2 and at most one component K_1 . Consider a general edge colouring of G (colour classes are not necessarily independent) using k colours as a mapping $\varphi: E(G) \to \{1,\cdots,k\}$. The colour set of a vertex $x \in V(G)$ is the set of colours of edges incident with x. The colouring φ is point-distinguishing if vertices of G differ by their colour sets. The point-distinguishing chromatic index of G is the smallest k such that there is a point-distinguishing colouring of edges of G that uses k colours and is denoted $\chi_0(G)$. This graph invariant has been introduced by Harary and Plantholt [1]. Among other things, the exact values of $\chi_0(K_n)$, $\chi_0(P_n)$, $\chi_0(C_n)$ and $\chi_0(Q_n)$ are computed in [1]. As concerns complete bipartite graphs, a natural general bound $\chi_0(G) \geq \lceil \log_2 |V(G)| \rceil$ of [1] reads as $\chi_0(K_{m,n}) \geq \lceil \log_2 (m+n) \rceil$. So, with $m \leq n$ we have

$$\chi_0(K_{m,n}) \ge \lceil \log_2(2m) \rceil = \lceil \log_2 m \rceil + 1. \tag{1}$$

The mentioned paper provides also an upper bound of $\chi_0(K_{m,n})$ if $\lceil \log_2 n \rceil + 1 \le m \le n$, namely $\chi_0(K_{m,n}) \le \lceil \log_2 n \rceil + 2$. A greater effort has been concentrated on the determination of $\chi_0(K_{m,m})$. Zagaglia Salvi [5] proved that the sequence $\{\chi_0(K_{m,m})\}_{m=2}^{\infty}$ is non-decreasing with jumps of value 1. As a consequence, there is an increasing sequence $\{n_k\}_{k=2}^{\infty}$ of integers in which $n_2 = 1$ and, for any $k \ge 3$, $\chi_0(K_{m,m}) = k$ if and only if $n_{k-1} + 1 \le m \le n_k$; it is easy to see that $n_k < 2^{k-1}$. Only few exact values of n_k are known, namely $n_3 = 2$, $n_4 = 5$, $n_5 = 11$, $n_6 = 22$ (see Zagaglia Salvi

[4]) and $n_7 = 46$ (Horňák and Soták [2]). According to [5], $n_{k+1} \ge 2n_k$, and so the sequence $\{\frac{n_k}{2k-1}\}_{k=3}^{\infty}$ (as nondecreasing and upper bounded by 1) is convergent and $0.71875 = \frac{46}{64} \le \lim_{k \to \infty} \frac{n_k}{2^{k-1}} \le 1$. Horňák and Soták [3] succeeded in showing that $\lim_{k\to\infty}\frac{n_k}{2^{k-1}}\geq 3-\sqrt{5}=0.763932\ldots$. The question of whether the mentioned limit is strictly smaller than 1 is still open. The aim of the present paper is to determine $\chi_0(K_{m,n})$ for all n sufficiently large with respect to m. Since, trivially, $\chi_0(K_{1,n}) = n$ for any $n \geq 2$, we are interested in $\chi_0(K_{m,n})$ with $m \geq 2$. Let $p, q \in \mathbb{Z}$. By [p,q] we denote the interval of all integers z with $p \le z \le q$, and by $[p,\infty)$ the interval of all integers z with $z \geq p$. For $k \in [1,\infty)$ let $(p)_k$ be the representative of the residue class p modulo k in [1, k]. By $[p, q]_k$ we denote the set of all integers $(i)_k$ with $i \in [p,q]$. Consider an $m \times n$ matrix A. For $i \in [1, m]$ and $j \in [1, n]$, let $R_i(A)$ and $C_i(A)$ be the sets of elements in the ith row and in the jth column of A, respectively. Further, put $\mathcal{R}(A) := \bigcup_{i=1}^m \{R_i(A)\}\$ and $\mathcal{C}(A) := \bigcup_{j=1}^n \{C_j(A)\}\$ evidently, any set of $\mathcal{R}(A)$ is non-disjoint with any set of $\mathcal{C}(A)$ (the element in the *i*th row and the jth column is in $R_i(A) \cap C_j(A)$). Let $M_{m,n}^{(k)}$ be the set of all $m \times n$ matrices with entries from [1,k] such that $|\mathcal{R}(A) \cup \mathcal{C}(A)| = m+n$ (which means that $|\mathcal{R}(A)| = m$, $|\mathcal{C}(A)| = n$ and $\mathcal{R}(A) \cap \mathcal{C}(A) = \emptyset$). If there is a point-distinguishing colouring $\varphi: E(K_{m,n}) \to [1,k]$, then, by (1), $k \geq \lceil \log_2 m \rceil + 1$. Suppose that the bipartition of $V(K_{m,n})$ is $\{\{x_i : x_i : x_i = 1\}\}$ $i \in [1, m]$, $\{y_j : j \in [1, n]\}$, and let $F(\varphi)$ be the $m \times n$ matrix whose ith row and jth column element is $\varphi(x_iy_j)$. Clearly, the matrix $F(\varphi)$ belongs to $M_{m,n}^{(k)}$ and (as any $m \times n$ matrix) satisfies

$$\forall i \in [1, m] \ \forall j \in [1, n] \ R_i(F(\varphi)) \cap C_j(F(\varphi)) \neq \emptyset. \tag{2}$$

On the other hand, if $M_{m,n}^{(k)} \neq \emptyset$, then $\chi_0(K_{m,n}) \leq k$. Indeed, if $F = (f_{i,j}) \in M_{m,n}^{(k)}$, then the colouring $\varphi : E(K_{m,n}) \to [1,k]$, determined by $\varphi(x_iy_j) := f_{i,j}$, is point-distinguishing. Throughout the whole article we suppose (if not explicitly stated otherwise) that k, l, m, n are integers with $2 \leq m \leq n, l = \lceil \log_2 m \rceil$ and $k \geq \min(l+1,3)$ (note that with two colours we can distinguish only three vertices of a connected graph); the equality $l = \lceil \log_2 m \rceil$ is equivalent to

$$2^{l-1} < m \le 2^l.$$

As usual, for a set X we denote by 2^X the system of all subsets of X.

