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Abstract

The vertex linear arboricity vla(G) of a graph G is the minimum
number of subsets into which the vertex set V(G) can be partitioned
so that each subset induces a subgraph whose connected components
are paths. In this paper, we seek to convert vertex linear arboricity
into its fractional analogues, i.e., the fractional vertex linear arboric-
ity of graphs. Let Z, denote the additive group of integers modulo
n. Suppose that C C Z, \ 0 has the additional property that it is
closed under additive inverse, that is, —c € C if and only if c € C.
A circulant graph is the graph G(Z,.,C) with the vertex set Z,, and
i,J are adjacent if and only if i — j € C. The fractional vertex linear
arboricity of the complete n-partite graph, the cycle Cn, the integer
distance graph G(D) for D = {1,2,--+ ,m}, D = {2,3,.-- ,m} and
D = P the set of all prime numbers, the Petersen graph and the cir-
culant graph Ga 5 = G(Z,,C) with C = {—a+b,--- ,—b,b,--- ,a—b}
(a—2b > b—3 > 3) are determined, and an upper and a lower bounds
of the fractional vertex linear arboricity of Mycielski graph are ob-
tained.

Keywords: Fractional vertex linear arboricity; integer distance
graph; complete n—partite graph; Petersen graph; circulant graph
Ga,b

1 Introduction

In this paper, R and Z denote the set of all real numbers and all integers,
respectively. For z € R, |z] denotes the greatest integer not exceeding r;
[2] denotes the least integer not less than z. For a finite set S, |S| denotes

the cardinality of S. If H is a subgraph of G, then G is called a supergraph
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of H (see [3]).

A k-coloring of a graph G is a mapping f from V(G) to {1,2,...,k}.
With respect to a given k—coloring, V; denotes the set of all vertices of G
colored with i.

If V; is an independent set for every 1 < ¢ < k, then f is called a proper
k—coloring. The chromatic number x(G) of a graph G is the minimum
number k of colors for which G has a proper k—coloring. If V; induces a
subgraph whose connected components are paths, then f is called a path k—
coloring. The vertex linear arboricity of a graph G, denoted by vla(G),
is the minimum number k of colors for which G has a path k—coloring.

Matsumoto [10] proved that for any finite graph G, vla(G) < [-Ai%w-'l,
moreover, if A(G) is even, then vla(G) = [-Ai—ciu'—l'l if and only if G is the
complete graph of order A(G) + 1 or a cycle. Goddard (8] and Poh [11]
proved that vla(G) < 3 for a planar graph G. Akiyama etal. [1] proved
vla(G) £ 2 if G is an outerplanar graph. Fang and Wu (7] determined the
vertex linear arboricity of complete multipartite graphs and obtained an
upper bound on the vertex linear arboricity of cartesian product of graphs.
Alavi et al. [2] proved that vla(G) + vla(G) < 1+ [2£*] for any graph G
of order n where G is the complement of G.

In this paper, we seek to convert the vertex linear arboricity into its

fractional analogues.

2 Main results and their proofs

A hypergraph H is a pair (V(H), x), where V(H) is a finite set and x is
a family of subsets of V(H). The set V/(H) is called the vertex set of the
hypergraph and the elements of x are called hyperedges or sometimes just
edges. A covering of H is a collection of hyperedges Ly, Ls,- -, L; such

that V C L U---U L;.
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A graph G whose connected components are pathes is called a linear
forest.

For any finite graph G, let LF be the set of all subsets of V that induce
linear forests of G and V' be the vertex set of G, then H = (V,LF) is a
hypergraph and the elements of LF are hyperedges.

An automorphism of a hypergraph H is a bijection 7 : V(H) — V(H)
with the property that X is a hyperedge if and only if 7(X) is a hyperedge
as well. The set of all automorphisms of a hypergraph forms a group under
the operation of composition; this group is called the automorphism group
of the hypergraph. A hypergraph H is called vertex-transitive provided for
every pair of vertices u,v € V(H) there exists an automorphism of H with
m(u) = v(see[12]).

