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Abstract

A vertex set D of a graph G is a dominating set if every vertex
not in D is adjacent to some vertex in D. The domination number
« of a graph G is the minimum cardinality of a dominating set in G.

In 1975, Payan {6] communicated without proof the inequality
2v<n+1-6 (*)

for every connected graph not isomorphic to the complement of a
one-regular graph, where n is the order and § the minimum degree
of the graph. A first proof of () was published by Flach and Volk-
mann [3] in 1990.

In this paper we firstly present a more transparent proof of ().
Using the idea of this proof, we show that

2y<n-46

for connected graphs with exception of well determined families of
graphs.
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1. Terminology and introduction

We consider finite, undirected, and simple graphs G with the vertex set
V(G) and the edge set E(G). The number of vertices |V(G)| of a graph
G is called the order of G and is denoted by n = n(G). The open neigh-
borhood N(v) = N(v,G) of the vertex v consists of the vertices adjacent
to v, and the closed neighborhood of v is N[v] = Njv,G] = N(v) U {v}.
For a subset S C V(G), we define N(S) = N(5,G) = |J,es N(v) and
N[S] = N[S,G] = N(S)US. The vertex v is an endvertez if d(v,G) =1,
and an isolated vertez if d(v,G) = 0, where d(v) = d(v, G) = |N(v)| is the
degree of v € V(G). An edge incident with an endvertex is called a pendant
edge. Let ©(G) be the set of endvertices in a graph G. By é = &(G) and
A = A(G), we denote the minimum degree and mazimum degree of the
graph G, respectively. We write Cy, for a cycle of length n, K, for the
complete graph of order n, and K 4 for the complete bipartite graph with
bipartition X, Y such that |X|=p and [Y|=gq.

A set D C V(G) is a dominating set of G if N[D, G] = V(G). The dom-
ination number v = (G) of G is the cardinality of any smallest dominating
set.

The corona graph Ho K of the graph H is the graph constructed from a
copy of H, where for each vertex v € V(H), a new vertex v’ and a pendant
edge vv’ are added.

For detailed information on domination and related topics see the com-
prehensive monograph [4] by Haynes, Hedetniemi, and Slater.

1975, Payan [6] proved for each graph G without isolated vertices of
order n and minimum degree & the bound 2y < n + 2 — 4. In addition,
Payan [6] communicated without proof the following result.

Theorem 1.1 (Payan [6] 1975). If G is a connected graph with §(G) > 1,

then Q)1 - 8(C
7(6) < HAF1=HO) 1)

with exception of the case that G is the complement of a one-regular graph.

The first proof of (1) was given by Flach and Volkmann [3]. In this
paper, we will show that

n(G) — §(G)

¥(G) £ 5



for connected graphs G with exception of well determined families of graphs.
Firstly, we present a new proof of (1), and this proof should help to under-
stand how it can be extended to prove the inequality v < (n — §)/2.

2. Preliminary results

The following well-known results play an important role in our investi-
gations.

Proposition 2.1 (Ore [5] 1962). If G is a graph without isolated vertices,

then
7(G) < [Ezi) J

Theorem 2.2 (Payan, Xuong [7] 1982, Fink, Jacobson, Kinch,
Roberts [2] 1985). For a graph G with even order n and no isolated
vertices, v(G) = |n/2] if and only if the components of G consist of the
cycle Cjy or the corona graph H o K for any connected graph H.

Proofs of Proposition 2.1 as well as of Theorem 2.2 can also be found
in the book of Volkmann [9).

In 1998, Randerath and Volkmann [8] and independently, in 2000, Xu,
Cockayne, Haynes, Hedetniemi, and Zhou [10] (cf. also [4], pp. 42-48)
characterized the odd order graphs G for which v(G) = |n(G)/2]. In order
to formulate this characterization, we define a collection of graphs in the
following figures.
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Figure 1

Let A = {A;, Ay, A3, A4, As, Ag} be the family of six graphs in Figure 1.



In the next figure, we define a further family B = {B,, B2, Bs, B4, Bs},
consisting of five graphs.
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B B; Bs By Bs
Figure 2

Theorem 2.3 (Randerath, Volkmann [8] 1998, Xu, Cockayne,
Haynes, Hedetniemi, Zhou [10] 2000). If G is a connected graph
of odd order n with §(G) > 1 and 4(G) = |n/2], then §(G) < 2.

If §(G) = 2, then G belongs to the families A or B.

If 5(G) = 1, then the following eight cases are possible:
(1) IN(Q(G), G)| = |9(G)| -1 and G — N[Q(G), G] = 0.
(2) IN(Q(G), G)| = [%G)| and G — N[Q(G),G] is an isolated vertex.
(3) IN(Q(G), G)| = |2(G)| and G - N[Q(G),G] is a K,5.
(4) IN(Q(G), G)| = |(G)| and G — N[Q(G), G] is a K23 such that exactly
one vertex of degree 2 of the K» 3 is adjacent to vertices of N((G),G).
(5) IN(Q(G),G)| = I9G)| and G — N[QG),G] is a bipartite graph H;
with one endvertex u, which is also a cut vertex of G, and Hy —u = Cj.
(6) G consists of a cycle C3 and a graph H o K and arbitrary additional
edges between H and one or two vertices of the cycle C3 such that G is
connected.
(7) G consists of a cycle C5 = v1vov3vavsv: and a graph H o K; and
arbitrary additional edges between H and v; such that G is connected.
Furthermore, one or two chords of the form v v4 and vavs are also admis-
sible.
(8) G consists of a cycle Cs = v1v2v3v405v1 and a graph H o K, and arbi-
trary additional edges between H and v; and vs such that G is connected.
Furthermore, the chord v;v3 is also admissible.

Theorem 2.4 (Clark, Dunning [1] 1997). Let G be a graph of or-
der n and minimum degree 6. f n=10and § >3orn=11and § >4 or
n=12and § > 5, theny(G) <3. Ifn=10and§ >50orn=12and § 2 7
orn=13 and é§ > 8, then ¥(G) < 2.