2. MATRIX CONSTRUCTION

In this section we provide an upper bound for $\chi_0(K_{m,n})$. For that pur-

pose define, for positive integers k, m,

$$d_m^{(k)} := \left\{ egin{array}{ll} 2m, & ext{if } k \leq m, \\ 2m-1, & ext{if } k = m+1, \\ m, & ext{if } k \geq m+2, \end{array}
ight.$$

$$b_m^{(k)} := \sum_{i=0}^m \binom{k}{i} - d_m^{(k)},$$

$$I_m^{(k)} := [b_m^{(k-1)} + 1, b_m^{(k)}].$$

The summation term in the definition of $b_m^{(k)}$ gives the number of subsets of k items with up to m elements; this then gives the maximum possible number of distinguishing sets that can be assigned to vertices of the partite set with n elements. The adjustment made by subtracting $d_m^{(k)}$ will become clear in the proof.

Theorem 1. If $n \in I_m^{(k)}$, then $\chi_0(K_{m,n}) \leq k$.

Proof. (a) Assume first that $n \geq k \geq 4$ and let $r := \lceil \frac{k}{2} \rceil$, $s := \min(m, r)$, $A_1 := [1, k]$, $A_i := [1, k] - \{i - 1\}$, $i = 2, \ldots, s$, $B_j := [j, j + s - 1]_k$, $j = 1, \ldots, k - 1$, $B_k := [2, s] \cup \{k\}$ and $B' := \{B_j : j \in [1, k]\}$. All 2^k subsets of [1, k] can be organized into 2^{k-1} pairs of complementary sets $(A_i, [1, k] - A_i)$, $i = 1, \ldots, 2^{k-1}$, such that for any $i, j \in [1, 2^{k-1}]$ we have

$$|A_i| \ge |[1, k] - A_i|,$$
 (3)

$$i < j \Rightarrow |A_i| \ge |A_j|,\tag{4}$$

$$i \le m \Rightarrow \{A_i, [1, k] - A_i\} \cap \mathcal{B}' = \emptyset \tag{5}$$

(note that A_1,\ldots,A_s satisfy (3)-(5)). In fact, the only problem could be with (5). If $m\leq k-1$, then, by (3) and (4), $|A_i|\geq k-1$ and $|[1,k]-A_i|\leq 1$ for any $i\in [1,m]$, and, since \mathcal{B}' consists of s-element sets with $2\leq s\leq r=\lceil\frac{k}{2}\rceil\leq k-2$, (5) is trivially true. On the other hand, if $m\geq k$, to fulfill (5) we only have to be sure that $m+k\leq 2^{k-1}$ if k is odd and that $m+\frac{k}{2}+1\leq 2^{k-1}$ if k is even (if k=2q, \mathcal{B}' contains q-1 complementary pairs $([j,j+q-1]_{2q},[j+q,j+2q-1]_{2q}), j=1,\ldots,q-1)$. However, for an odd k the assumption $m\geq 2^{k-1}-k+1$ yields $2^k\geq 2m+n\geq 3m\geq 3(2^{k-1}-k+1)$ and $3(k-1)\geq 2^{k-1}$ in contradiction with $k\geq 5$. Analogously, if k is even and $m\geq 2^{k-1}-\frac{k}{2}$, then $2^k\geq 3(2^{k-1}-\frac{k}{2})$ and $3k\geq 2^k$, which contradicts $k\geq 4$. We now put $A:=\{A_i:i\in[1,m]\}$ and show that \mathcal{B}' can be

extended by subsets of [1,k] of cardinality $\leq m$ to $\mathcal{B} = \{B_j : j \in [1,n]\}$ satisfying $\mathcal{A} \cap \mathcal{B} = \emptyset$ and

$$\forall i \in [1, m] \ \forall j \in [1, n] \ A_i \cap B_j \neq \emptyset \tag{6}$$