The vertex linear arboricity of a finite graph G can be formulated as
an integer program. To each set L; € LF associate a 0,1— variable z;.
The vector X is an indicator of the sets we have selected for the covering.
Let M be the vertex-linear forest incidence matrix of G, i.e., the 0,1~
matrix whose rows are indexed by V(G), whose columns are indexed by
LF, and whose i, j—entry is exactly 1 when v; € L;. The condition that
the indicator vector X corresponds to a covering is simply M.X > 1 (that
is, every coordinate of M X is at least 1). Hence the vertex linear arboricity

of G is the value of the integer program

min 1'X
MX >1,

subjectto{ z;=0o0rl, (1)
i=1,2,-,|LF|.

The relaxation of the integer program (1) is the following linear program

min 1'X
MX>1,

subjecttod 0<z; <1, 2)
i=1,2,---,|LF),

177



and the value of (2) is called the fractional vertex linear arboricity of G. In
other word, we can define the fractional vertex linear arboricity vlas(G) of

any graph G as followings.

Definition 2.1. A fractional path coloring of a graph G (can be infinite)
is a mapping c from LF(G), the set of all subsets of V that induce linear
forests of G, to the interval [0,1] such that 3 ¢ e r(c) (L) > 1 for all
vertices = in G. The weight of a fractional path coloring is the sum of
its values, and the fractional vertez linear arboricity of the graph G is the
minimum possible weight of a fractional path coloring, that is,

vlag(G) = min{ Z ¢(L) | c is a fractional path coloring of G}.

LELF(G)

Clearly, we have vlas(H) < vlay(G) for any subgraph H of G.

If f is a path vla(G)—coloring of G and V; = {v|v € V(G), f(v) = i}
(1 < i < vla(G)), then we can give a mapping ¢: LF — [0,1] by

_ [ 1, for L=V, 1<iZvla(G),
o(L) = { 0, otherwise,

such that ¢ is a fractional path coloring of G which has weight vla(G).
Therefore, it follows immediately that vlas(G) < vla(G).

Conversely, suppose that G has a 0, 1—valued fractional path coloring f
of weight k. Then the support of f consists of k linear forests V1, Va,---, Vi
whose union is V(G). If we color a vertex v with the smallest ¢ such that
v € V;, then we have a path k—coloring of G. Thus the vertex linear
arboricity of G is the minimum weight of a 0,1-valued fractional path
coloring.

The dual LP of (2) is the following linear program

mex 1Y
MY <1,

subject to { 0<y: <1, (3)
i=12---,|V]
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Thus if we define f to take the value f(v) on each vertex of the vertex set V'
with0 < f(v) <land M'Y <1lforY = (f(v1),---, f(vn)) withn =|V]|,
then Y is a feasible solution of (3).

(2) and (3) form a dual pair. Suppose that w is the value of the opti-
mization problem (3), then w < vlas(G) by the weak duality theorem from

linear programming. Hence we have the following lemma.

Lemma 2.2. Let G be a finite graph, e = max{|X| : X € LF}, then
vlag(G) > LGN,

Proof. If we assign each vertex of H weight -:e, then we have a feasible

solution of (3). Thus vlay(G) > ]ﬂeﬂl a
Therefore, vlay(G) > 1 for any nonempty graph G.

Theorem 2.3. For any complete n—partite graph G = K(my, ma,--- ,my)
(n22),

n, formy=mo=--r=my=m2>3,
Zn, formy=mg=:--=my,=m=2,
vlag(G) =< 3, form=mo=:-=m, =1,
n—2 formy=mpg=:--=my_1=3and m, =1,
n—35, form=my=---=myu_1=3and m,=2

Proof. Suppose that X;, X, -+, X, are n-partite of V(G) such that | X;| =
m; for 1 <i < n. Let H = (V,LF) have V = V(G) and LF the set of all
subsets of V' which induced linear forests of G.