3. A new proof of Theorem 1.1

Proof of Theorem 1.1. If § = §(G) = 1, then Theorem 1.1 follows
from Proposition 2.1. Now let § > 2, v = 4(G), and let z be a vertex of
minimum degree. Furthermore, let I be a the set of isolated vertices in the
subgraph G — N{z] and R=G - (N[z]U I).

If I =@, then Proposition 2.1 yields the desired bound

IV(R) 2+n—6-1_ n—-6+1
2 - 2 -T2

In the case that |I| > 1, the set {z,y} dominates N[z] U I for each
vertex y € N(z).
If |I] > 2, then Proposition 2.1 leads to the desired bound

IV(R)] 44n-d-1-]] < n—30+1

2 2 =2 7

Finally, we discuss the case that [I| =1. f R=0 and A(G) =n -1,
then v =1 and (1) is valid. If R =0 and A(G) = § = n — 2, then G is the
complement of a one-regular graph.

Now let R # 0. In the case that v(R) < (|[V(R)| — 1)/2, we obtain

V(R)[ -1 4+n-6-3 n-6+1
2 - 2 -2

If y(R) = |V(R)|/2, then, according to Theorem 2.2, the components of
R consist of the cycle C; or the corona graph Ho K, where H is connected.

Firstly, assume that the subgraph R has a component H o K; with
V(H)= {ul,ug, . ,uk} and Q(Ho K,) = {'Ul,‘vz, ...,Ux} such that k > 2
and u;v; € E(R) fori =1,2,...,k. Since § > 2, there exists an edge yv,
with y € N(z). Therefore, {z,y, u2,u3, ..., ux} dominates N[zJUIUV (Ho
Ki). f T=G - (N[zJUIUV(H o K})), then Proposition 2.1 leads to

-5-2- )
7sk+l+|2£|=2k+2+n26 2 2k=n2 .

Secondly, assume that R has a component K;oK; = K, with the vertex
set {u,v}. Then u is adjacent to §—1 vertices y;,¥s,...,y5-1 € N(z). If ys
is the remaining vertex in N(z), then {u,ys} dominates N{z]U I U {u, v},
and we receive at the desired inequality (1) as above.

Thirdly, assume that C; = vjvsv3v4v; is a component of R. Since G
is connected, there exists an edge, say yv; € E(G), with y € N(z). Since
{z,y,v3} dominates N[x]UIUV(C}), we obtain easily the desired inequal-
ity. O

<1+

Y<2+

y<2+




4. Main results

In order to present the main results, we define a collection of graphs in
the following figures.
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Figure 3
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Figure 4
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Let F = {F\, F,, F3, Fy, F;, Fg, F, Fg, F3} be the family of graphs in
Figures 3, 4, and 5. Note that Fy = F3 — {ac}, Fs = F3 — {ab}, F> =
F5 — {zy}, and

5 E) - §(F;
7(R)=3>'2'=n( i)2 ( 3)

for F; € F.

Theorem 4.1 Let G be a connected graph of order n, minimum degree
é > 2, and domination number «. Then’
n-—4
722, @
with exception of the cases that G is a member of the families .4, B, F or
G is the complete graphorn -3 =8 < A(G) < n-2.

Proof. Let z be a vertex of minimum degree with N(z) = {y1,92, ...,ys}.
In addition, let I be the set of isolated vertices in G — N[z] and R =
G — (N[z]u ). If |I| > 1, then the set {z,3;} dominates N[z]U I for each
vertex y; € N(z).

Case 1. Let |I| > 3. In this case, Proposition 2.1 yields the desired
bound

[V(R)] 44+n—-6-1-|I] n-¢
Y<2+ 5 = ) < 5"

Case 2. Let |I| =2. f R=0,thend =n—-3. If A(G) =n -1, then
v = 1 and (2) is valid. In the remaining case we arrive at the family of
exceptional graphs withn -3 =6 < A(G) < n—2. Let now R# 0. If
¥(R) < |V(R)|/2, then we obtain the desired bound

[V(R)| -1 _4+4n-6-2-2 n-$¢
2 - 2 o2

If v(R) = |V(R)|/2, then, in view of Theorem 2.2, the components of R
consist of the cycle Cy4 or the corona graph H o K, where H is connected.

Firstly, assume that the subgraph R has a component H o K; with
V(H) = {ul,ug,. ..,uk} and Q(HOKl) = {'vl,vz,. ..,vk} such that k > 2
and wv; € E(R) for i = 1,2,...,k. Since § > 2, there exists an edge
between Q(H o Ky) and N(z), say yyv1. Therefore, {z,y1,u2,us,...,ux}
dominates N[z]UTUV(H o K;). If T =G - (N[z]UIUV(H o K)), then
Proposition 2.1 leads to

7Sk+1+|721—l= 2k+2+n;6—-3—2k ___n-g—l.

Y<2+




Secondly, assume that R has a component K;oK; = K with the vertex
set {u,v}. Then u is adjacent to & —1 vertices in N(z), say y1,¥2,--.,¥s-1.
Now {u,ys} dominates N[z] U I U {u,v}, and we receive at the desired
inequality (2) as above.

Thirdly, assume that Cy = v1v2v3v4v; is & component of R. Since G is
connected, there exists an edge between N(z) and Cjy, say yiv1 € E(G).
Since {z,y1,vs} dominates N[z] U I U V(Cy), we obtain easily the desired
inequality.

Case 3. Let |I| =1. If R=0, then § =n — 2. If A(G) =n —1, then
4 =1 and (2) is valid. In the remaining case we arrive at the family of
exceptional graphs with n —2 = § = A(G). Let now R # 0. If y(R) <
(IV(R)| —2)/2, then

V(R -2 44n—-6-2-2 n-34

2 - 2 T2
If y(R) = |V(R)|/2, then, in view of Theorem 2.2, the components of R
consist of the cycle Cy4 or the corona graph H o K, where H is connected.
In this case, the bound (2) follows analogously to Case 2.

Finally, let v(R) = ([V(R)| — 1)/2. If one of the components of R is
a C, or a corona graph, then we obtain (2) as in the Case 2. It remains
the case that all components of R are odd. However, if there are at least
two odd components in R, then we conclude that y(R) < ([V(R)| — 2)/2,
a contradiction.