(note that from $k \geq 4$ it follows that \mathcal{B}' consists of k distinct sets). Namely, \mathcal{B} can contain any of sets A_i , $[1,k]-A_i$, $i\in[m+1,2^{k-1}]$ (if it is of cardinality $\leq m$). Indeed, if $t := |A_m|$, then, by (4), $|A_i| \geq t$ for any $i \in [1, m]$, and, by (3), $|B_i| \ge \min(t, k - t) = k - t$. Thus, we have either $|A_i|+|B_j|>t+k-t=k$ and $A_i\cap B_j\neq\emptyset$ by the Pigeonhole Principle (PP) or $|A_i| = t$, $|B_j| = k - t$ and $|A_i| \cap B_j \neq \emptyset$ because of the fact that $[1, k] - A_i$ does not belong to \mathcal{B} . The number of subsets of [1,k] of cardinality $\leq m$ that cannot be in \mathcal{B} is at most 2m (it corresponds to A_i and $[1,k]-A_i$ for $i \in [1, m]$). However, if k = m+1, then $|A_1| = k > m$ (so that the bound 2mhas to be decreased to 2m-1), and, if $k \ge m+2$, $|A_i| \ge |A_m| = k-1 > m$ for any $i \in [1, m]$ (decrease 2m to m). Therefore, the above extension of \mathcal{B}' to \mathcal{B} can be performed whenever $n \leq \sum_{i=0}^{m} {k \choose i} - d_m^{(k)} = b_m^{(k)}$. We prove our Theorem by constructing an $m \times n$ matrix $F = (f_{i,j})$ such that $\mathcal{R}(F) = \mathcal{A}$ and $\mathcal{C}(F) = \mathcal{B}$, which means that $F \in M_{m,n}^{(k)}$ and $\chi_0(K_{m,n}) \leq k$. We define $f_{i,j} := (i+j-1)_k$ for $i \in [1,s]$ and $j \in [1,k-1]$, $f_{1,k} := k$, and $f_{i,k} := i$ for $i \in [2,s]$. Let $F' = (f_{i,j})$ be the so far constructed $s \times k$ matrix. Then $R_1(F') = [1, k] = A_1$, $R_i(F') = \{(i + j - 1)_k : j \in A_1, R_i(F') = \{(i + j$ [1, k-1] \cup $\{i\} = [i, i+k-1]_k \cup \{i\} = [1, k] - \{i-1\} = A_i \text{ for } i \in [2, s],$ $C_j(F') = \{(i+j-1)_k : i \in [1,s]\} = [j,j+s-1]_k = B_j \text{ for } j \in [1,k-1]$ and $C_k(F') = \{k\} \cup [2, s] = B_k$. Now suppose that m > s and consider $i \in [s+1,m]$. If $j \in A_i$, define $f_{i,j} := j$, while for $j \in [1,k] - A_i$ pick $f_{i,j} \in A_i \cap B_j$ (which is possible due to (6)). For the so far defined $m \times k$ matrix $F'' = (f_{i,j})$ we have $R_i(F'') = A_i$, $i = 1, \ldots, m$, and $C_j(F'') = B_j$, $j=1,\ldots,k$ (note that $j\in B_j$ for every $j\in [1,k]$). Finally, if n>k, we extend F" to F as follows: consider $j \in [k+1,n]$, set $b_j := |B_j|$ (recall that $b_i \leq m$, and suppose that B_j consists of elements $B_j(i)$, $i \in [1, b_j]$, satisfying

$$\forall i_1, i_2 \in [1, b_j] \ (i_1 < i_2 \Rightarrow B_j(i_1) < B_j(i_2)).$$

We put $f_{i,j} := B_j(i)$ for each $i \in [1, b_j]$, and we choose $f_{i,j}$ arbitrarily from the set $A_i \cap B_j \neq \emptyset$ if $i \in [b_j + 1, m]$. Then we have $B_j(1) \in A_1 = [1, k]$ and, for each $i \in [2, b_j]$, $B_j(i) \geq i > i - 1$, so that $B_j(i) \in [1, k] - \{i - 1\} = A_i$. Therefore it is clear that $\mathcal{R}(F) = A$ and $\mathcal{C}(F) = B$ as required. (b) Suppose that $n \leq k - 1$. If $m \leq k - 2$, then $k - 1 \geq n \geq b_m^{(k-1)} + 1 \geq 1 + k - 1 + {k-1 \choose 2} - m + 1$ and $k - 4 \geq m - 2 \geq {k-1 \choose 2}$ which is impossible for any $k \geq 3$. Therefore, $2 \leq m = n = k - 1$, $k - 1 \geq 1 + k - 1 + {k-1 \choose 2} - (2k - 3) + 1$ and $2k - 1 \geq {k-1 \choose 2}$, hence $k \leq 4$ and $(k, m, n) \in \{(3, 2, 2), (4, 3, 3)\}$. In this case $\chi_0(K_{2,2}) = \chi_0(C_4) = 3$ (see [1]) and $\chi_0(K_{3,3}) = 4$ (see [4]). (c)

If k=3, then the only m, satisfying $I_m^{(3)}\cap [m,\infty)\neq \emptyset$, is m=2 (we have $I_3^{(3)}=[-1,2]$). To see that $\chi_0(K_{2,n})\leq 3$ for $n\in I_2^{(3)}\cap [3,\infty)=[3,4]$ consider matrices $\begin{pmatrix} 2 & 3 & 1 \\ 2 & 3 & 2 \end{pmatrix}\in M_{2,3}^{(3)}$ and $\begin{pmatrix} 2 & 3 & 1 & 1 \\ 2 & 3 & 2 & 3 \end{pmatrix}\in M_{2,4}^{(3)}$. \square

3. Definitive results

Returning to the proof of Theorem 1 we see that the constructed matrix F in the "ordinary" case (a) has non-disjoint rows. Indeed, for any $i,j\in [1,m],\ i\neq j$, we have $\min(|A_i|,|A_j|)\geq \lceil\frac{k}{2}\rceil$ (by (3)), and so either $|A_i|+|A_j|>k$ (and $A_i\cap A_j\neq\emptyset$ by PP) or $|A_i|=|A_j|=\frac{k}{2}$ (and then $A_i\cap A_j\neq\emptyset$ since $A_j\neq [1,k]-A_i$). We shall see in Lemma 8 that a point-distinguishing colouring $\varphi:E(K_{m,n})\to [1,k]$ such that $F(\varphi)$ has non-disjoint rows cannot do better than it does in Theorem 1. For positive \bigsqcup integers k,m with $m\leq 2^k$ let $\mathcal{S}_m^{(k)}$ be the system of all systems of m distinct subsets of the set [1,k], and for $\mathcal{D}\in\mathcal{S}_m^{(k)}$ put $\hat{\mathcal{D}}:=\{B:(\exists D\in\mathcal{D})\ B\subseteq [1,k]-D\}$.

Proposition 7. If k, m are positive integers with $m \leq 2^k$ and $\mathcal{D} \in \mathcal{S}_m^{(k)}$, then $|\hat{\mathcal{D}}| \geq m$.

