Prime factors of Motzkin numbers
Florian Luca

Abstract. In this note, we investigate arithmetic properties of the Motzkin
numbers. We prove that for large n the product of the first n Motzkin
numbers is divisible by a large prime. The proofs use the Deep Subspace
Theorem.

§1. Introduction

Let n be any positive integer. The n-th Motzkin number, denoted from
here on by my,, counts the number of lattice paths in the Cartesian plane
starting at (0, 0), ending at (n, 0), and which use line steps equal to either
(1, 0) (level step), or to (1, 1) (up step), or to (1, — 1) (down step), and
which never pass below the z-axis. Clearly, m; = 1, mp = 2, and it is
known that the three-term recurrence

(n+2)mp = (2n+ 1)Mn_1+3(n - 1)mp_2 (1)

holds for all n > 3 (see Dulucq and Penaud [4] and Woan [15]). The
sequence of Motzkin numbers begins

(mn)n>0 = (1,1,2,4,9,21, 51,127, 323, 835, 2188, 5798, 15511,. ..)

and is listed as sequence A001006 in EIS [12]. It is convenient to set
mo := 1, and the recurrence is then valid for all n > 2.

For any integer k we write P(k) for the largest prime factor of ¥ with the
convention that P(0) = P(+1) = 1.

There are several papers in the literature which address the question of
finding nontrivial lower bounds for P(u»), when (un)n>0 is some recurrent
sequence naturally arising in some number theoretical or combinatorial
context. For example, there is quite a rich literature on the above question
when (un)n>0 is a nondegenerate binary recurrent sequences (un)n>0 for
which we refer the reader to Shorey and Tijdéman [14] and to the references
therein.

The situation is less understood when (un)n>0 is a higher order linearly
recurrent sequence, although nontrivial results here can be deduced by
using techniques from transcendence theory such as in Corvaja and Zannier
(3]

For every positive integers k and n, let S(n, k) denote the Stirling number
of the second kind which counts the number of partitions of a set with
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n elements into k nonempty disjoint subsets. For a fixed value of k, the
sequence (S(n, k))x>0 is linearly recurrent or order k, which makes it possi-
ble to investigate its arithmetic properties with methods from transcendetal
number theory. This has been done in Brindza and Pinter [1], Pinter [9],
[10] and Klazar and Luca [6]. The behaviour of the numbers S(n, k) for
fixed (but large) n and k € {0,...,n} has been investigated in Canfield
and Pomerance [2].

The number

k=0

is called the nth Bell number and counts the total number of partitions
of a set with n elements. The sequence of Bell number (B,)n>0 is not
linearly recurrent, but the fact that it is periodic modulo p for every prime
number p makes it possible to derive nontrivial results about the arithmetic
structure of its members. Such results can be found in Lunnon, Pleasants
and Stephens (8], and Shparlinski [13]. For example, in [13], it is shown
that if we write B(n) = [;., Bk then the inequality

logn

w(B(n)) > 2loglogn

(3)
holds for all sufficiently large positive integers n, where as usual for a posi-
tive integer m we write w(m) for the number of distinct prime factors of m.
Inequality (3) above, together with the Prime Number Theorem, implies

that the inequality

P(Bn) > l"%

holds for infinitely many positive integers n. It is not known if P(B,) tends
to infinity with n.

In this paper, we address the above question for the Motzkin numbers.
Some results about the arithmetic properties of these numbers have al-
ready appeared in Klazar and Luca [7]. For example, in (7], it is shown
that if (Mpn)n>0 := (Ma(A, £))n>o0 is 2 sequence of rational numbers satisfy-
ing recurrence (1) with the initial values Mp := A, M := p then (My)n>0
consists of rational numbers whose denominators are divisible by arbitrarily
large primes provided that A # . In particular, the only sequences of inte-
gers satisfying the Motzkin recurrence (1) are the integer multiples of the
Motzkin numbers (m,)n>0. In the same paper, it is shown that (mn)n>0
is not eventually periodic (i.e., periodic from some point on) modulo any
positive integer T' > 1. Here, we look at the prime factors of the numbers
(mn)n>0. It would be interesting to know whether P(m,) tends to infin-
ity with n, but we have not been able to answer this question. In fact,
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we haven’t even been able to decide whether (my)n>0 contains finitely or
infinitely many powers of 2. However, we prove that an inequality of the
same type as (3) holds for the Motzkin numbers (mn)n>0.