Thus it remains the case that R is a connected odd order graph such
that v(R) = (JV(R)| — 1)/2. Now we will apply Theorem 2.3.

Case 3.1. Let 6(R) = 1. In view of Theorem 2.3, we have to distinguish
eight cases.

Case 3.1.1. Let [N(Q(R), R)| = |(R)| — 1 and R - N[Q(R), R] = 0. If
[V(R)| = 5, then choose a vertex u € N(Q(R)) with the unique neighbor
v € Q(R). Let, without loss of generality, ¥1,%2, .. .,¥s-1 be the neighbors
of v in N(z). Then we observe that (N(Q(R)—{u})U{v, ys} is a dominating
set of G, and we deduce that

V(R)-1_2+n-6-3_ n-56-1
2 - 2 - 2

Let now |V(R)| = 3 with R = vjuva. Assume first that § > 3. It follows
that, without loss of generality, v; has the neighbors y1,%2,...,%5-1 in
N(z). If voys € E(G), then {v;,ys} is a dominating set in G and we are
done. If not, then v, has also the neighbors y1,%2,...,%s5—1 and ys has a
further neighbor in N(z), say y1. Now {y1,v1} is a dominating set of G.
In the remaining case that § = 2, we arrive at the inequality (2) or at the
exceptional graph As.

v7<2+

y<1+
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Case 3.1.2. Let [IN(Q(R), R)| = |2(R)| and let R — N[Q(R), R] be an
isolated vertex. Analogously to Case 3.1.1, we obtain (2).

Case 3.1.8. Let [IN(Q(R), R)| = |Q(R)| and let R — N[Q(R), R] be a
Kj,2. Let u € N(2(R)) with the unique neighbor v € Q(R), and let K o =
aiazaz. If, without loss of generality, y1,y2,...,ys—1 are the neighbors of
v in N(z), then (N((R) — {u}) U {ys,v, a2} is a dominating set of G, and
this leads to (2).

Case 3.1.4. Let |N(Q(R), R)| = IQ(R)| and let R — N[Q(R) R] be
a K3 such that exactly one vertex of degree 2 of the K3 is adjacent
to vertices of N(Q(R), R). Let u € N((R)) with the unique neighbor
v € Q(R), and let by, bz be the vertices of the Ka 3 of degree 3. If, without
loss of generality, y1,¥2,...,¥5—1 are the neighbors of v in N(z), then
(N(Q(R) — {uv}) U {ys, v, b1, b2} is a dominating set of G, and this leads to
).

Case 3.1.5. Let |[N(Q(R), R)| = |2(R)| and let R — N[Q(R), R} be a
bipartite graph H; with one endvertex u, which is also a cut vertex of R,
and H; — u = C4. We obtain (2) analogously to Case 3.1.4.

Case 3.1.6 Let R consist of a cycle C3 and a graph Ho K, and arbitrary
additional edges between H and one or two vertices of the cycle C3 such
that R is connected. We obtain (2) analogously to Case 3.1.3.

Case 3.1.7. Let R consist of a cycle Cs = v vov3v4vsv; and a graph
H o K, and arbitrary additional edges between H and v; such that R is
connected. Furthermore, one or two chords of the form v;v4 and vy are
also admissible. We obtain (2) analogously to Case 3.1.4.

Case 8.1.8. Let R consist of a cycle Cs = vyvausvavsv; and a graph
H o K and arbitrary additional edges between H and v; and w3 such that
R is connected. Furthermore, the chord v,v3 is also admissible. We obtain
(2) analogously to Case 3.1.4.

Case 8.2. Let §(R) = 2. According to Theorem 2.3, the graph R
belongs to the families A or B.

If R € A, then the connectivity of G leads easily to y < 4 < 9/2 =
(n — 6)/2 and we are done.

Let now R € B. If § = 2, then the connectivity leads easily to vy <
2<5/2=(n-6)/2when R= B, and v <3 < 7/2 = (n — §)/2 when
R € {B2, Bs, B, Bs} and we are done.

Case 3.2.1. Let R € {B;, B3, B;,Bs} and § > 3. If 3 < § < 5, then, by
Theorem 2.4, ¥y £ 3 < 7/2 = (n—4)/2. If § > 6, then we observe that there
exist at least 56 — 14 > 26 edges from R to N(z). Therefore, there exists
a vertex, say y1, in N(z) with at least three neighbors in R. From these
three neighbors of y; in R, we can choose two vertices, say u and v, such
that R — {u,v} contains a path of length two, say a,aza3. Now {z, 3, a2}
is a dominating set of G, and we are done.

11



Case 3.2.2. Let R = By = v1v2v3v;.

Case 3.2.2.1. Let § > 7. This implies that there exist at least 3(6 ~2) >
26 edges from R to N(z). Therefore there exists a vertex, say yi, in N(z)
with three neighbors in B;. So {z,y:} is a dominating set in G, and (2) is
proved.

Case 3.2.2.2. Let § = 5. According to Theorem 2.4, we have v < 2,
and hence (2) is valid.

Case 9.2.2.8. Let 6 = 3. Firstly, assume that there exists an edge, say
Y192, in G[N(z)]. If there is a second edge in G[N(z)], for example yoys,
then {yz,v1} is a dominating set of G and we are done. If not, then y3 is
adjacent to a vertex of R, say vy, and {v;,3} is a dominating set of G.
Secondly, assume that N(z) is an independent set. If one vertex »; has two
neighbors in N(z), say y1,¥2, then {v;,y3} is a dominating set of G. If not,
then we arrive at the exceptional graph Fj.

Case 3.2.2.4. Let § = 4. If {v1,v2,vu3} C N(y:) for any i € {1,2,3,4},
then {z,;} is a dominating set of G and we are done. If any v; has three
neighbors in N(z), say {#1,¥2,¥3} € N(v;), then {v;,34} is a dominating
set of G. It remains the case that each vertex v; has exactly two neighbors
in N(z) for j € {1,2,3}, and each vertex y; has at most two neighbors in
R for i € {1,2,3,4}. Consequently, there exists at least one edge, say y2ys3,
in G[N(z)).

