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Abstract

We introduce a new concept of strong domination and connected strong
domination in hypergraphs. The relationships between strong domination
number and other hypergraph parameters like domination, independence,
strong independence and irredundant numbers of hypergraphs are consid-
ered. There are also some chains of inequalities generalizing the famous
Cockayne, Hedetniemi and Miller chain for parameters of graphs. There
are given some generalizations of well known theorems for graphs, namely
Gallai type theorem generalizing Nieminen, Hedetniemi and Laskar theo-
rems.
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1 Introduction and preliminaries

A hypergraph H = (V,£) of order p and size q consists of a set of p vertices
V' together with a set of g edges £, each element of which is a subset of V of
cardinality at least two.

Two vertices u and v are adjacent in a hypergraph H if there exists an edge
E € £ such that u € E and v € E. For a vertex v € V, we denote by N(v) the
set of vertices of H adjacent to v (neighbours of v) and for A C V, by N(A)
the set of neighbours of vertices of A. By N[v], we denote N(v) U {v} and
N[A] = N(A)uU A.
. Let H = (V,£) be a hypergraph. For a vertex v we denote the set of all
edges containing v, by £,. The number |£,| is called the degree of v and it is
denoted by deg(v). If deg(v) = 0, then v is called an isolated vertex.
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Now we recall the definition of the 2-section of a hypergraph. If H = (V.€) is
a hypergraph then the couple (V,€(3)) where £y = {F CV : FC E € € and
|F| = 2} is the 2-section of H and we denote it by (H)a.

Let H = (V,€) be a hypergraph. 4 spanning subhypergraph of H is defined
to be a hypergraph H' = (V,F), wherc F C £.
Let A C V. The subhypergraph of H induced by A is denoted by H[A] and it
is defined to be the hypergraph (A, £(A)) where E(A)={E €& : E C A}.

In a hypergraph H = (V, E) a chain (of length q) is defined to be a sequence
(v1, Ey,vo, Ea, ..., Bq,vq41) such that vy,vz,..,v441 are distinct vertices of H,
and Ej, B, ..., E, are distinct edges in H, and {v,ve41} C Ex for k =1,2...,q.
We also say that, the chain defined above, starts at the vertex vy and terminates
at the vertex vg41.

Hypergraph H = (V, ) is called connected if for any two vertices u and v there
exists a chain that starts at vertex u and terminates at vertex v.

A set D of vertices of a hypergraph H is a dominating set in H, if each vertex
v of V — D is adjacent with an element of D, i.e., N(v)N D # 0.
The minimum (maximum) cardinality of a mlnlmal dominating set in H is
"called the lower’ (upper) domination nimber and it is denoted by v(H)T'(H)),
respectively.

A set D C V is said to be strong dominating set in H if foreachveV - D
there is an edge F € € such that v € E and (E — {v}) C D.

The minimum (maximum) cardinality of a minimal strong dominating set in
H is called the lower (upper) strong domination number and it is denoted by
vs(H)(T's(H)), respectively.

A set S C V is said to be independent in H (2], if it contains no edges of H.
The minimum (maximum) of the cardinalities of the maximal independent sets
in H is called the lower (upper) independence number and it is denoted by
i(H)(a(H)), respectively.

A set S C V is said to be strong independent in H [2], if for every v € S,
N(v) NS =0, that is, no two vertices in S are contained in an edge.

The minimum (maximum) cardinality of a maximal strong independent set in
H is called the lower (upper) strong independence number and it is denoted by
i'(H)(e/(H)), respectively.

A set I C V is said to be irredundant in H if for each vertex v € I,
N[v] - N[I - {v}] # 0.

The minimum (maximum) cardinality of a maximal irredundant set in H is
called the lower (upper) irredundant number and it is denoted by ir(H)({R(H)),
respectively.
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2 Some properties of dominating, strong domi-
nating, independent, strong independent and
irredundant sets of hypergraphs

We begin our investigation with the following elementary results that will be
useful.

Let H = (V,€) be a hypergraph and G = (H). By the definition of (H), for
cach vertex v € V we have Ny(v) = Ng(v).

Using the above we obtain the following statements:

Observation 1 A set X of vertices is a dominating set in H if and only if X
is a dominating set in G = (H)s,.

Observation 2 A set X of vertices if H is an inedundant‘ set in H if and only
if X is an irredundant set in G = (H)2.

The correspondence between strong independent sets in a hypergraph and in-
dependent sets in its 2-section is well known ([2]).

Observation 3 A set X of vertices if H is a strong independent set in H if and
only if X is a independent set in G = (H),.

By Observations 1-3 we easily obtain some equalities :

v(H) = v((H)2), T(H)=T((H)2) (1)
i(H) =i((H)2), o(H)=c((H)2) 2)
ir(H) = ir((H)2), IR(H)=IR((H)2) (3)

Also Ore’s [9] result can be presented in terms of properties of a dominating set
of a hypergraph.