We have the following results.

Proposition.

Let P be any fized finite set of prime numbers. There exists a positive
integer np depending on P such that for n > np the number my - Mnyy -
Mny2 - Mays 18 divisible by a prime number p not in P.

Theorem.
Let M(n) := [[ey mk. Then the inegualities

w(M(n)) >10"%logn and P(M(n)) > 10 %lognloglogn  (4)
hold for alln = 3.

The two results from the present note extend easily to other sequences
which naturally arise in enumerative combinatorics. One of such sequences
is the Schréder sequence (sn)n>1 = (1,1, 3,11,45,197,...) (AC01003 of EIS
[12]). For n > 0, the number s,41 counts the number of lattice paths in
the Cartesian plane starting at (0, 0), ending at (n, n), and which use line
steps equal to either (k, 0) (level step), where k is any fixed positive integer,
or to (0, 1) (up step), and which never pass above the line y = z. Using the
same method of proof as in the present note, one can show that inequalities
(4) asserted by our Theorem hold with M(n) replaced by S(n) := [T, s&.
We do not give further details and proceed to the proofs of our results.

§2. The Proofs
The Proof of the Proposition. Let n > 2 and rewrite relation (1) as
n(mp — 2mp_1 — 3Mp—2) = —2my + Mp_1 — 3Mn_2. (5)

Note that the two sides of the above equation are nonzero. Indeed, if the
two sides of the above equation were zero, we then get that

0=mp —2mp_1 — 3Mu_2 = —2Mn + Mp_1 — 3Mn-2,

therefore

1 3

3 Mn-1= 75 Mn-2 (6)
and it is clear that equations (3) cannot hold simultaneously because since
Mp—1 and my.g are both positive, the expression from the left of (6) rep-
resenting 7n, is larger than the expression on the right of (6) representing

My,

My =2mp_1+3mp—2 and m,=

89



Thus, we may use (5) to write

ne 22t M1 = 3Mn2 s (7
My — 2Mp— — 3My_2

Replacing n by n+ 1 in (7) and taking the difference of the two equations
we obtain :

=2Mp41 + My — 3Mp—y _ —2myp + Mp—1 — 3Mp_2 =1 (8)
Mnt1 = 2My = IMp—1 My — 2Mp—1 — 3Mp—2 ’

which can be rewritten as
Mnt1Mn — 5Mpg 1M1 — 12Mag1mn_2 +m2 + 10mamn—_y
+15mnMmn_3 — 3mZ_, + 9mp_1mp_o =0. (9)
For n > 1 we put X, := my,/my—; and then relation (9) becomes
X1 X2X2_| = 5Xn1 Xn X2 ) —12Xpi1 XnXno1 + X2X2_,
10X X2, + 15X Xno1 —3X2_, +9X,-1 =0. (10)

Assume now that P is a fixed finite set of prime numbers containing the
primes 2, 3 and 5. Let S be the set of all nonzero rational numbers having
the property that both their numerator and denominator are divisible only
by primes in P. Assume further that n > 2 is such that m,_2-mp_1-my -
Mp41 is a member of S. Write

Y1 =8 2Xp1 X2 Xno1,  Yoi=-372-5Xn11Xn X1,
Yai=—-2%2.3""Xp11 Xn, Ya:=37"2X2X,.,
Ys:=2-3"2.5X,Xn-1, Ye:=3"1.5X,,
Y7:=-3"'Xpy, Yz:=1. (11)