Assume that there is a further edge in G[(N(z)]. Firstly, let 1132 €
E(G). If there is an edge ysv;, then {v;, %2} is a dominating set of G. If
not, then, yays € E(G) or y1y4, y3ya € E(G). If yays € E(G), then {y2,v1}
is 2 dominating set. If 7134, y3ys € E(G), then there exists, without loss of
generality, an edge v1y1 and {ys, v} is a dominating set of G. Secondly, let
11¥s € E(G). If there is a third edge in G[N(z)), then we arrive at v =2
as in the first case. If not, then assume, without loss of generality, that
y191,9192 € E(G). If there is an edge y;vs for ¢ = 2,3, then {y1,3} is a
dominating set of G. If not, then y,v3 € E(G) and {y1,%2} is a dominating
set of G.

Assume that there is no further edge in G[N(z)]. This implies that G
is 4-regular. Let, without loss of generality, y1v1,y1%2 € E(G) and thus,
without loss of generality, yqsv1 € E(G). This implies that {vi,y2} is a
dominating set of G.

Case 3.2.2.5. Let § = 6. Analogously to Case 3.2.2.1, it remains the
case that each vertex v; has exactly 4 neighbors in N(z) for i = 1,2,3
and each vertex y; has exactly two neighbors in R for j = 1,2, 3,4,5,6.
If there is a vertex y; in N(z) with at least three neighbors in N(z), say
1 such that y1y2, y133,%1%s € E(G), then there exists a vertex v; such
that v;ys, vivs € E(G) for any i € {1,2,3}. This implies that {y1,%:}isa
dominating set of G and we are done. Therefore we only consider the case
that each vertex y; has exactly degree two in G[N(z)] for  =1,2,3,4,5,6.

12



Firstly, assume that the subgraph G[N(z)] consists of two cycles of
length 3, say y1y2y3y1 and yaysyeys. Assume, without loss of generality,
that y1v1,y1v2 € E(G). It follows that there exists an edge y;vs for any
J € {4,5,6}. Hence {y1,y;} is a dominating set of G.

Secondly, assume that the subgraph G{N(X)] has a Hamiltonian cycle,
say Y1y2y3yaysyeyi- If yivs, vive € E(G) for s # t and y;+3vx € E(G) for
k # s,t, then {y;, vi+3} is a dominating set of G. If not, then we arrive at
the exceptional graph Fy.

Case 4. Let |I| = 0 and assume that R = @ or that R consists of
exactly one component. If R = 0, then G = K}, and G belongs to the
family of exceptional graphs. If R # @ and 4(R) < (|[V(R)| — 1)/2, then
Proposition 2.1 yields

V(R -1_24+n-6-2_ n-§

2 B 2 T2
In view of Theorem 2.2, it remains the case that R # @ and R is the cycle
C, or the corona graph H o K, where H is connected.

Case 4.1. Assume that R = H o K; with |V(R)| > 6. Let V(H) =
{u1,u2,...,ux} and Q(R) = {v1,v2,...,v} With k& > 3 such that u;v; €
E(R) for i = 1,2,...,k. Assume, without loss of generality, that H — u,
is connected and y1,¥2,...,¥5-1 € N(v1). If y5 is adjacent to a vertex
v; # vy, say to v, then {vy,ys} U {us, us,...,ux} is a dominating set of G
and we deduce that

y<1+

n—6-1

—

If not, then N(v;)NN(z) = {y1,%2,...,¥5-1} forall1 <i < k. Now {z,}
is a dominating set of N[z] U Q(R), and because of k > 3, Proposition 2.1
implies

y<k=

\V(H)| n—6-1_mn-6

< = <
vy<2+ 2+ 7 ==

Case {.2. Let R=K;0K;. Thisleadstod=n-3. fA(G)=n-1,
then v =1 and (2) is valid. In the remaining case we arrive at the family
of exceptional graphs withn —-3=0 < A(G) <n-2.

Case 4.3. Let R = Kj o K;. Let K = uju; and Q(R) = {v;, v} such
that vyu,, vous € E(R).

Case 4.3.1. Let § = 2. Then it is easy to verify that (2) is valid or G is
an element of the family A.

Case 4.3.2. Let § = 3. Assume, without loss of generality, that
niy1,v1y2 € E(G) and voye € E(G).

Case 4.3.2.1. Assume that y,32 € E(G). If yoy3 € E(G), then {y2,u;}
is a dominating set of G, and we are done. If y,y3 € E(G), then {y;,uz} is
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a dominating set of G. If y3u; € E(G), then {y2,%;} is a dominating set of
G. If yaup € E(G), then {y2,us2} is a dominating set of G. It remains the
case that y3vy,y3v2 € E(G). If u1y; € E(G), then {y1,v2} is a dominating
set of G. Thus, we only have to investigate the case that u;y2 € E(G), and
this leads to the dominating set {y2,v2} of G.

Case 4.3.2.2. Assume that y.y3 € E(G) and y1y2 € E(G). lf y1u; €
E(G), then {y2,u,} is a dominating set of G and we are done. If yyuz €
E(G), then {y2, u2} is a dominating set of G. If yauz € E(G), then {y2,v1}
is a dominating set of G. It remains the case that uyys € E(G). If yav; €
E(G), then {ys,v1} is a dominating set of G. If yavz ¢ E(G), then it
follows that y1v2 € E(G). If u1y2 € E(G), then {y2,v2} is a2 dominating
set of G. If not, then u y3 € E(G) and {y,y3} is a dominating set of G.

Case 4.8.2.3. Assume that y1y3 € E(G), y1y2 € E(G), and yoys ¢
E(G).

Case 4.3.2.3.1. Let y3v2 € E(G). If yyuy € E(G), then {y1,v2} is a
dominating set of G. If ysus € E(G), then {y3,v:1} is a dominating set of
G. Hence assume in the following that y u;, ysuz € E(G).

Let now u1y2 € E(G) or uoyz € E(G), say uiy2 € E(G). If yous €
E(G), then {y2,z} is a dominating set of G. If ugy: € E(G), then {y1,2}
is a dominating set of G.