Proof. For any $\mathcal{D} \in \mathcal{S}_m^{(k)}$ set $\tilde{\mathcal{D}} := \{[1,k] - D : D \in \mathcal{D}\}$. Clearly, $\hat{D} \supseteq \tilde{\mathcal{D}}$, and we have $|\hat{\mathcal{D}}| \ge |\tilde{\mathcal{D}}| = |\mathcal{D}| = m$. \square

Lemma 8. If a point-distinguishing colouring $\varphi : E(K_{m,n}) \to [1, k]$ is such that the sets in $\mathcal{R}(F(\varphi))$ are pairwise non-disjoint, then $n \leq b_m^{(k)}$.

Proof. Denote for short $\mathcal{R}=\mathcal{R}(F(\varphi))$ and $\mathcal{C}=\mathcal{C}(F(\varphi))$. (This convention will be applied in the sequel whenever working with a point-distinguishing colouring φ .) Then, by the assumption of our Lemma, $\hat{\mathcal{R}} \cap \mathcal{R} = \emptyset$, and, with respect to (2), $\hat{\mathcal{R}} \cap \mathcal{C} = \emptyset$. The colouring φ is point-distinguishing, and so $\mathcal{R} \cap \mathcal{C} = \emptyset$. By Proposition 7, $|\hat{\mathcal{R}}| \geq m$ (note that $m \leq 2^l \leq 2^{k-1}$). (a) Assume that $k \leq m+1$. Then $n+2m=|\mathcal{C}|+|\mathcal{R}|+m \leq |\mathcal{C}|+|\mathcal{R}|+|\hat{\mathcal{R}}|=|\mathcal{C} \cup \mathcal{R} \cup \hat{\mathcal{R}}| \leq |2^{[1,k]}|=2^k$, hence $n+2m \leq \sum_{i=0}^m \binom{k}{i}$ if $k \leq m$ and $n+2m \leq \sum_{i=0}^m \binom{k}{i}+1$ if k=m+1, which results in $n \leq \sum_{i=0}^m \binom{k}{i}-d_m^{(k)}=b_m^{(k)}$ in both cases. (b) Let $k \geq m+2$. Consider a set $R \in \mathcal{R}$ of minimum cardinality r. Any subset of [1,k]-R belongs to $\hat{\mathcal{R}}$, hence it is out of \mathcal{C} . The system \mathcal{C} contains exclusively subsets of [1,k] of cardinality $\leq m$, therefore $n=|\mathcal{C}|\leq \sum_{i=0}^m \binom{k}{i}-\sum_{i=0}^m \binom{k}{i}-\sum_{i=0}^m \binom{k}{i}-m-2=b_m^{(k)}-2$. On the other hand, $r \geq k-m+1$ means that, for any $\hat{\mathcal{R}} \in \hat{\mathcal{R}}$, $|\hat{\mathcal{R}}| \leq |[1,k]-R|=k-r\leq m-1$. Thus \mathcal{C} and $\hat{\mathcal{R}}$ are disjoint subsystems of the system of all subsets of [1,k] with cardinality $\leq m$, so that $n+d_m^{(k)}=|\mathcal{C}|+m\leq |\mathcal{C}|+|\hat{\mathcal{R}}|=|\mathcal{C}\cup\hat{\mathcal{R}}|\leq \sum_{i=0}^m \binom{k}{i}$ and $n\leq b_m^{(k)}$. \square

Theorem 9. The inequality $\chi_0(K_{m,n}) \geq k+1$ follows from either of the assumptions

- 1. $k \le m+1 \text{ and } n \ge 2^k m l;$
- 2. $k \ge m+2 \text{ and } n \ge b_m^{(k)}+1$.

Proof. Suppose that one of the mentioned conditions is fulfilled and there is a point-distinguishing colouring $\varphi: E(K_{m,n}) \to [1,k]$. 1. Let \mathcal{S} be the system of 1-element sets in $\mathcal{R} \cup \mathcal{C}$, $S:=\{c\in [1,k]: \{c\}\in \mathcal{S}\}$, and $s:=|\mathcal{S}|(=|\mathcal{S}|)$. Then $2^k-l\leq m+n=|\mathcal{R}|+|\mathcal{C}|\leq s+\sum_{i=2}^m \binom{k}{i}$, hence $s\geq \sum_{i=0}^k \binom{k}{i} - \sum_{i=2}^m \binom{k}{i} - l\geq 1+k-l\geq 2$. Clearly, since φ is point-distinguishing, (2) implies that all sets of \mathcal{S} are either in \mathcal{R} or in \mathcal{C} . If they are in \mathcal{R} , then, by (2), sets in \mathcal{C} are distinguished only by k-s colours of the set [1,k]-S, and so $2^k-m-l\leq n=|\mathcal{C}|\leq 2^{k-s}\leq 2^{k-2}$. Since $m\leq n$, we have $2\cdot 2^{k-2}\geq m+n\geq 2^k-l$ and $l\geq 2^{k-1}\geq 2^l$, a contradiction Now suppose that all sets of \mathcal{S} are in \mathcal{C} . Sets in \mathcal{R} are distinguished only by k-s colours of the set [1,k]-S, hence $2^{k-s}\geq m>2^{l-1}$, k-s>l-1, $k-s\geq l$ and $s\leq k-l$ in contradiction with the above inequality $s\geq 1+k-l$. 2. The result comes from Lemma 8 because of the circumstance that its proof did not use the fact that sets in $\mathcal{R}(F(\varphi))$ are pairwise disjoint. \square

Lemma 10. If $n \geq b_m^{(k)} + 1$ and $\chi_0(K_{m,n}) \leq k$, then $k \leq 2l$.

