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Abstract. The lower domination number of a digraph D, denoted by
v(D), is the least number of vertices in a set S, such that O[S] = V(D).
A set S is irredundant if for all z € S, |O[z] — O[S — z]| > 1. The lower
irredundance number of a digraph, denoted ir(D), is the least number of
vertices in a maximal irredundant set. A Gallai-type theorem has the form
z(G) + y(G) = n, where z and y are parameters defined on G, and n is the
number of vertices in the graph. We characterize directed trees satisfying
7(D) + A4 (D) = n and directed trees satisfying ir(D) + A4 (D) = n.
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All digraphs are assumed to be loopless and without multiarcs. Given a
digraph D, V(D) refers to the vertex set and n denotes |V(D)|. We say y
is an out-neighbor of z if z has an arc to y. The set of all out-neighbors
of z is denoted by O(z). The outdegree of a vertex z, denoted od(z), is
|O(z)|. The maximum outdegree of a vertex in D is denoted by A, (D).
The set Ofz] = {z} UO(z). If S is a set, then O(S) = UyesO(z). The set
O[S] = O(S) US. The indegree of a vertex z, denoted id(z), is the number
of vertices that have an arc to z. We say y is an in-neighbor of z if y has
an arc to z. The sets I(z), I[z], I(S), and I[S] are defined analogously.

A set of vertices, S, is dominating if O[S] = V(D). The lower domination
number, denoted by (D), is the minimumsize of a dominating set. A set S
is irredundant if, for all z € S, |O[z]-O[S—z]| > 1. If y € O[z]-0[S—z], we
say that y is a private neighbor of z with respect to S. Observe that z may
be its own private neighbor. The lower irredundance number of a digraph,
denoted ir(D), is the least number of vertices in a maximal irredundant
set. Since every minimal dominating set is irredundant, ir(D) < y(D).
These parameters have been extensively studied in a graph setting. For
example, it is well known that ¥(G) + A(G) < n (see Berge [1]), where G
is a graph. Such a result, in which equality holds, is called a Gallai-type
theorem, in reference to Gallai’s result of 1959 [5] in which he showed that
the independence and covering numbers of a graph sum to n. Subsequently,
Gallai-type theorems have been of interest (for example, see Cockayne, et
al. [2]). In [3], Domke, Dunbar, and Markus and in [4], Favaron and
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Mynhardt derive several relationships between domination parameters in
graphs. For example, they characterize trees satisfying ¥(T) + A(T) = n.
In general, domination in digraphs has been studied to a lesser extent than
their graph theoretic counterparts. In [6], Ghoshal, Laskar, and Pillone
consider related topics in digraphs and suggest further avenues of study.
Gallai-type results for digraphs have been considered in [9]. Therein, it is
observed that v(D) + A4 (D) < n for any digraph.

As defined in [3), a spider is a tree with a single vertex of degree p, p
pendant vertices, and p vertices with degree two, each of which is adjacent
to a pendant vertex and the vertex of degree p, where p > 1. A wounded
spider is a tree with a single vertex of degree p, p pendant vertices, and
at most p — 1 vertices of degree 2, each of which is adjacent to a pendant
vertex and the vertex of degree p, where p > 1. In the directed case, we
analogously define (directed) spiders and (directed) wounded spiders, the
arcs are oriented as in a rooted tree so that a vertex of maximum degree
becomes the root in the directed graph.

1. The Lower Domination Number.

In [3], Domke et al. determined that an undirected tree, G satisfies v(G) +
A(G) = n if and only if G is a wounded spider (or a single vertex). The
analogous statement for directed trees is not true, as shown in Figure 1.
To characterize directed trees satisfying v(T') + A4+(T) = n, we begin with
some previously made observations. A set S of vertices from a digraph is
independent if for all z,y € S, (z,y) is not an arc.

Figure 1. D is not a directed wounded spider, but v(D)+
A+(D) =n.