(1) When m > 3, it is straight forward to verify that e = max{|X] :
X € LF} = m. So vlay(G) > Z2 = n by Lemma 2.2. Define a mapping
hy: LF — [0,1] by

1, for X=X;,1<i<n,
ha(X) = { 0, otherwise.

Then h; is a fractional path coloring of G which has weight 7. So vlay(G) <
n. Therefore vlay(G) = n.
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(2) When m = 2, it is straight forward to verify that e = max{|X| :
X € LF} = 3. So vlag(G) > %. Define a mapping h : LF — [0,1] by

such that X C X; U X,
0, otherwise.

sory»  for |X| =3 and there are (1 <)i < j(< n)
ha(X) = {

The number of all 3—linear forests that contain two elements of X; is
2(n— 1) and the number of all 3—linear forests that contain one element of
X1 is 2(n—1). So there are 4(n—1)+4(n—2)+- - -+8+4 = 2(n—1)n elements
in LF that have value nonzero. Then h; is a fractional path coloring of G
which has weight grogy2(n — 1)n = 2 Hence vlas(G) < %. Therefore

vlas(G) = 2.

(3) For my =mg = -+ = my, = 1, define a mapping hz : LF — [0,1] by
1 .
S = HIL=2,
ha(X) = { 0, otherwise.

Then h3 is a fractional path coloring of G which has weight 5. Thus
vlag(G) < %. It is straight forward to verify that e = max{|X]| : X €
LF} =2, s0 vlag(G) > M — 2. Hence, vlas(G) = 2.

(4) For my = --- = my,—; = 3 and m,, = 1, it is easy to prove that
e =max{|X|: X € LF} =3, then vlag(G) 2 X —n -1+ L =n-2.
Let X, = {v}. There are C(n — 1) = 3(n — 1) members in LF, assuming
them to form Tj, that contain v and have cardinality 3, and 1+ C23(n —
2)+3(n—2)C3+1+C23(n-3)+3(n—-3)C2+---+1+C33+3C¢+1=
1+18(n—2)+1+18(n—3)+1+---+18+1 = (n—1)(9n —17) members in
LF, assuming them to form T3, that have cardinality 3 and do not contain
v. Every vertex of X;(1 < ¢ < n — 1) is contained in two members of T}
and CZ(n — 2) + 2C3(n — 2) + 1 = 9(n — 2) + 1 members of T, (the first
part in the sum is the number of members that contain one element of X;

and the second part in the sum is the number of members that contain two
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elements of X;). Define a mapping k4 : LF — [0,1] by

-ﬂanl)’ wheanQXand lX|=3,
ha(X) ={ sreriariar: When Xa(1X = ¢ and |X| =3,
0, else. ‘

Then hy is a fractional path coloring of G which has weight 3(n— l)ﬂnl_-ﬁ +
(n—=1)(9n—17)gr=H5n—gzy = 1+ 3575 = n—-1+4, sovlag(G) < n—1+1.
Hence viaj(G) =n—-1+}=n-2.

(5) Let | Xy| = 2. There are C§(n—1)+2C%(n—1) = 9(n— 1) members
of LF, assuming them to form H,, that contain vertices of X, and have
cardinality 3, and C3C3(n—2)+C3C}(n—2)+1+C}C3(n—3)+C2C} (n—
3)+1+4---+ClC2+C2C +1+1=18(n—2)+14+18(n—3)+1+---+
18+1+1=(n—1)(9n — 17) members of LF, assuming them to form Hj,
that do not contain vertices of X,, and have cardinality 3. Every vertex of
X is contained in C}(n — 1) + C23(n — 1) = 6(n — 1) members of H; and
every vertex of X;(1 < i < n—1) is contained in 1 4 2 + 2 = 5 members of
H) and C%(n - 2)+2C}(n — 2) + 1 = 9(n — 2) + 1 members in H,. Define
a mapping hs by

ﬂ'anlé"’ for X € Hy,
hS(X)= 6n—1f9fr+}-'§m]" fOl‘XGHg,
0, else.