Proof. Because of the inequality $n \geq b_m^{(k)} + 1$, from Lemma 8 it follows that for any point-distinguishing colouring $\varphi : E(K_{m,n}) \to [1,k]$ there are $R', R'' \in \mathcal{R}$ with $R' \cap R'' = \emptyset$. We can choose those sets in such a way that $r' := |R'| \leq |R''| =: r''$. By (2), $C \cap R' \neq \emptyset$ for any $C \in \mathcal{C}$, hence $C \cap 2^{[1,k]-R'} = \emptyset$ and

$$n = |\mathcal{C}| \le 2^k - 2^{k-r'}.\tag{7}$$

Since $n \ge \sum_{i=0}^{m} {k \choose i} - d_m^{(k)} + 1 = 2^k - 2m + 1$ for any $k \le m + 1$, (7) yields

$$2m \ge 2^k + 1 - (2^k - 2^{k-r'}) > 2^{k-r'}. \tag{8}$$

With respect to $m \le 2^l$ then (8) leads to $2^{l+1} > 2^{k-r'}$, l+1 > k-r' and $k \le l+r' \le l+k/2$ (which follows from $r' \le r''$ and $r'+r'' \le k$). As a consequence, $k \le 2l$. \square

Theorem 11. The equivalence $\chi_0(K_{m,n}) = k \Leftrightarrow n \in I_m^{(k)}$ follows from any of the assumptions

- 1. $k \ge 2l + 2$;
- 2. $m \in \{2, 3\}$.

Proof. 1. Suppose first that $n \in I_m^{(k)}$. By Theorem 1, $\chi_0(K_{m,n}) \leq k$. If $k \geq m+3$, then $k-1 \geq m+2$, hence the inequality $n \geq b_m^{(k-1)}+1$ together

with Theorem 9.2 imply $\chi_0(K_{m,n}) \geq k$. If $k \leq m+2$, then $2l+1 \leq k-1$, and so $n \geq b_m^{(k-1)} + 1$ with respect to Lemma 10 means that $\chi_0(K_{m,n}) \leq k-1$ is impossible. Thus, for $n \in I_m^{(k)}$, $\chi_0(K_{m,n}) = k$. From $m > 2^{l-1}$ we have m > l and $b_m^{(l)} = \sum_{i=0}^m \binom{l}{i} - 2m + 1 = 2^l - 2m + 1 < 1$, hence the integer interval $[m, \infty)$ is covered by the system $\{I_m^{(k)} : k \in [l+1, \infty)\}$ of pairwise disjoint integer intervals. Therefore, if $n \in [m, \infty) - I_m^{(k)}$, there is a unique $k' \in [l+1,\infty) - \{k\}$ such that $n \in I_m^{(k')}$. If $k' \geq 2l+2$, by the first part of the proof, $\chi_0(K_{m,n}) = k' \neq k$. On the other hand, if $k' \leq 2l+1$, then, by Theorem 1, $\chi_0(K_{m,n}) \leq k' \leq 2l+1 < k$. 2. If $m \in \{2,3\}$, we have $I_m^{(l+1)} \cap [m,\infty) = \emptyset$. Thus, by Theorem 11.1 it is sufficient to treat the cases $k \in [l+2,2l+1]$ so that (k,m) can only be one of the pairs (3,2),(4,3) and (5,3). Theorem 9.1 then yields $\chi_0(K_{m,n}) \geq k$ for any $n \in I_m^{(k)}$ (satisfying $n \geq m$), hence $\chi_0(K_{m,n}) = k$ for $n \in I_m^{(k)}$ and we are done. \square

For some values of m and n Theorem 11 yields an explicit formula for $\chi_0(K_{m,n})$.

Corollary 12. If $m \in [7, \infty)$ and $n \in [2 \cdot 4^l - 2m + 1, 2^{m+1} - 2m]$, then $\chi_0(K_{m,n}) = \lceil \log_2(n+2m) \rceil$. In particular, $\chi_0(K_{m,n}) = \lceil \log_2(n+2m) \rceil$ if $n \in [8m^2 - 2m + 1, 2^{m+1} - 2m]$.

Proof. We have $2l+1 \leq m$: for $m \in [7,9]$ the inequality can be directly checked, and for $m \in [10,\infty)$ it suffices to show that $m-2\log_2 m-3 \geq 0$. Therefore, $2 \cdot 4^l - 2m + 1 = 2^{2l+1} - 2m + 1 = \sum_{i=0}^m {2l+1 \choose i} - d_m^{(2l+1)} + 1 = b_m^{(2l+1)} + 1$, and, as $2^{m+1} - 2m = \sum_{i=0}^m {m+1 \choose i} - (2m-1) = b_m^{(m+1)}$, $n = k-1 \leq m$, we have $n \geq \sum_{i=0}^m {k-1 \choose i} - d_i + 1 = 2^{k-1} - 2m + 1$. On the other hand, $\sum_{i=0}^k {k \choose i} - d_m^{(k)} = 2^k - 2m$ for any $k \in [2l+2,m+1]$, and so $n \leq 2^k - 2m$. The pair of inequalities $2^{k-1} - 2m + 1 \leq n \leq 2^k - 2m$ is equivalent to $2^{k-1} + 1 \leq n + 2m \leq 2^k$, and also, by Theorem 11, with $\lceil \log_2(n+2m) \rceil = k = \chi_0(K_{m,n})$. The second claim of the Corollary follows from the inequality $2^{m-1} > 2^{k-1}$. \square

From Theorem 11 and Corollary 12 it is clear that the value of $\chi_0(K_{m,n})$ is exactly determined for any $m \geq 7$ and $n \geq 2 \cdot 4^l - 2m + 1$ (and so for $n \geq 8m^2 - 2m + 1$), though for $n \geq 2^{m+1} - 2m + 1$ we have no explicit formula.