Lemma 1.1. [9] Let D be a digraph. If (D) + A4 (D) = n and od(z) =
A4 (D), then V(D) — O[z] is an independent set.

Lemma 1.2. [9] If v(D) + A+(D) = n, od(z) = A4(D) and y € O(z),
then |O(y) — O[z]| < 1.

Lemma 1.3. Let T be a directed tree. If 4(T) + A4 (T) = n, then T has
at most one vertex with outdegree greater than 1.

Proof. Suppose not. Let z be a vertex satisfying od(z) = A4 (T). Let
y be another vertex satisfying od(y) > 1. If y ¢ Olz], then since T is a
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directed tree, y has at least one out-neighbor, z, such that z ¢ O[z). Thus,
V(T) — O[z] is not independent, a contradiction by Lemma 1.1. Thus,
y € O[z]. Since T is a directed tree, y has at least 2 out-neighbors not
in O[z]. This contradicts Lemma 1.2. So there can be at most one vertex
with outdegree greater than one. a

Lemma 1.4. Let T be a directed tree. Let z be a vertex with id(z) = 0,
od(z) = 1 and let T’ be T with z removed. If v(T) + A4(T) = n, then
HT) +A4(T) = [V(T) = n-1.

Proof. Assume that ¥(T) + A4(T) =n. HAL(T') < Ay(T) then T" is a
single vertex and the statement is true. So we can assume that A, (T") =
A4(T). Suppose ¥(T") < n—A,(T)—1. Let S’ be a minimum dominating
set of 7'. Then S = §' U {z} is a dominating set of T of size less than
n — A4 (T), a contradiction. O

Using the convention that the vertices of a given directed tree are parti-
tioned into levels so that each arc is directed from a vertex on level i to a
vertex on level i+ 1, where i is an integer, we can refer to the height of the
tree. Assume each vertex is an element of the least indexed level possible.
The height of tree T, denoted h(T’), is the number of levels in the tree.

Theorem 1.5. Let T be a directed tree with n > 2, and vertex z satisfying
od(z) = Ay (T). Then ¥(T) + A4+(T) = n if and only if T is in class C; or
C: defined as follows:

Ci: I(z) = 0. For all y with id(y) = 0, O(y) C O(z). Removal of all
vertices with empty inset, other than z, leaves a spider or wounded
spider.

Cy: I(z) # 0. For all y with id(y) = 0, O(y) C O[z). There exists
z € O(z) such that id(z) = 1 and od(z) = 0. Removal of all vertices
with empty inset leaves a wounded spider.

x I
AL SN2,
0 1
(@ (b)
Figure 2. The digraphs described in Theorem 1.5: C} in

(2) and C; in (b). The white vertices may or may not be
present.
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Proof. (=) Assume that ¥(T) + A4(T) = n. Let z be a vertex with
od(z) = A4(T). By Lemma 1.3, there is at most one vertex with more
than one out-neighbor. Thus, for all y # z, od(y) < 1. First, suppose that
id(z) = 0. We claim that T satisfies C;.

By Lemma 1.1, V(T) — Ol[z] is independent, so h(T) < 3. Suppose y is a
vertex, other than z, in T with id(y) = 0. Since T is a directed tree, we
conclude that od(y) = 1. By Lemma 1.1, O(y) C O(=z).

Let T' be T with all vertices with empty inset, other than z, removed.
Observe that T” is connected and has only one vertex with empty inset,
namely z, since for all y in T with id(y) = 0, O(y) C O(z). We claim that
T’ is a spider or wounded spider.