Then ks is a fractional path coloring of G which has weight 9(n —
6n—1

l)a,}q +(n—1)(9n— 17)m =n— 3. Thus vlay(G) <n-4%.
It is obvious that e = max{|X| : X € LF} = 3, and then vla;(G) >
VeG =n — §. Therefore vlay(G) =n — 1. O

In these cases, we have vla(G) = [vlaf(G)]. For example, in (2) of
Theorem 2.3, any four vertices induce a cycle, so that vla(G) = [£] =
[vla;(G)]. In (5) of Theorem 2.3, it is obvious that vla(G) = n since any
four vertices induce a K13 or a cycle, so that vla(G) =n = [n— 1] =

- [vlas(G)].
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Theorem 2.4. vla;(Cp) = ;25

Proof. Suppose that C,, = a1a2---ana1. Let L; = aijai;1 - - - @ipn-2 which
subscripts with addition modulo » and 1 < i < n. It is obvious that every
a; is contained in exactly n — 1 paths Ly,-++,Lj,Lj42, -+ ,Ln. Define a
mapping ¢ : LF — [0,1] by

l . .
— Py ) lfL=Lj,J=0,1,"',n,
o(L) { 0, otherwise.

Then cis a fractional path coloring of C;, which has weight £1¢ Lr(c,)c(L) =
=21, 50 vlag(Cn) < 75, Clearly, the length of the longest induced path
in C, is n — 1, hence vlas(Cn) > 7. Therefore vlas(C,) = ;2. O

Clearly, via(Cy) = 2 = [viag(Cn)].

If S is a subset of the set of real numbers and D is a subset of the set of
positive real numbers, then the distance graph G(S, D) is defined by the
graph G with vertex set V(G) = S and two vertices = and y are adjacent
if and only if |z — y| € D where the set D is called the distance set. In
particular, if all elements of D are positive integers and S = Z, the set of all
integers, then the graph G(Z, D) = G(D) is called integer distance graph
and the set D is called the integer distance set of the graph. For the
vertex linear arboricity of distance graphs, Zuo, Wu and Liu [14] obtained
that vla(G(R, D)) = n+ 1 if D is an interval between 1 and § when 1 <
n—1<6 < n, vla(G(D)) = 2if |D] > 2 and D has at most one even
number and via(G(D)) < k if there is unique multiple of k in D. Moreover,
vla(G(P)) = 2 where P is the set of all prime numbers.

It was proved that vla(G(D)) = [2§1] for D = {1,2,---,m} in [14]
and vla(G(Dm,1)) = [Z]1+ 1 for Dpy = {2,--- ,m} and m 2 3 in (15].

Now we study the fractional vertex linear arboricity of G(D) for D, =
{1,2,---,m}, Do = Dp1 and Dz = P the set of all prime numbers,

respectively.
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Theorem 2.5. (1) For Dy = {1,2,--+,m}, vlag(G(D,)) = =L,

(2) For Dm,y = {2,3,---,m} and m > 5, =2 < 3lay(G(Dpm,1)) <
T+

(3) viag(G(P)) = 2 where P is the set of all prime numbers.

Proof. (1) Let

Lo={--,0,1,m+1,m+2,2(m+1),2(m+1)+1,---},
Ll ={... ,1,2,m+2,m+3,2(m+ 1)+1,2(m+ 1)+2’...}’
Ly={-,23,m+3,m+4,2(m+1)+2,2(m+1)+3,-.-},

Lypy={-,-2,-1,m— 1,m,2m,2m+1,3m +1,3m+2,---},
Lp={-,-1,00mm+1,2m+1,2m+2,2(m + 1) +m,3(m+1),---}.

Then each of Lo,L;, -, L, induces a linear forest and every i € Z is
contained in exactly two L;(0 < j < m). Define a mapping ¢ : LF — [0, 1]

by .
_J) 5 ifL=L;j=0,1,..-,m,
o(L) = { 0, otherwise.