Theorem 4 Let D be a dominating set of a hypergraph H. Then D is a minimal
dominating set in H if and only if for each vertex d € D, d has at least one of
the following properties:

(i) there ezists a vertez v € V — D such that N(v) N D = {d},

(i) Nd)ynD =9.

In the same way we can write the result of Bollobds and Cockayne [1]

Theorem 5 If H is a hypergraph without isolated vertices, then there eists a
minimum dominating set in which every vertez has the property (i).
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We will look on the relationship between these various parameters of hyper-
graphs.
Cockayne, Hedetniemi and Miller [4] introduced the following incquality chain.

For any graph G:
ir(G) £ ¥(G) £ i(G) < oG) < T(G) < IR(G). (4)
By (4) and Observations 1-3 we have:
For any hypergraph H
ir(H) < v(H) < ¢(H) < o(H) <T(H) < IR(H). (5)

From the definition of a strong dominating set in H it is easy to see that each
minimal strong dominating set in H is a dominating set in H. Thus

Y(H) < 7(H) (6)
for any hypergreph H.

Theorem 6 If X C V(H) is a mazimal independent set in H, then X is a
minimal strong dominating set in H.

Proof. For each vertex v € V — X, the set X U {v} contains an edge £ of H
such that E — {v} € X. It implies that X is a strong dominating set in H.
Suppose that X — {z} is a strong dominating set in H. This implies that there
exists an edge E’ such that 2’ € E' and B/ — {z} C X - {z},s0 E' C X, a
contradiction. Thus X is a minimal strong dominating set in H.

From Theorem 6 we obtain:
For any hypergraph H

vs(H) < i(H) < o(H) <Ts(H), (7)
and from (5), (6) and (7)

ir(H) < v(H) £ v.(H) <i(H) < a(H) < T,(H). (8)

Now we look at cases in which y(H) and v;(H) have the same value and H is
not a graph.

Theorem 7 Let H = (V,€) be a hypergraph. If |E| > 3 for each E € € then
Y(H) < 7s(H).

Proof. As we stated above each strong dominating set is a dominating set in
H. Suppose H = (V,€) is a hypergraph with |E| > 3 for each E € £ for which
the equality v(H) = vs(H) holds. Hence there exists a minimum dominating
set D which is a minimum strong dominating set in H. By Theorem 4 each
vertex d € D has the property (%) or (ii).
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Suppose first that each vertex of D has the property (it). By strong domination
of D for each vertex v of V — D there is an edge E € € such that v € E and
E - {v} € D. It implies that |E — {v}| = 1, so |E| = 2, which contradicts our
assumption.

From now on we may assume that there exists a non-empty set Z € D and
cach vertex d € Z has the property (i) and does not have the property (ii). Let
d€ Z and v € V — D such that N(v)N D = {d}. By our assumption each edge
E containing v has |E| > 3 and |[DNE| =1, thus D is not a strong dominating
set, a contradiction.

An examination of the proof of Theorem 7 shows us that if there exists a
minimum dominating set D such that for each vertex v € V — D, there exists
v’ € D such that vv' is an edge of the hypergraph H, then Y(H) = v,(H).

Theorem 8 Let H be a hypergraph without isolated vertices. IfX CV(H) is

a mazimal strong independent set in H, then V — X is a strong dominating set
in H.

Proof. If for each vertex v € X, N(v) N X = @, then for each edge E € € such

that v € E, it is obvious that E — {v} C V — X. Hence V — X is a strong
dominating set.

From Theorem 8 we obtain:

If H is a hypergraph without isolated vertices then
vs(H) + o' (H) < p. (9)

As the consequences of (9) and (5) we obtain:

For any hypergraph without isolated vertices

Ys(H) +'(H) < p, v(H)+v(H)<p, y(H)+ir(H)<p (10)
and also by (8) and (9)

VH)+d(H) <p, ir(H)+c'(H)<p. (11)

To prove the next theorem we need the following theorem due to Cockayne,
Favaron, Payan and Thomason

Theorem ([3]) If G is a graph without isolated vertices and v(G) + I R(G)=p
then IR(G) = I'(G) = o(G).

Theorem 9 If H is a hypergraph without isolated vertices and v(H )+IR(H) =
p then yv(H) = ~v,(H).
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Proof. Let H be a hypergraph without isolated vertices and y(H)+/R(H) =

G = (H)3. By (1) and (3) we obtain ¥(G)+IR(G) = p. Using the above result of
[3] we obtain IR(G) = I'(G) = a(G). By (1) and (2) we have v(H) +o(H) =

and by (6) and (9) we obtain the claimed equality. o

Corollary 10 If H is a hypergraph without isolated vertices and E| > 3 for
each E € € then y(H) + IR(H) < p.

3 Gallai-type Theorems

In 1959 Gallai presented his now classical theorem:

Theorem (Gallai [5|) For any nontrivial connected graph G = (V, E) with p
vertices, co+ fo=p, a1+ b =

where ap denotes vertez covering number, By the verter independence number,
ay the edge covering number and P, the mazimum size of a matching.