Formally, the rational numbers Y; for i = 1,...8 appearing in (11) above
depend on n, but we shall omit the dependence on = in order not to compli-
cate the notation. Then ¥; € S for i =1, ...8, and equation (10) becomes

Z Y; =0. (12)

We now recall the following Theorem from Evertse [5] on the solutions of
nondegenerate S-unit equations.
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Let P be any fixed set of primes, and let S be the set of rational numbers
defined previously. Let k > 2 be a fixed positive integer. An equation of
the form

k
Y Yi=0 (13)
i=1
with Y; € S for i = 1,...k is called a nondegenerate S-unit equation if
R
i€l
holds for every nonempty proper subset I of {1,...,k}.

Theorem [5].

If the nondegenerate S-unit equation (13) admits a solution, then there
ezist a positive integer L and L solutions Y9 = (Yl(j),...,Yk(j)) with
j=1,...L of equation (13) whose components are in S such that if Y :=
(Yh, .., Yx) is any other solution of the nondegenerate S-unit equation (13),
then there exists p€ S andj € {1,...,L} such that Y = p- Y. Moreover,
if we write t 1= #P, then the number L can be bounded above by

L < F(k,t) = (235(k — 1))(k-D%(+1), (14)

From the above Theorem, it follows that if the equation shown at (12) is
nondegenerate, then since Y3 = 1, equation (12) can have at most F(8, )
solutions Y. Since

(Xn-i-l; Xn’ Xn—l) = (_2_2 * 5Y3),6_1a 3. 5_1},& - 31/7):

it follows that (X, 41, Xn, Xn-1) can take at most F'(8,¢) values.

It remains to investigate the instances in which equation (12) is degenerate.
From now on, we assume that (12) is degenerate. We recall that the in-
equality

6 4
3_TL_-}'2<Xn<3—m

holds for all n > 2 (see [15]). Thus, if we write Z; := limp_o0 Y; for
t=1,...,8, then

(15)

1 .
m_zi+o(;) holds for i =1,...,8 (16)
and
Z = (Zy, Za, Za, Za, Zs, Zs Z7, Zs) = (9, 15, —12, 3, 10, 5, —1, 1).
(17)
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Assume now that £ > 2 and that I, I, ..., I is a partition of {1,...,8}
is such that equation (12) implies that

ZY,-:O holds for j =1,...,%, (18)
i€l;
and such that everyone of the S-unit equations shown at (18) is nondegen-
erate. Using (16), we get that

Yz =o(l) holds for j = 1,..., 4. (19)

i€l; n
In fact, using (15) and (17) one can check that the constant understood in

the O-symbol appearing in (18) above can be taken to be 103. We deduce
that if n > 102 then relations (19) imply that

> Z=0  holdsforj=1,...,L (20)
i€l;
Assume that 2 € I,. If 3 € I,, then it is easy tosee that £ = 2, I;, =
{1,2,3,4,5,6} and I» = {7, 8}, and so the only possibility is

6
> ¥%i=0 and Y7+Yz=0. (21)

i=1

If 3 & I, then it is clear that I; must contain either 1 or 5 but not both.
If I, contains 1 then it is easy to see that £ = 2, I} = {1,2,6,8} and
I, = {3,4,5,7} and therefore the only possibility is

Y1+Y2+Ys+Ys=0 and Y3+Y;+Ys+Yz=0. (22)

Finally, if I contains 5, then it also contains 6. Moreover, up to relabelling
the I;’s, we get that Io must contain 1, 3 and 4, and either £ = 2 in which
case both 7 and 8 belong to either I) or I3, or £ = 3 in which case I3
consists of 7 and 8. Thus, we get the possibilities