It remains the case that uiy2, usy2 € E(G). It follows that u1y3, usy; €
E(G). However, this is the exceptional graph Fj. If there is a further edge,
for example y;v2, then {y;,v;} is a dominating set of G.

Case 4.5.2.8.2. Let yavo € E(G). This implies that y1v2 € E(G). If
youy € E(G), then {y;,u;} is a dominating set of G. If youz € E(G), then
{y1,uz} is a dominating set of G. If y1u; € E(G), then {y;,v>} is a domi-
nating set of G. Thus assume in the following that you;, youz, 11 € E(G).
This yields yau; € E(G). If ysuz € E(G), then {y2,y3} is a dominating set
of G. If yaua & E(G), then y1uz € E(G) and {y1,v1} is a dominating set
of G.

Case 4.3.2.4. Assume that N(z) is an independent set.

Case 4.8.2.4.1. Let yavz € E(G). If yaup € E(G), then {y3,v1} is a
dominating set of G. If yyu; € E(G), then {y1,v2} is a dominating set of
G. Hence assume in the following that yzuz, y1u1 € E(G).

Let now u1y2 € BE(G). If yous € E(G), then {y2,z} is a dominating set
of G. If yous & E(G), then it follows that y,us € E(G).

If yau; € E(G), then we have the exceptional graph Fs. If we add on
the one hand the edge y1v2, then {y1,u1} is a dominating set of G. If we
add on the other hand the edge yav;, then we arrive at the exceptional
graph F3.

If yau; & E(G), then we conclude that y3v; € E(G) and we have again
the exceptional Fs. If in addition y1v2 € E(G), then {y1,v1} is a dominat-
ing set of G.
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It remains the case that u;y2 ¢ E(G). It follows that u,y3 € E(G). In
the case that upy, € E(G), we have a symmetric situation to above. Hence
we can assume that uoy, ¢ E(G) and this implies that 3 u; € E(G). This
yields the exceptional graph F;. If in addition there exists the edge v ys
or v2y1 in G, then we arrive at Fy. If there exist both of these edges, then
{y1,v1} is a dominating set of G.

Case 4.5.2.4.2. Let yava & E(G). It follows that y,v; € E(G).

Case 4.9.2.4.2.1. Assume that ysu;,ysu; € E(G). This is the excep-
tional graph F. If in addition y3v; € B(G), then {ys, v} is a dominating
set of G. If in addition yus € E(G), then {y2,us} is a dominating set
of G. If in addition youz € E(G), then {y1,uz} is a dominating set of G.
If in addition you; € E(G), then {y1,u1} is a dominating set of G. If in
addition y;u, € E(G), then {y2,%,} is a dominating set of G.

Case 4.3.2.4.2.2. Assume that y3v,ysu; € E(G) and y3up ¢ E(G).
If youp € E(G), then {y2,v1} is a dominating set of G. It remains the
case that yous ¢ E(G). This yields yyuz € E(G) and thus {y;,v1} is a
dominating set of G. :

Case 4.3.2.4.2.3. Assume that y3v1,y3uz € E(G) and y3u; ¢ E(G). If
y2u2 € E(G), then {y3,v,} is a dominating set of G. If y;us € E(G), then
{y1,v1} is a dominating set of G. It remains the case that yous,yius &
E(G). If either yjuy € E(G) or you; € E(G), then we obtain Fs. In the
case that both of these edges are in G, then we arrive at Fj.

Case 4.3.3. Let § > 4. It follows that up and vy have a common
neighbor in N(z), say ys. If y1,%9,...,¥5-1 € N(v;), then {v;,y5} is a
dominating set of G and we are done. Hence we assume, without loss of
generality, that y2,¥3,...,y5 € N(v1) and vy & E(G). If 1135 € E(G) or
u1ys € E(G), then {v1,ys} or {z, ys} is a dominating set of G, respectively.
Thus we assume in the following that uiys,y1ys € E(G).

Case 4.3.3.1. Let uyyy & E(G). This yields y2,33,...,y5-1 € N(uy). If
voy1 € E(G) and, without loss of generality, y3, ys, . ..,¥5-2 € N(v2), then
{v2,95-1} is a dominating set of G. If vay; ¢ E(G), then y2,3, ...,45 €
N(v2) and y1¥2 € E(G). Thus {vs,y2} is a dominating set of G.

Case {.3.3.2. Let u1y, € E(G). Then we can assume, without loss of
generality, that y»,y3,...,¥5-2 € N(u1). If uyys—1 € E(G) or ys_1ys €
E(G), then {u;,ys} is a dominating set of G. Thus assume in the following
that u1ys-1,v5-1y5 & E(G). :

Case 4.8.3.2.1. Let vays_1 € E(G). This implies that y;,%2,...,y5—2 €
N(v2). Ify1u2 € E(G), then {v;,y:} is a dominating set of G. So let 3 us &
E(G). If yiug € E(G) for any 2 < i < 6 —2, then {z,y,} is a dominating
set of G. If not, then § = 4 and ysu, € E(G). If y,3, € E(G), then
{y2,u2} is a dominating set of G. In the remaining case that y,y2 & E(G)
it follows that y133 € E(G) and we arrive at the exceptional graph Fs. In
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the case that there are further edges yoy3 or yoy4, then {yo,v2} or {y2,y3}
are dominating sets of G, respectively.

Case 4.3.3.2.2. Let voys—1 € E(G). If vay1 € E(G) and, without loss of
generality ¥2,¥3, - - ., ¥5-3 € N(v2), then {3, y5_2} is a dominating set of G.
Thus assume that voy; ¢ E(G). This leads to y2,¥3,...,¥5 € N(v2). The
assumption yiup ¢ E(G) implies y3,¥s,...,¥s5-1 € N(y1) and so {y1,¥s}
is a dominating set of G. Hence let now y us € E(G). If yiuz € E(G) for
any 2 < i <6 —2, then {z,y} is a dominating set of G. If not, then we
deduce that § < 5. In the case that § = 5, Theorem 2.4 yields the desired
result vy < 2.