Then c is a fractional path coloring of G(D,) which has weight

m+1
Srerremye(l) = —

so that vlay(G(Dy)) < =L,

Let H be a subgraph induced by vertices 0,1,--- ,m. Then H = Ky,
is a complete graph and so that vlay(G(D1)) > viay(H) = ﬂgi by Theo-
rem 2.3. Therefore, viag(G(D,)) = L.

(2) For any ¢ with0 < i <m+ 3, let

L;={jeZ:j—iEm(modm+4),05x53}.
It is straightforward to verify that L; induces a linear forest in G(Dp,,1). It
is not difficult to verify that any integer is contained in exactly four such
linear forests. Define a mapping b : LF(G(Dy, 1)) — [0,1] by

1 . ! .
_l @ HL=L;,0<j<m+3,
ML) { 0, otherwise.
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Then h is a fractional path coloring of G(Dy,,1) which has weight m4‘—4 =
2 +1. Thus, vlag(G(Dm,1) < F +1.

Let G be the subgraph of G(Dyy 1) induced by the vertices {0,1,--- ,m+
2}. Then vlaf(G(Dm,1)) = vlag(G). If there are five vertices 0 < ap < a1 <
v-< a4 <m+2inan L € LF(G), then ag — ap > m and a4 —a; > m by
the proof of Theorem 2.2 in [15]). Thusap =0, e; =1,a3 =m+landag =
m + 2. Clearly, apaz,azaq € E(H), so ajag,az03 ¢ E(H), i.e., a3 — a2 =
ap—ay = 1, and then a3 —a; = m = 2 which is contrary to the assumption.
Hence, e = max{|L| : L C V(G) and L induces a linear forest of G} = 4.
Therefore, by Lemma 2.2, vlag(G(Dm,1)) > 2.

(3) Let L; = {n|n = i(mod2),n € Z},i = 0,1, then L; induces a linear
forest. It is obvious that every integer is contained in exactly one of these

linear forests. Define a mapping ¢ : LF — [0,1] by

1, if L=1L;i=0,1,
o(L) = { 0, otherwise.

Then c is a fractional path coloring which has weight 2. So vlays(G(P)) < 2.
Suppose that H is the subgraph induced by vertices 0,1,2,:--,7. It is
straightforward to verify that

e=max{|L|: L C V(H) and L induces a linear forest of H} =4

and the vertex subset {0,2,4,6} induces a path. So vlay(H) > % = 2.
Hence vlay(G(P)) = 2. a

Clearly, vla(G(D,)) = [vlay(G(D1))] by [14] and [vlaf(G(Dm,1))] =
vla(G(Dm,1) when m = i(mod4) for i # 1 by [15].

Mycielski graph is an important graph in vertex coloring. Given a graph
G, define the graph Y (G) as follows: V(Y (G)) = (V(G) x {1,2}) U{z} and
with an edge between two vertices of Y (G) if and only if

(1) one of them is z and the other is (v, 2) for some v € V(G), or
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(2) one of them is (v,1) and the other is (w, 1) where vw € E(G), or

(3) one of them is (v,1) and the other is (w,2) where vw € E(G).

The Grétzsch graph is Y(Cs) and Cs = Y (K3). Mycielski proved that
x(Y(G)) = x(G) + 1 for any graph G with at least one edge. For the

(fractional) vertex linear arboricity, we have the following result.

Theorem 2.6. If G is a graph with at least one edge, then

(1) vla(G) < vla(Y(G)) < vla(G) + 1. In particular, vla(Y (Cs)) =
vla(Cs) and vla(Y (K32)) = vla(K2) + 1.

(2) vlag(G) < vlag(Y(G)) < vlayg(G) + 1.

Proof. (1) The first inequality is trivial. Suppose that vla(G) = m and
Vi(1 £ i < m) is a linear forest partition of G. Let Wip41 = {(v,2)|v €
V(G)}, Wi = {z} U{(v,1)|v € Vi} and W; = {(v,1)jv € V;} for 2 < i < m.
It is clear that every W;(1 < ¢ < m + 1) induces a linear forest. So that
vla(Y(G)) < vla(G) + 1.