Let y be a vertex in 7", other than z. Suppose y € O(z). By Lemma 1.3,
od(y) < 1. If od(y) = 1, then since T is a directed tree, O(y) N O[z] = 0.
Suppose y & O(z). Since z is the only vertex in 7' with empty inset, there
is a vertex z such that (z,y) is an arc. Since ¥(T") + A4 (T") = |V(T")|
by Lemma 1.4, Lemma 1.1 implies that V(T”) — O[z] is independent. So
z € O[z]). Since y & O(z), z € O(z). Since T is a directed tree and
V(T') — O[z] we conclude that I(y) = {z}. Since h(T) < 3, O(y) = 0.
Thus, T” is a spider or wounded spider. So T satisfies C}.

Next, suppose that id(z) # 0. We claim that T satisfies C. Observe that
since V(T') — O[z] is an independent set, h(T) < 4. Let y be a vertex with
id(y) = 0. Since T is a directed tree and od(y) < 1, we conclude that
od(y) = 1. By Lemma 1.1, O(y) € O[z].

Let T" be T with all vertices with empty inset removed. The same argument
used in the case where id(z) = 0 will establish that T" is a spider or wounded
spider. Suppose that, in T, for all y € O(z), id(y) > 2 or od(y) = 1. Since
T’ is a spider or wounded spider, we conclude that, in T, if y € O(z) and
id(y) > 2, then every vertex in the inset of y, other than z, has empty inset.
Then T has a dominating set of size n — A (T) — 1, namely all vertices
with indegree 0 together with all vertices y such that (y, 2) is an arc, where
y € O(z) and I(y) = {z}, and all vertices z such that (y, z) is an arc, where
y € O(z) and I(y) # {z}, a contradiction. Thus, there is a vertex y € O(z)
such that éd(y) = 1 and od(y) = 0. This implies that 7" is a wounded
spider and so T satisfies C,.

(<) Conversely, suppose T is a directed tree as in C;. Every dominating
set must include all vertices with indegree zero, including z, the vertex
with maximum outdegree. Furthermore, for each arc (y,z) where y €
O(z), either y or z must be included in any dominating set. Thus, every
dominating set contains at least n — A (T') vertices. Since it is always true
that ¥(T) + A+(T) < n, we conlcude that ¥(T) + A4 (T) = n.
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Suppose T is a directed tree as in Ca. Again, every dominating set must
include all vertices with indegree zero. For each arc (y, z) where y € O(z),
either y or z must be included in any dominating set. Finally, there is
an arc (z,y) where I(y) = {z} and O(y) = @. Thus, = or y must be
contained in any dominating set. Thus, every dominating set contains at
least n — A, (T) vertices. Thus ¥(T') + A4+ (T) = n. 0O

We can use the previous theorem to characterize rooted trees with y(T') +
A4(T) = n. In a rooted tree there is only one vertex with indegree zero,
namely the root.

Corollary 1.6. Let T be a directed rooted tree with n > 2. Then (T +
A4 (T) =n if and only if T is a wounded spider, a spider, or a rooted tree
such that removal of the root leaves a wounded spider.

2. The Lower Irredundance Number.

In the undirected case, a tree satisfies ¥(G) + A(G) = n if and only if
ir(G) + A(G) = n. This is not true for directed trees as shown in Figure 3.

A"

Figure 3. For each digraph, (D) + A(D) = =, but
ir(D) + A4 (D) # n. The vertices in the minimum size
irredundant set of each digraph are circled.

Theorem 2.1. Let T be a directed tree with vertex z satisfying od(z) =
A4(T). Let Z = {y € O(z) : od(y) = 0}. Then ir(T) + A4(T) = n if and
only if ¥(T) + A4(T) = n and |I(2)| < |Z].

Proof. (<=) Assume that ¥(T) + A4+(T) = n and |I(Z)| < |Z|. The state-
ment is clearly true if T is a single vertex, so assume n > 2. Then by
Theorem 1.5, we conclude that T is a member of either class C; or C; of
digraphs. Let S be a maximal irredundant set satisfying |S| = ir(T).

If z and all y € O(z) are in S, we conclude that every vertex y € O(z) has
an out-neighbor as a private neighbor and consequently 7" is a member of
Ci1. Thus, every in-neighbor of y is in S and each out-neighbor of y is not
in S. Thus, ir(T) + A4 (T) = n.