Ya+Ys+Ys+Yr+Ye=0 and Vi +Y3+Y,=0, (23)

or
Y2+Y5+Y=0 and Y1+Ya+Ys+Yr+Ys=0, (24)

or
Ya+Y%+Y%=0, Yi+¥3+Y% =0 and Y¥;+Y¥%=0. (25
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Assume that we are in the situation given by (21). Then X, = —-3Y7 =3
is uniquely determined. Writing Y; = Y;/X,, for i = 1,...6, we get the
nondegenerate equation

6
D Y =0, (26)
i=1

with Y{ =37!.5 and ¥y =2-372.5.X,_; = 2.3"1.5. Thus, Y{ +
Y¢ = 5, and we can therefore regard equation (26) as a nondegenerate
S-unit equation in 5 terms, and as such it has at most F(5,t) solutions
Y' = (Y1/,...,Y). Since X, =9Y{ X!, =3Y/ and Xpy; = —272.3.Y4,
it follows that (X,+1, Xn, Xn—1) can take at most F(5,t) < F(8,t) values.
Similar arguments can be employed to show that the pair of nondegenerate
equations (22) leads to at most F(4,t)2 < F(8,t) values for the triple
(Xn+1, Xn, Xn-1), that each one of the two systems of nondegenerate
equations (23) and (24) leads to at most F(3,¢)F(5,t) < F(8,t) values for
the triple (Xn+1, Xn, Xn-1), and finally that the system of equations (22)
leads to at most F(3,¢)? < I7(8,t) values for the triple (Xn+1, Xn, Xn—1).
In conclusion, equation (12) implies that the triple (Xn41, Xn, Xn-1) can
take a totality of at most 6/°(8,t) values. Since formula (7) implies that

22X Xn-1+ X -1—-3
XnXn-1—2Xpn_1-3"

it follows that » > 103 can take at most 6/(8,¢t) values. This shows that
there exists np > 103+2such that if n > np—2then ma_g-mMn_1 My M1
is not a member of S, which implies the conclusion of our Proposition.

The Proof of the Theorem. We first prove the inequality appearing on
the left of (4). It clearly suffices to assume that logn > 10¢ for otherwise
the lower bound on w(M(n)) appearing in (4) is smaller than 1. Write
w = w(M(n)). The argument from the above proof of our Proposition

implies that
n — 1001 < 6F(8,w),

therefore
n < 1001 + 6F(8,w) < 1001 + 6(2%5 . 72)7°(w+1) £ 19(935 . 72)7 (w+1)

= exp(73(w + 1)(35log 2 + 2log 7) + log 12) < exp(9700(w +1)).  (27)

One checks computationally that the first 100 members of the Motzkin
sequence are divisible by a totality of more than 40 primes. Since n > 100,
it follows that the inequality

10000

(w+1) < 5700

w
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holds, as it is equivalent to 300w > 9700, which is implied by w > 40.
Together with (27), the above inequality gives

n < exp(10%w),

which is precisely the first inequality asserted at (4).

For the second inequality (4), we may first assume that n > 10 for otherwise
the right hand side of it is smaller than 1. Since n > 10, it follows that
P(M(n)) > 547 > 500, so we may assume that

1075 log nloglog n > 500,

and the above inequality forces logn > 3-10%. Now let p; < p2 < ... be
the increasing sequence of all prime numbers. By the first inequality (4),
we certainly have that P(M(n)) > p,,, where w is bounded from below as
shown in (4). Note that when logn > 3 - 10° the lower bound on w shown
at (4) is larger than 1. It is known that if £ > 1 is any positive integer,
then p; > £log £ (see Rosser and Schoenfeld [11]). Thus,

P(M(n)) > p, > wlogw > 10~ % lognlog(10~*logn). (28)
It suffices to show that in our range we have
log(10~*logn) > 10"t logn (29)

and the desired inequality will follow. However, inequality (29) is equivalent
to
10~%logn > (logn)'/1°,

which is equivalent to
logn > (10%)10/9 = 10%0/9,

which certainly holds because logn > 3:108 > 105 > 101%/9, This completes
the proof of our Theorem.
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