A large number of similar results and generalizations of this theorem have been
obtained in subsequent years; they are called Gallai-type equalities. We present
generalizations of two of them.

An edge of G is called a pendant edge if at least one of its vertices is of degree
1. By ¢(G) is denoted the maximum number of pendant edges in a spanning
forest of a graph G.

Theorem (Nieminen [8]). Let G be a graph with p vertices. Then
1(G) +€(G) =

Hedetniemi and Laskar proved a similar equality as in Nieminen's Theorem,
involving connectivity.

A set D C V is called connected dominating in G if D is dominating and
the subgraph of G induced by D is a connected graph. By 4.(G) is denoted
the connected domination number i.e., the minimum number of vertices of a
connected dominating set in G. By €.(G) is denoted maximum number of
pendant edges in a spanning tree of G.

Theorem (Hedetniemi, Laskar (7]). Let G be a connected graph of order p.
Then

7e(C) + &(G) = p

Let H = (V,€) be a hypergraph. An edge E € € is called pendant if it
contains a vertex of degree 1. Let ¢(H) be the maximum number of pendant
edges in a spanning subhypergraph of H. Note, that if £ # @ then ¢(H) >0

Theorem 11 For any hypergraph on p vertices we have
vs(H) + «(H) =
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Proof. Assume that £ = 9, thus v,(H) = p. Hence, £ # 0. Let D be a minimal
strong dominating set in H with [D| = v;(H). For every v € V — D there cxists
E € & such that v € E and E — {v} C D, by the definition of strong dominating
set. Then for every v € V — D we choose exactly one such edge and denote it
by E,. &= {E, : v € V — D} is a family of pendant edges in the spanning
subhypergraph H' = (V,£’), hence e(H) 2 |V — D| = p — v,(H).

On the other hand, let H' be a spanning subhypergraph of H, and F =
{Ei,, Ei;, ..., Ei,} be a family of pendant edges of H' where 1 < k = ¢(H).
The family F has a system of distinct representatives. Let Y be one of them
containing pendant vertices of (V,F). Then for every v € Y there is an edge
E € Fsuchthat ve E and E - {v} CV —Y. Consequently V —Y is a strong
dominating set. Hence v,(H) < |V = Y| =p - ¢(H).

Finally, v,(H) + e(H) = p. O

Consider the inequality (9) and Theorem 11 we obtain for a hypergraph without
isolated vertices

e(H) 2 o (H). (12)

Let H = (V, ) be a connected hypergraph. If D C V is a strong dominating
set and H[D)] is a connected hypergraph then D is said to be a connected strong
dominating set.

The minimum cardinality of a minimal connected strong dominating set in H
is called the connected strong domination number and it is denoted by v;.(H).
Note that, 0 < v,;(H) < 7s(H) < p for any connected hypergraph H.

For a connected hypergraph H, a set £’ of pendant edges is called a set of
proper pendant edges if each edge of £’ contains exactly one pendant vertex and
H[V — V'] is a connected hypergraph, where V' is the set of pendant vertices
of £'. By e.(H) we denote the maximum order of a set of proper pendant edges
in a connected spanning subhypergraph of H.

Theorem 12 For a connected hypergraph on p vertices we have
Ysc(H) + €(H) = p.

Proof. First, we assume that v,.(H) = p. By the connectivity of H the sct
V — {v} is strong dominating set for each v € V. If H[V — {v}] is connected for
some vertex v € V, then v,.(H) < p, a contradiction. Thus H[V — {v}] is not
connected for each v € V and it implies that the set of proper pendant edges is
the empty set.
Now assume that ,.(H) < p. Let D be a minimal connected strong dominating
set in H with |D| = 4,.(H). For every v € V — D there exists E € £ such that
v € E and E — {v} C D. Then for every v € V — D we choose exactly one such
edge and denote it by E,. The set £'= {E, : v € V — D}, is the set of proper
pendant edges in the connected spanning subhypergraph H' = (V, &' U £(D)),
hence e.(H) > |V — D| = p — v,.(H).

On the other hand, let H’ be a connected spanning subhypergraph of H, and
F={E, Ei,,..., Ei,} be a set of proper pendant edges of H' where k = ¢.(H).
Assume that k = 0. It implies that for each vertex v € V(H) the induced
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subhypergraph H[V — {v}] is not connected, so the unique connected strong
dominating set is the set V. If & > 0, then for cach E;, we denote its pendant
vertex by v;, 1 < j < k. Let Y = {v;, v2,..., 0}

Then for every v € Y there is an edge E;; € F suchthat v € E;; and E;; — {v} C
V —Y and H|[V - Y] is a connected hypergraph. Consequently V — Y is a
connected strong dominating set. Hence y,.(H) < |V - Y| =p — e.(H).
Finally, vsc(H) + ¢.(H) = p. (]
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