Proposition 13. If $m \ge 4$ and $k \in [l+2, 2l+1]$, then $b_m^{(k-1)} + 1 \le 2^{k-1} - m - l - 1 < b_m^{(k)}$.

Proof. From $k \le 2l+1$ we obtain $k-1 \le 2l \le m+1$: the last inequality is easy to check for $m \in [4,6]$ and for $m \ge 7$ we can use the inequality

 $\begin{array}{l} 2l+1 \leq m \text{ from the proof of Corollary 12. As } k-1 \leq m+1, \text{ we have } b_m^{(k-1)} = \sum_{i=0}^m \binom{k-1}{i} - d_m^{(k-1)} = 2^{k-1} - 2m, \text{ and so } b_m^{(k-1)} + 1 = 2^{k-1} - 2m + 1 \leq 2^{k-1} - m - l - 1, \text{ since the last inequality is equivalent to } l+2 \leq m. \\ \text{On the other hand, if } k \leq m+1, \text{ then } b_m^{(k)} = \sum_{i=0}^m \binom{k}{i} - d_m^{(k)} = 2^k - 2m > 2^{k-1} - m - l, \text{ which follows from } 2^{k-1} + l > 2^{k-1} \geq 2^l \geq m. \text{ If } k = m+2, \\ \text{then } b_m^{(k)} = \sum_{i=0}^m \binom{m+2}{i} - d_m^{(m+2)} = 2^{m+2} - (m+2) - 1 - m = 2^{m+2} - 2m - 3 > 2^{m+1} - m - l, \text{ as a consequence of } 2^{m+1} + l > m+3. \end{array}$

By Proposition 13, with $m \ge 4$ and $k \le 2l+1$, the interval $I_m^{(k)}$ decomposes into two subintervals, the left one, $L_m^{(k)} := [b_m^{(k-1)} + 1, 2^{k-1} - m - l - 1]$, and the right one, $R_m^{(k)} := [2^{k-1} - m - l, b_m^{(k)}]$.

Theorem 14. The equality $\chi_0(K_{m,n}) = k$ follows from either of the assumptions

- 1. $k \in [l+2, 2l+1]$ and $n \in R_m^{(k)}$;
- 2. k = l + 1 and $n \in I_m^{(k)}$.

Proof. 1. Since $R_m^{(k)} \subseteq I_m^{(k)}$, from Theorem 1 it follows that $\chi_0(K_{m,n}) \le k$. As in the proof of Proposition 13, $k-1 \le m+1$. Therefore, the inequality $n \ge 2^{k-1} - m - l$ with respect to Theorem 9.1 implies $\chi_0(K_{m,n}) \ge k$. 2. Use (1) and Theorem 1. \square

Proposition 15. If $k \in [l+2, 2l+1]$ and $n \in L_m^{(k)}$, then $\chi_0(K_{m,n}) \in \{k-1, k\}$.

Proof. Again, from $L_m^{(k)} \subseteq I_m^{(k)}$ we obtain $\chi_0(K_{m,n}) \le k$. If $k \ge l+3$, then $n \ge b_m^{(k-1)} + 1 = \sum_{i=0}^m {k-1 \choose i} - d_m^{(k-1)} + 1 = 2^{k-1} - 2m + 1 \ge 2^{k-2} - m - l$, because the last inequality is equivalent to $2^{k-2} + l + 1 \ge m$ and $2^{k-2} + l + 1 \ge 2^{l+1} + l + 1 \ge 2m + l + 1 > m$. Since $k-2 \le 2l-1$, we have also $k-2 \le m+1$. Thus, by Theorem 9.1, $\chi_0(K_{m,n}) \ge k-1$. If k=l+2, then, by (1), $\chi_0(K_{m,n}) \ge l+1 = k-1$. □

From Theorems 11 and 14 and from Proposition 15 we see that if $n \in I_m^{(k)}$, then $\chi_0(K_{m,n})$ is either k-1 or k. All definitive results we have proved so far are such that $\chi_0(K_{m,n}) = k$. There are, however, also pairs (m,n) for which the former possibility applies.

Theorem 16. If $m \in [4, 10]$ and $n \in L_m^{(k)}$, then $\chi_0(K_{m,n}) = k - 1$ if and only if (k, m, n) = (6, 10, 13).

Proof. Consider systems $A = \{A_i : i \in [1, 10]\}$ and $B = \{B_j : j \in [1, 13]\}$ of subsets of the set [1, 5], in which $A_1 := [1, 5]$, $A_i := [1, 5] - \{i - 1\}$ for $i \in [2, 6]$, A_7, \dots, A_{10} are successively $\{1, 2, 4\}$, $\{1, 2, 5\}$, $\{1, 3, 4\}$, $\{2, 5\}$, $B_j := [j, j + 2]_5$ for $j \in [1, 4]$, and B_5, \dots, B_{13} are successively $\{2, 3, 5\}$,