It is obvious that vla(Y (K3)) = vla(K2) + 1 because of C5 = Y (K>).
Let V(Cs) = {v1,v2,v3,v4,vs}, Ur = {(v;,1)]1 < i < 4}U{z} and U, =
{(vi,2)]1 <4 < 5} J{(vs,1)}. It is not difficult to verify that U;(i = 1,2)
induce linear forests. So vla(Y (Cs)) = vla(Cs) = 2.

(2) The first inequality is trivial, too. Suppose that ¢ is a fractional
path coloring of G. Let ¢, : LF(Y(G)) — [0, 1] such that

c(Lp), forL ={(v,1)lve L, € LF(G)}U{z}
a(l)={ 1, for L = {(v,2)|v € V(G)}
o, else.
Then c; is a fractional path coloring of Y (G) which has weight vlas(G)+1,
so vlas(Y(G)) < vlas(G) + 1. a

The Petersen graph P is a graph with vertex set V = {a,b,¢,d, ¢, a;,
b1, c1,d1,e1} and the edge set E = {ab,bc, cd, de, ea, aa,, bby, cc1, dd;, eey,

aic1,a1d1,b1d;,brey,c1e;}. We have the following result.
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Theorem 2.7. vlas(P) = §.

Proof. 1t is not difficult to verify that max{|X|: X € LF} = 6. Then
vlag(P) > ¥ = 2 by Lemma 2.2.
Let

Ll = {a, b1 C,d, dl1el}’ L2 = {b,C, d1 eael1al}1

L3 = {c)da e, a,a, bl}) L4 = {da €, a, ba bl’cl}a

L5 = {61 a, b, ¢ C, dl}: LG = {a,01,01,61, blrd},
L7 = {babladl:alvcl’e}v Lg = {C,Cl,el,bl,dl,a},
Ly = {d,dy,a1,c1,€1,b}, Lio = {e,e1,b1,d1,a1,c}.

Clearly, every vertex is contained in exactly six such linear forests. Define
a mapping c by

1 . ,
_ [ & ifL=L;,1<i<]10,
ofl) = { 0, otherwise,

then ¢ is a fractional path coloring which has weight % = % Hence,

vlas(P) < % and then vias(P) = 3. O

If let h(Ly) = 1 and h(L11) = 2 for Ly; = {a1,¢1,b1,¢e}, and h(L) =0
for the other L € LF, then h is a path coloring of P, so vle(P) = 2 =
[vlas(P)] since the Petersen graph has cycles.

The following graph plays an important role in fractional vertex color-
ing. Let Z, denote the additive group of integers modulo 7. Suppose that
C C Z, \ 0 has the additional property that it is closed under additive
inverse, that is, —c € C if and only if ¢ € C. A circulant graph is the
graph G(Z,,C) with the vertex set Z, and ¢,j are adjacent if and only
if i — j € C. Next we consider the circulant graph G, = G(Z,,C) with
C={-a+b,---,=bb,--- ,a—b} (a>2b).

Theorem 2.8. Let a and b be positive integers with a > 2b. The circulant
graph Gap is the graph with vertez set V(G) = {0,1,--- ,a — 1}. The
neighbors of vertex v are {v + b,u+b+1,--- ,v+ a — b} with addition
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modulo a. Then vlag(Gap) = 535 and vla(Gap) = [g35] = [viag(Gayp)]
fora—2b>b-32>3.

Proof. Let a —2b > b~ 3 > 3. Think of the vertices of G, as equally
spaced points around a cycle with an edge between two vertices if they
are not too near each other. Note that G, has a vertices and is vertex-
transitive. Since {v,v + 1,---,v + b+ 1} induces a linear forest for each
v € V(Gap), e=max{|X|: X e LF} > b+2.
Claim. The cardinality of the maximum linear forest of G, is b + 2,
ie,e=max{|X|: X € LF} =b+2.
Assume, on the contrary, that there are b+ 3 vertices 0 < v; < v3 <
- < v43 < a — 1 such that {v,v2,--- ,vp+3} induces a linear forest.