It remains the case that § = 4. If 132 € E(G), then {y2,v2} is a
dominating set of G. If otherwise 132 ¢ E(G), then we see that y1y3 €
E(G), and we arrive at F7. In the case that there are further edges yoys,
Ya¥s OT Y3ug, then {ys,u2}, {¥1,va}, or {y2,u2} are dominating sets of G,
respectively.

Case 4.4. Let R = Cy = ujuguguqu;. If § = 2, then it is easy to verify
that (2) is valid or G is a member of the family .A. If & > 9, then there exist
at least 4(6 — 2) > 34 edges from R to N(z). Hence there exists a vertex,
say y1, in N(z) with four neighbors in R. Thus {z,3,} is a dominating set
of G and we are done. In the cases that § = 5, § = 7, or § = 8, Theorem
2.4 shows that (2) is true.

Case 4.4.1Let §=3.

Case 4.4.1.1. Assume that y; has exactly three neighbors, say ui, uz, us,
in R. Let, without loss of generality, yous € E(G). If y2u3, y1¥3, or ysuq is
an edge of G, then {y1,%2}, {1,%2}, or {y1,u4} is a dominating set of G,
respectively. Thus assume in the following that yays, y13,y3us € E(G).
Now let, without loss of generality, y3u1 € E(G). If y1y2 € E(G), then
{v1,%1} is a dominating set of G. If you1 € E(G), then {y1,u1} is a
dominating set of G. If yous € E(G), then {y2,u1} is a dominating set of G.
Hence assume next that y;y2, you1, yous € E(G). This yields youg € E(G).
If ysup € E(G), then {ys,u2} is a dominating set of G. This leads to
ysug € E(G) and we arrive at F3.

Case 4.4.1.2. Assume that y; has exactly two adjacent neighbors, say
uy, ug, in R. Let, without loss of generality, yous € E(G).

In addition, let yous € E(G). If 3oy3 € E(G) or y1ys € E(G), then
{v1,92} is a dominating set of G. If ysu; € E(G), then {y2,u1} is a
dominating set of G. If yzuz € E(G), then {y2,u2} is a dominating set of
G. It remains the case that yaus, yaus € E(G). This implies that {yjus}
is a dominating set of G.

Now assume that yous ¢ E(G). This yields y3uq € E(G). If yoys €
E(G), then {y2,u,} is a dominating set of G. If y;y2 € E(G), then {v1,us}
is a dominating set of G. If ysuz € E(G), then {y;,u3} is a dominating
set of G. If ysu; € E(G), then {y2,u,} is a dominating set of G. If
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y1y3 € E(G), then {y;,u3} is a dominating set of G. In the remaining case,
we deduce that ysus € E(G). If yaua € E(G), then {y3,u,} is a dominating
set of G. If not, then you, € E(G), and we have the exceptional graph Fs.

Case 4.4.1.8. Assume that y, has exactly two non-adjacent neighbors,
say uy,ug, in R. Let, without loss of generality, yous € E(G).

In addition, let youq € E(G). If y1y2 € E(G), y1ys € E(G) or yoys €
E(G), then it is easy to see that y < 2. If not, then by the cases above, we
only have to consider the case that y3 has two non-adjacent neighbors, say
uy,us, in R. This yields F.

Now assume that yous ¢ E(G). This implies that ysus € E(G). If there
is a further edge between N(z) and R, then we arrive at a case above. If
not, then yoy3 € E(G), and this is F; or there are at least two edges in
G[N(z)], and we obtain v < 2.

Case 4.4.2. Let 6 =4.

Case 4.4.2.1. Assume that y; has exactly three neighbors, say u;, us, us,
in R. Let, without loss of generality, yous,ysus € E(G). If yyus € E(G)
or y1y4 € E(G), then {y;,u4} is a dominating set of G. Thus we consider
in the following the case ysus, 1174 € E(G).

Case 4.4.2.1.1. Let y3y, or yays, say ysya, an edge of G. If yoys € E(G)
or y1y2 € E(G), then {y;,ys} is a dominating set of G. Hence we assume
next that yoy3, 192 € E(G).

Case 4.4.2.1.1.1. Let yqug or ysu,, say yqus, an edge of G. If Youy €
E(G) or yoys4 € E(G), then {ys,u} is a dominating set of G. Otherwise,
we conclude that yous, you3 € E(G) and {ys, u3} is a dominating set of G.

Case 4.4.2.1.1.2. Assume that ysup € E(G) and yyu;,ysus ¢ E(G).
This implies that yoy4 € E(G). If yous € E(G), then {ys,uz} is a domi-
nating set of G. So assume that yus & E(G).

If you; € E(G), then y3u;,yous € E(G) and {ys,u3} is a dominating
set of G.

Let now you; € E(G). If ysuz € E(G), then {y3,u,} is a dominating of
G. If not, then it follows that youz € E(G). If y1y3 € E(G), then {y;, 32}
is a dominating of G. If y3u; € E(G), then {y2,u,} is a dominating of G.
If y1y3,ysu1 € E(G), then we conclude that y3us € E(G) and {yz,uz} is a
dominating set of G.

Case 4.4.2.1.2. Assume that ysys,yoys ¢ E(G). This yields that
Yau1, Yauz, yaus € E(G). If youy € E(G), then {ys3,u3} is a dominating
of G. If ysup € E(G), then {yo,u2} is a dominating of G. Hence we
consider now the case that youz, ysuz € E(G).

Case 4.4.2.1.2.1. Let you; € E(G). If y3u; € E(G), then {ys,u,} is a
dominating of G. If y3uz € E(G), then {y2,u3} is a dominating of G. If
not, then ysyz, y3y1 € E(G) and {ys,ys4} is a dominating set of G.

Case 4.4.2.1.2.2. Assume that you; ¢ E(G). If y1y2 € E(G) and
y2ys € E(G), then {y3,uz} is a dominating set of G. If not, then we see
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that yous € E(G). If yoys € E(G), then {y2,u,} is a dominating of G. Thus
assume that yoyz & E(G). This leads to y1y2 € E(G). If yauz € E(G),
then {y1,u3} is a dominating of G. If yaus ¢ E(G), then y1y3 € E(G) and
{y1,%1} is a dominating of G.