Suppose z € S, but at least one y € O(z) is not. Observe that SN Z = 0.
Suppose Z = §. Then T € C,. For each y € O(z), exactly one of y or
its out-neighbor must be in S, since if y € S, the out-neighbor of y serves
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as its own private neighbor and if y € S, its out-neighbor has no private
neighbor. Also every in-neighbor of y serves as its own private neighbor
and is, therefore, in S. Thus, ir(T) + A4+(T) = n.

Suppose |Z| > 1. At least one vertex w € Z has id(w) = 1, otherwise
|I(Z)| > |Z|. Thus, w is a private neighbor of z. So, for each y € O(z) —w,
I(y) C S. Since z has a private neighbor other than itself, I(z) C S.
Thus, there are exactly Ay (T') vertices not in S: the vertices in Z and
one vertex for each y € O(z) — Z, either y or its out-neighbor. Thus,
ir(T) + A+(T) =n.

Finally, suppose z ¢ S. If Z = @, then every y € O(z) has an out-neighbor.
So T € C}, thus £ may be added to S, a contradiction. So, |Z| > 1. Since
|1(2)| < |Z|, at least one vertex w € Z has id(w) = 1. Since w would be
a private neighbor for z, we conclude that w € S. Since z ¢ S, I(z) C S.
Also there are A (T) — |Z]| vertices not in S, one for each y € O(z) — Z:
either y or its out-neighbor. Let Z’ denote the vertices in ZNS. Sow € Z'.
Observe that every vertex in Z — Z’ has at least one in-neighbor, other than
z, otherwise S is not maximal. All such in-neighbors are in S.

Consider the vertices in Z’. Each vertex, except w, must have indegree at
least 2. Otherwise, a smaller maximal irredundant set can be obtained by
exchanging Z’ for I(Z'). However, each vertex must have indegree at most
2, otherwise |I(Z)| > |Z|. Thus, |I(Z’)] = |2’| and since O(Z’) = §, none
of these |Z’| vertices is in S.

So, there are A4 (T) —|Z|+|2'| + (12| - |2’|) vertices not in S. So ir(T) =
n-— A.;.(T)

(=) Conversely, assume ir(T) + A4 (T) = n. Then ir(T) < ¥(T) implies
that v(T) + A+(T) > n. Since it is always true that ¥(T') + A4(T) < n,
we conclude that y(T') + A4 (T) = n.

Suppose that |1(Z)| > |Z|. Let W = O(z) — 2. Let S = O(W)U (I(W) —
z) U Z U I(z). Since each vertex in S is its own private neighbor, S is
irredundant. We claim that S is maximally irredundant. First, neither
z, nor any other vertex in J(Z) can be added, because each y € Z is its
own, and only, private neighbor. No vertex in W can be added because
O(W) C S. So, S is maximally irredundant.

But,
ir(T) <IS] = n—(A4(T)-12]) - |1(2)]
< n—(A4(T) - 12]) - 12| =n— A4(T),
a contradiction. Thus, |1(2)| < |Z|. ]
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3. A Note on the Upper Parameters and Directed Trees.

The maximum size of 2 minimal dominating set in D, denoted (D), is
called the upper domination number. The maximum size of a irredundant
set in D, denoted TR(D), is called the upper irredundance number. In [3]
Domke et al. prove that I'(G) + 6(G) = n if and only if TR(G) + é(G) = n.
In [9], analogous statements in a digraph setting involving both é_ (D) and
44 (D) are proven. Observe that in a directed tree, 6,(D) = 6_(D) = 0
and the only directed tree satisfying I'(D) = n or IR(D) = n is a single
vertex. Thus, the only directed trees satisfying I'(D) + d4(D) = n or
IR(D) + 44+(D) = n are trivial.
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