Clearly, vp+3 — v1 = b+ 2. We can suppose that
(v1 — vp43)(mod @) > maz{vi41 —vi | for 1 <i<b+2} (%)

since G, is vertex-transitive. If (vi — vp43)(mod a) > b, then v, is
adjacent to vertices vp41,vb4+2 and vp43, a contradiction. Hence, (v; —
vp4+3)(mod a) < b.

Suppose that v; —v; < b—1 and vi43 —v; > bfor somei with1 < <b.
If (v1 —vi41)(mod a) < b, then viy1 — v 2 a—(26-2)=a—-2b4+22>b~-1
and (v; — vp43)(mod @) < (v; — vi41)(mod @) — 2 < b— 2 that contradicts
(#). S0 v1vi41 € E(Cap). If (v1 — vigs)(mod a) > b, then v, is adjacent
to viy1,vit2 and viy3, a contradiction. Thus, (v; — viy3)(mod a) < b.
Let j be the least integer such that (v1 — v;)(mod @) < b. Then (v; -
v)(moda) <bforj<k<b+3andi+2<j<i+3.

Case 1. v; is adjacent to v, forall j <k <b+3.

Then j 2> b+2 (otherwise, j < b+1, then v;, U1, Vp42 and vp43 induce
a K 3, a contradiction), andi >j—-3>b—1.

Subcase 1.1.If j=b+3,theni=j—-3=b.
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So that v, = vp_1 +1 ="+ = v +b—1 and v1Vp41,V1Vb42, V2Up42 €
E(Gap), and then vovpy; € E(Gap), that is, vp41 —v2 < b — 1. Hence,
Up41 —v2 = b—1 and then vp41 —v1 = vpp1 —p+vp—v1 =1+b—1=b. So
that vp40 —v; = b+ 1 (otherwise, if vp42 —v1 2 b+ 2, then vp4o is adjacent
to v1,ve and vs, a contradiction). Thus, vy4+3 is adjacent to vp41—¢, Upt2—t
and vp43—¢ for (v; — vp43)(mod a) =t < b, a contradiction, too.

Subcase 1.2. If j=b+2,theni>j—-3=0b-1.

(1) If ¢ = b, then v — vy = b — 1, so that vp42 is adjacent to vertices
Ub41—t,, Vb+2—ts, Ub+3—z, When (v1 — vpy2)(mod a) = t; > 3, a contradic-
tion. Thus, (v; — vp42)(mod a) =¢; < 2,ie., 3 =42+ 1=a—1 and
v; = 0 that contradict ().

(2)Ifi=b-1, then vp—1 —v; < b—1and v, — v, > b, so vp and
vp41 are all adjacent to v, and then v, — v < b — 1 (otherwise, vertices
b, Up4+1,v1 and ve induce a cycle, a contradiction). (2.1) If vp — vp =
b — 2, then v — v; = 2 (otherwise, if v —~v; > 3, then vp_; —v; > b, a
contradiction; if vo — v; = 1, then v, — v; = b — 1, a contradiction, too).
Sovy =w_1+1=:--=v24+b—2=v; +b Thus v is adjacent to
Up4+2,Up+3 and v; when (v; — vp42)(mod a) =t; < a — 2b, a contradiction.
Hence, (v; — vp+2)(mod a) = ¢; > a — 2b > 3 and then w42 is adjacent
to Ub+1—t,,Vb+2—t, and vpys_s,, a contradiction. (2.2) If vy —ve =b—1
and vp —v; = 1, then v, —v; = b, we can get a contradiction similarly
as (2.1). (23)Ifvy—voa=b—1and vy —v; =2, then vp —vy = b+ 1.
Thus, vp — Vp—~1 = 2 since vp—3y —v1 < b—1. So that v, = vp_1 +2 =
Vo+3=:=wve+b-1=wv +b+1 and then vp4; — vy = b+ 2
(otherwise, vp+1 — v1 > b+ 2, then vp4y is adjacent to vertices v1,v2 and
vg, a contradiction). Therefore, vp42 is adjacent to vertices vp42—¢,, Ub+i—t,
and wvp—;, when (vy — wpy2)(mod @) = t; = 3, a contradiction. So that

(v1 — vp42)(mod a) = ¢; < 2 and then (v; — vp+3)(mod a) = 1 which

188



contradicts (). (2.4) If v —vp =b—1and vo —v; > 3, then vp—; —v; =
Vp—1 — V2 + V2 — vy 2> b~ 3+ 3 =0, a contradiction, too.