 $\{1,3,5\}, \{2,4,5\}, \{1,2\}, \{1,5\}, \{2,3\}, \{2,4\}, \{3,5\}, \{4,5\}.$ We can apply to \mathcal{A} and \mathcal{B} the construction of Theorem 1 with k=5 (though $13 \notin I_{10}^{(5)}$), since the sets A_i , $i \in [1,3]$, and B_j , $j \in [1,5]$, are defined in the same way as there and $A_i \cap B_j \neq \emptyset$ holds for any $i \in [1, 10]$ and $j \in [1, 13]$. The constructed matrix F belongs to $M_{10,13}^{(5)}$, hence $\chi_0(K_{10,13}) \leq 5$, and, by Proposition 15 (as $13 \in L_{10}^{(6)}$ and $\chi_0(K_{10,13}) \in \{5,6\}$), $\chi_0(K_{10,13}) = 5$. For every $m \in [4,10]$ there are only few values of n for which $\chi_0(K_{m,n})$ could be equal (by Proposition 15) to k-1. More precisely, $\chi_0(K_{m,n})$ is undetermined (by the statements preceding Theorem 16) only if $n \in U_m := [m, \infty) \cap \bigcup_{k=l+1}^{2l+1} L_m^{(k)}$. For example, $U_{10} = \bigcup_{k=6}^9 L_{10}^{(k)}$, where $L_{10}^{(6)} = [13, 17]$, $L_{10}^{(7)} = [45, 49]$, $L_{10}^{(8)} = [109, 113]$ and $L_{10}^{(9)} = [237, 241]$. Suppose that there is $n \in U_{10} - \{13\}$ such that $n \in L_{10}^{(k)}$ and $\chi(K_{10,n}) = k-1$. Consider a point-distinguishing colouring $\varphi : E(K_{10,n}) \to [1,k-1]$. For $p \in [1,k-1]$ let r_p (c_p , respectively) be the number of p-element sets in the system \mathcal{R} (in \mathcal{C}). Since $n \geq b_{10}^{(k-1)} + 1$, by Lemma 8 there are two disjoint sets in \mathcal{R} , so that, using (2), $c_1 = 0$. Let first k = 6. Clearly, $r_1 \geq 2$ is impossible, for then $2^{5-r_1} \le 8 < n$ (sets in C differ only in colours out of singleton colour sets). Assume that $r_1 = 1$, and that, say, $\{1\} \in \mathcal{R}$. As $\sum_{i=1}^{5} (r_i + c_i) = 10 + n$, we have $r_2 + c_2 = 10 + n - 1 - \sum_{i=3}^{5} (r_i + c_i) \ge 9 + n - \sum_{i=3}^{5} {5 \choose i} = 10$ $n-7 \ge 7$, hence at least three out of six 2-element subsets of [2,5] (which cannot be in C) are in R. If two of those 2-element subsets in R are disjoint, then, by (2), $|\mathcal{C}| \leq (2^2 - 1)^2 = 9 < n$, a contradiction. Assume that three of those 2-element subsets in R have a common colour, say $\{2,3\},\{2,4\},\{2,5\}\in\mathcal{R}$. Then, evidently, each $C\in\mathcal{C}$ is a superset of either $\{1,2\}$ or $\{1,3,4,5\}$, and $|\mathcal{C}| \le 2^3 + 1 = 9 < n$, a contradiction. Finally, we may suppose without loss of generality that $\{2,3\},\{2,4\},\{3,4\} \in \mathcal{R}$. Then any set $C \in \mathcal{C}$ contains 1 and at least two colours of [2,4], hence $|\mathcal{C}| \leq {\binom{3}{2} + \binom{3}{3}} \cdot 2 = 8 < n$, a contradiction again. Thus $r_1 = 0$ and $r_2 + c_2 \ge n - 6 \ge 8$. If there are two disjoint 2-element sets in \mathcal{R} , then $c_2 \leq 2 \cdot 2 = 4$ and $r_2 \geq 8 - c_2 \geq 4$. Consider graphs $G, G(\mathcal{R})$ and $G(\mathcal{C})$ with $V(G) = V(G(\mathcal{R})) = V(G(\mathcal{C})) = [1,5]$, whose edge sets consist of 2-element sets in $\mathcal{R} \cup \mathcal{C}$, \mathcal{R} and \mathcal{C} , respectively. Let $p \in [1,5]$ be such that $d := \deg_{G(\mathcal{R})}(p) = \Delta(G(\mathcal{R}))$. From $|E(G(\mathcal{R}))| = r_2 \geq 4$ we obtain $d \ge \lceil (2 \cdot 4)/5 \rceil = 2$, and so, by (2) (which means that any edge of $G(\mathcal{C})$ is adjacent to any edge of $G(\mathcal{R})$ in G), it is easy to see that $c_2 \leq 2$. Therefore $r_2 \ge 6$ and $d \ge \lceil (2 \cdot 6)/5 \rceil = 3$. Then, again by (2), $c_2 \le 1$ and $r_2 \ge 7$. Complements (in the set [1,5]) of 2-element sets of \mathcal{R} can only be in \mathcal{R} , and, as $r_3 \leq 10 - r_2$, the number of 3-element subsets of [1,5] that are out of $\mathcal{R} \cup \mathcal{C}$ is at least $r_2 - (10 - r_2) \ge 4$. So, $|\mathcal{R} \cup \mathcal{C}| \le \sum_{i=2}^{5} {5 \choose i} - 4 = 22 < 10 + n$, a contradiction. The last possibility is that there are disjoint sets in R of cardinalities 2 and 3, say $\{1,2\},[3,5] \in \mathcal{R}$. Since $r_2 + c_2 \ge 8$ and 2-element

subsets of [3,5] are not in \mathcal{C} , at least one of them is in \mathcal{R} and we have the situation from above. Now assume that $k \in [7,9]$ and let $r \in [1,\lfloor (k-1)/2 \rfloor]$ be such that there are disjoint sets $R, \bar{R} \in \mathcal{R}$ with $r = |R| \leq |\bar{R}|$. For any $C \in \mathcal{C}$ both sets $C \cap R$ and $C \cap ([1,k-1]-R) \supseteq C \cap \bar{R}$ are nonempty, and so $n = |\mathcal{C}| \leq (2^r-1)(2^{k-1-r}-1) = 2^{k-1}-2^{k-1-r}-2^r+1$. We have $n \geq b_{10}^{(k-1)}+1 = \sum_{i=0}^{10} \binom{k-1}{i}-20+1 = 2^{k-1}-19$, hence $2^r+2^{k-1-r} \leq 20$, and it is easy to see that this is possible only if k=7 and r=3. Evidently, $r_1 > 0$ implies $|\mathcal{C}| \leq 2^{6-r_1} \leq 2^5 < n$, a contradiction. Thus $r_1 = 0$ and $\binom{6}{2} \geq r_2 + c_2 \geq 10 + n - \sum_{i=3}^{6} \binom{6}{i} = n - 32 \geq 13$. Therefore, if (say) [1,3] and [4,6] are in \mathcal{R} , at least one of 2-element subsets of [4,6] (which are all out of \mathcal{C}) must be in \mathcal{R} , but then $|\mathcal{C}| \leq (2^3-1)(2^2-1) \cdot 2 = 42 < n$, a contradiction. In a similar (and simpler) way it is possible to treat the cases $m \in [4,9]$. The analysis is left to the reader. \square