Case 4.4.2.2. Assume that y; has at most two neighbors in R for i =
1,2,3,4. This implies that each y; has exactly two neighbors in R for
i=1,2,3,4 and that each u; has exactly two neighbors in N(z) for j =
1,2,3,4. Hence there are at least two edges in G[N(z)]. If a vertex y;,
say i, is adjacent to yo,ys,ys and, without loss of generality, y,u; €
E(G), then {y,us} is a dominating set of G. Otherwise there exist two
independent edges, say y1¥2 and yays, in G[N(z)]. If the neighbors of y;
in R are all independent for i = 1,2,3,4, then it is easy to that (2) is
valid. Thus assume, without loss of generality, that yjui,y1us € E(G).
If you; € E(G) for any i = 1,2, then yaus, ysuq € E(G) or ysus,ysuq €
E(G), say ysus,ysus € E(G). It follows that {yi,ys} is 2 dominating
set of G. Therefore it remains the case that, without loss of generality,
yous, youq € E(G). If ysuy,ysuz € E(G), then {y2,y3} is a dominating
of G. If ysus,ysus € E(G), then {y1,ys} is a dominating of G. In the
remaining cases that, without loss of generality, ysui, ysu4, yau2,yaus €
E(G) or yau, ysus, Yala, Yaus € E(G), we arrive at Fg or Fy, respectively.
If there exists a further edge, say y2ys in G[H(z)), then v =2.

Case 4.4.3. Let § =6. If V(R) C N(y;) for any 1 <14 <6, then {z,%:}
is a dominating set of G and we are done. Thus we only discuss in the
following the case that 1 < |[N(y:)NV(R)| <3 forall1<i<6.

Case 4.4.8.1. Assume that there exists a vertex y;, say y;, such that
IN(31) NV (R)| = 1. This implies that y; has exactly one neighbor, say u;,
in R and at least for neighbors, say ¥2,¥s, ¥4, ¥s, in N(z). In addition, we
observe that [N () NV (R)| = 3 for all 2 < i < 6 and |[N(y;) N N(z)| = 4
forall 1 < j < 4. If y1ys € E(G) or ygus € E(G), then {y1,u3} is a
dominating set of G. So assume that y1y,y6u3 ¢ E(G). This leads to
uy, ug, ug € N(yg) and yo,¥s, ¥a,ys € N(uz). Now let, without loss of gen-
erality, youy,yau; € E(G). We conclude that N(y:) N V(R) = {u2, u3, us}
for i = 4,5. If yoyg € E(G), then {y,us} is a dominating set of G. If
yays € E(G), then {y3,u3} is a dominating set of G. If not, then it follows
that y4ys € FE(G) and hence {y1,%4} a dominating set of G.

Case 4.4.9.2. Assume that |[N(y%)NV(R)| > 2 foralll <4 < 6.
Because of the investigations above, we only consider the case that four
vertices of N(z) have exactly three neighbors and two vertices of N(z) have
exactly two neighbors in R. Consequently, each vertex of R has exactly four
neighbors in N(z) and H = G[N(=z)] is a graph with §(H) > 2, and there
are at least two vertices of degree at least three in H. Hence H is connected
and not a tree. In the following we investigate the cases that the longest
cycle in H has length 6, 5, 4, or 3
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Case 4.4.3.2.1. Assume that the subgraph H has the Hamiltonian cycle
Y1Y2y3yayaysyey1. Now we distinguish the two possibilities that 333 €
E(G) or y1y4 € E(G).

Case 4.4.3.2.1.1. Let y,y3 € E(G).

Firstly, assume that y; has exactly two adjacent neighbors, say u; and
ug, in R. If {u3,us} C N(y;) for i = 4,5, then {y;,¥:} is a dominating
set of G. Hence, we can assume that yqui,yqus, ysu1,ysu2 € FE(G) and,
without loss of generality, that ysus € E(G) and ysus & E(G). This leads
to ysug € E(G) and ysuq & E(G). Therefore ysuy € E(G) and {y3,ys5} is
a dominating set of G.

Secondly, assume that y; has exactly two non-adjacent neighbors, say
u; and ug, in R. If {u2,uq} C N(3) for i = 4,5, then {y;,¥:} is a domi-
nating set of G. Hence, we can assume that yqui, ysus, ysu1, ysusz € E(G)
and, without loss of generality, ysuz € E(G). This leads to ysus € E(G).
If yauz € E(G), then {y3,ys5} is a dominating set of G. If not, then
Y2,94,Ys,¥6 € N(u2), and {z,ys} is a dominating set of G.

Case 4.4.8.2.1.1. Let y1y4 € E(G).

Firstly, assume that y; has exactly two adjacent neighbors, say u; and
up, in R. If {us,u4} C N(y4), then {y1,y4} is a dominating set of G.
Hence, we can assume, without loss of generality, that yqus g E(G). This
leads to y2,¥3, ¥s5,%6 € N(us), and {y1,us} is a dominating set of G.

Secondly, assume that y; has exactly two non-adjacent neighbors, say
u; and ug, in R. If {uz,us} C N(ys), then {y1,y4} is a dominating set of
G. Hence, we can assume, without loss of generality, that ysuz ¢ E(G).
This leads to y2,v3,ys5,y6 € N(uz). If ysuy € E(G), then {y4,up} is a
dominating set of G. If not, then we deduce that y2, s, ys, 6 € N(u4) and
uy, ug € N(ys). Next assume, without loss of generality, that you; € E(G).
If ysuz € E(G), then {y2,ys} is a dominating set of G. Therefore it remains
the case that ysu; € E(G) and thus ysus, ysus € E(G). However, this is
the exceptional graph Fjp.

Case 4.4.3.2.2. Assume that the longest cycle of H has length 5. Then
H consists, without loss of generality, of the path yyoysy4ysye and the
edges y1y5 and y3ye.