Case 2. v; is not adjacent to vx for some (j <)k(< b+ 3).

Ifj=b+3,theni>j—-3=bsoi=band v, =v; +b—1. We can
get a contradiction as Subcase 1.1 similarly.

Ifj=b+2 theni > j—3=>5b-1 We can get a contradiction as
Subcase 1.2 similarly.

Suppose that 7 < b+ 1 in the following. If (v; — vg)(mod a) < b,
then viy; — v > (v1 — vx)(mod a) since (viyy — v1) > b, contrary to
(*). Sovg—v; <b Ifk > 37+1, then (v; — v)(mod a) < b—1, so
vi—v 2a—(b—14+b~-2)=a—2b+3 2> b, a contradiction. Hence, k < j
and then k = j. Moreover, j > b+ 1 and then j = b+ 1 since v; is adjacent
tovyforj+1<1<b+3. Sothat b—2<i<b-1.

Since v; —v; < b—1and (v1 — vp+1)(mod a) < b—1, vp41 —v; 2 a—
(26-2) = a—2b+2 > b—1 and then vp+1 —v; = b—1. Thus, vp41 is adjacent
to vertices v;—1,v;—2 and v;_3 when v; — v;_3 < 4, a contradiction. Hence
v;—v;—3 > 4. But v;—v;_3 = vi—v; — (Vi—3—v) < b—1-(i—4) = b—i+3 <
b—(b-2)+3 =5sincev; —v; <b-1and:>b-2, sothat v; —v;_3 =5,
vi-3—v1 =t—4andthena-2b=6-3=3,v%;—v;.1=1,i=b-2,b=6
and a = 15. Clearly, (v1 — vp+1)(mod a) = 5 since vp41 —Vp—2 =b—-1=5
and vp—2 — v; = 5. So that (vy — vp43)(mod a) =t < 3. If ¢t = 3, then
Up4+3 — Up+2 = Up+2 — Up+1 = 1 and then v3 is adjacent to vertices v, vs and
vg, a contradiction. Hence, ¢t = 2, and then vp — v; = v3 — v2 = 2 by (*).
Therefore, vertices vz, v3,v7 and vg induce a cycle when vg — vg = 2, and
vertices v3,v7,vs and vg induce a K 3 when vg — vg = 1, a contradiction.

Therefore, the Claim is proved.

Hence, e = max{|X|: X € LF} = b+ 2, and then vlag(G) > 19 —
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555+ Define a mapping f : LF — [0,1] by

(X) = a5 forX={v,v+1,---,v+b+1}and0<v<a-1,
~10, otherwise.

Then f is a fractional path coloring of G, which has weight ab_+2 = 513-
Hence, vla;(G) < 535, and then vlag(G) = §33-

Therefore vla(Gap) 2 [5351. Let {i(b+2),i(b+2)+1,- - ,i(b+2)+b+1}
be colored with i for 0 < i < [5%5]—1and {([3351-1)(b+2), ([5521-1)(b+
2)+1,--- ,a—1} be colored with [;%5]—1. This is a path coloring of Ga b,

so that vla(Gap) < [535]. Hence vla(Gap) = [555] = [vlag(Gap)]. O

Remarks: 1. We conjecture: the Claim of Theorem 2.8 holds for any
a > 2b+ 2. So Theorem 2.8 holds in this case.
2. We only discussed several cases of complete n—partite graphs in

Theorem 2.3, the other cases can be studied similarly.
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