4. CONCLUDING REMARKS

We have seen that triples (k, m, n) such that $n \in L_m^{(k)}$ and $\chi_0(K_{m,n}) =$ k-1 appear quite rarely. In spite of this fact the number of those triples is infinite. Recall the number n_k related to $\chi_0(K_{m,m})$ and mentioned in the introductory section. From results of [5] it follows that $\chi_0(K_{m,m}) =$ k for all $m \in [\lfloor 2^k/3 \rfloor, n_k]$, hence, using $n_7 = 46$ and $n_{k+1} \ge 2n_k$, we obtain $n_k \ge 23 \cdot 2^{k-6}$ for every $k \in [7, \infty)$. Suppose that $k \in [8, \infty)$ and $m \in [\lceil 2^{k-1}/3 \rceil, 23 \cdot 2^{k-7}]$. Then $\chi_0(K_{m,m}) = k-1$, for $\lfloor 2^{k-1}/3 \rfloor \le m \le n$ $23 \cdot 2^{k-7} \le n_{k-1}$. We have also $k-1 \le m$, as a consequence of $k \le 2^{k-1}/3$. Therefore, $m \ge b_m^{(k-1)} + 1 = \sum_{i=0}^m {k-1 \choose i} - 2m + 1 = 2^{k-1} - 2m + 1$, since this inequality is equivalent to either of $3m \ge 2^{k-1} + 1$, $3m > 2^{k-1}$ and $m \ge \lceil 2^{k-1}/3 \rceil$. On the other hand, $l = \lceil \log_2 m \rceil \le \lceil \log_2 23 + k - 7 \rceil = k - 2$, $2m+1+l \le 23 \cdot 2^{k-6}+k-1 \le 2^{k-1}=32 \cdot 2^{k-6}$, and so $m \le 2^{k-1}-1$ m-l-1. Thus $m \in L_m^{(k)}$, and, as mentioned above, $\chi_0(K_{m,m}) = k-1$. With fixed $k \ge 8$ the number of integers in the interval $\lceil \lfloor 2^{k-1}/3 \rfloor, 23 \cdot 2^{k-7} \rceil$ is $\geq 23 \cdot 2^{k-7} - 2^{k-1}/3 = 5 \cdot 2^{k-7}/3 \geq 3$, and so the number of triples (k, m, m) such that $m \in L_m^{(k)}$ and $\chi_0(K_{m,m}) = k - 1$ is infinite. If $n \in I_m^{(k)}$ and $\chi_0(K_{m,n}) = k - 1$, then, by Theorems 11 and 14, $k \in [l + 2, 2l + 1]$ and $n \in L_m^{(k)}$. In the above infinite sequence of examples of this type we have m=n, and from $m \geq \lceil 2^{k-1}/3 \rceil \geq 2^{k-1}/3 > 2^{k-3}$ it follows that $k-3 < \log_2 m$, $k-2 \le l$, and so k=l+2. In the only exceptional case of Theorem 16 the involved parameters are m = 10, n = 13 and k = 6 = l + 2. Thus, the following could be of interest:

Problem. Decide whether there is a triple of integers (k, m, n) such that $m \ge 11$, $k \in [l+3, 2l+1]$, $n \in L_m^{(k)}$ and $\chi_0(K_{m,n}) = k-1$.

ACKNOWLEDGEMENTS

The first author gratefully acknowledges a support of the Slovak grant VEGA 1/0424/03. The work of the second author has been partially supported by MIUR (Ministero dell'Istruzione, dell'Università e della Ricerca). The paper has been written in part during the first author's visit at Politecnico di Milano.

REFERENCES

- F. Harary and M. Plantholt, The point-distinguishing chromatic index, Graphs and Applications (F. Harary and J. S. Maybee, eds.), Wiley-Interscience, New York, 1985, pp. 147-162.
- M. Horňák and R. Soták, The fifth jump of the point- distinguishing chromatic index of K_{n,n}, Ars Combin. 42 (1996), 233-242.
- M. Horňák and R. Soták, Localization of jumps of the point-distinguishing chromatic index of K_{n,n}, Discuss. Math. Graph Theory 17 (1997), 243-251.
- 4. N. Zagaglia Salvi, On the point-distinguishing chromatic index of $K_{n,n}$, Ars Combin. 25B (1988), 93-104.
- N. Zagaglia Salvi, On the value of the point-distinguishing chromatic index of K_{n,n}, Ars Combin. 29B (1990), 235-244.

INSTITUTE OF MATHEMATICS, P. J. ŠAFÁRIK UNIVERSITY, JESENNÁ 5, 041 54 KOŠICE, SLOVAKIA

E-mail address: hornak@science.upjs.sk

DEPARTMENT OF MATHEMATICS, POLITECNICO DI MILANO, P.ZA L. DA VINCI 32, 20133 MILANO, ITALY

E-mail address: norzag@mate.polimi.it