Firstly, assume that y3 has exactly two adjacent neighbors, say u; and
u, in R. If {u3,u4} C N(y,), then {y1,¥s} is a dominating set of G. Hence,
we can assume, without loss of generality, that y,u3 € E(G). This leads to
Y2,94,¥5, %6 € N(uz) and w1, u2,u4 € N(31). If youy € E(G), then {ys,u;}
is a dominating set of G. If not, then we observe that uz,us,us € N(y2).
If ysu; € E(G), then {yz,ys} is a dominating set of G. If not, then we
have y1,y3, y4,¥5 € N(u1). If ysuq € E(G), then {ys,us} is a dominating
set of G. If not, then we have y1,2,v4,% € N(ug). This implies that
ysuz2 € E(G), and this is again Fp.
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Secondly, assume that y3 has exactly two non-adjacent neighbors, say
u; and us, in R. If {ug,us} C N(y1), then {y1,y3} is a dominating set of
G. Hence, we can assume, without loss of generality, that yuq4 € E(G).
This leads to y2,v4,%s,¥6 € N(ug). If youp € E(G), then {ys,u4} is a
dominating set of G. If not, then we deduce that y1,vs,s, ¥6 € N(uz) and
{y2,u2} is a dominating set of G.

Case 4.4.3.2.3. Assume that the longest cycle of H has length 3 or 4.
Since length 4 is impossible, it remains the case that the longest cycle of
H has length 3. Then H consists, without loss of generality, of the path
Y142y3vaysys and the edges y1y3 and yays. Assume, without loss of gen-
erality, that y; has exactly the neighbors u1,uz,u3 in R. It follows that
yaus € E(G) or ysuy € E(G), say ysuq € E(G). This implies that {1, 95}
is a dominating set of G.

Case 5. Let |I| = 0 and assume that R consists of a least two com-
ponents. If y(R) < (JV(R)| — 1)/2, then Proposition 2.1 leads to (2). If
not, then, in view of Theorem 2.2, the components of G consist of Cy4 or
the corona graph H o K for any connected graph H. If one of the compo-
nents is of the form H o K; with [V(H)| > 3, then Case 4.1 together with
Proposition 2.1 show the desired inequality (2).

Case 5.1. The graph R contains the components Kz = wjws and the
path vjujusve. We define the subgraph

Q = G[N[.’D] U {uls U2, V1, V2, W1, w2}]'

Because of Proposition 2.1, it is enough to show that v(Q) < 3.

In the case § > 3, the vertices w; and wp have a common neighbor,
say 1, in N(z). If there exists an edge vy in G, then {z,y1,u2} is a
dominating set of Q. Otherwise, y2,¥3,--.,¥s € N(v1) and {y1,v1,v2} isa
dominating set of Q. If § = 2, then it is easy to see that y(Q) < 3.

Case 5.2. The graph R contains the components K» = wjw, and
the cycle ujusuguqu;. If Q = G[N[z] U {uy, ua, us, uq, s, wp}], then it is
enough to show that ¥(Q) < 3.

In the case § > 3, the vertices w; and wz have at least § —2 common
neighbors, say ¥1,%2,-..,¥s—2, in N(z). If there exists an edge yu; for
1<i<dé-2and1 < j <4,say y1u in G, then {z,y1,u3} is a dominating
set of Q. Otherwise, we deduce that § < 4. If § = 4, then u;,uz,u3,u4 €
N(ys) and {z,1,v4} is a dominating set of Q. If § = 3, then {v1, 2,3}
is a dominating set of Q. If § = 2, then it is easy to see that y(Q) < 3.

Case 5.9. The graph R contains the components K = wyw: and
Ko = wyug. If Q = G[N[z] U {u1,uz, w1, w2}, then it is enough to show
that 4(Q) < 2. If § > 5, then there exists a vertex y; € N(z) such that
uy, ug, wy, w2 C N(y;) and {z,¥;} is a dominating set of Q.
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Next let § = 4. If there exists a vertex y; € N(z) with the property
that wy,u, w1, w2 C N(¥;), then {z,y:} is a dominating set of Q. If not,
then |N(y:) N {w1,ug, wy, w2} = 3 for every 1 < ¢ < 4. Let, without
loss of generality u;,us,w; € N(y;1). Since yywe € E(G), it follows that
¥2,¥3,¥4 € N(wz) and {y1, w2} is a dominating set of Q. If 2 < § < 3,
then it is straightforward to verify that y(Q) < 2.

Case 5.4. The graph R contains two paths P, = ujususuy and P, =
v1%2v3v4 as components. If Q = G[N[z]UV (P)UV (P)], then it is enough
to show that v(Q) < 4. If § > 3, then u; and v; have a common neighbor,
say y1, in N(z), and {z,y1, us,v3} is a dominating set of Q. If § = 2, then
it is easy to see that 4(Q) < 4.

Case 5.5. The graph R contains a path P = wujususus and a cycle
C = v1v2v3v4v; as components. If Q = G[N[z] U V(P)UV/(C)], then it is
enough to show that v(Q) < 4. If § > 4, then u, and v; have a common
neighbor, say yi, in N(z), and {z,y1, u3, vs} is a dominating set of Q. If
0 = 3, then {y1,y2,y3} is a dominating of Q. If § = 2, then it is easy to
see that v(Q) < 4.

Case 5.6. The graph R contains two cycles C = wujuguszusu; and
C' = vyvauzvav; as components. If Q@ = G[N[z] U V(C) U V(C")), then
it is enough to show that v(Q) < 4. If any u;, say u,, and any v;, say v,
have a common neighbor, say y1, in N(z), then {z,y1,us,v3} is a domi-
nating set of Q. Otherwise, we conclude that § < 4. However, if § = 4 or
é = 3, then {y1,¥2,¥3,va} or {¥1,¥2,y3} is a dominating set of Q, respec-
tively. If 6 = 2, then it is easy to see that ¥(Q) < 4. O

Proposition 2.1 and Theorem 2.2 show that the corresponding result to
Theorem 4.1 for § = 1 has the following form.

Observation 4.2 Let G be a connected graph of order n, minimum degree
4 =1, and domination number . Then

n-6 n-=1
& e =
S 2 2

with exception that G is a corona graph H o K for any connected graph
H.
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