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Abstract

A hamiltonian graph G is panpositionable if for any
two different vertices z and y of G and any integer k
with dg(z,y) < k < |V(G)|/2, there exists 2 hamil-
tonian cycle C of G with dc(z,y) = k. A bipartite
hamiltonian graph G is bipanpositionable if for any two
different vertices z and y of G and for any integer k
with de(z,y) < k < [V(G)|/2 and (k — dg(z,y)) is
even, there exists a hamiltonian cycle C of G such that
dc(z,y) = k. In this paper, we prove that the hyper-
cube @y, is bipanpositionable hamiltonian if and only if
n 2 2. The recursive circulant graph G(n;1,3) is bi-
panpositionable hamiltonian if and only if n > 6 and n
is even; G(n; 1,2) is panpositionable hamiltonian if and
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only if n € {5,6,7,8,9,11}, and G(n;1,2,3) is panposi-
tionable hamiltonian if and only if n > 5.

Keywords: hamiltonian, pancyclic, panconnected.

1 Introduction

For the graph definitions and notations we follow [3]. G = (V, E)
is a graphif V is a finite set and E is a subset of {(x,v) | (u,v)
is an unordered pair of V}. We say that V is the vertex set
and E is the edge set of G. Two vertices u and v are adjo-
cent if (u,v) € E. A path is represented by (vo,v1,v2," " y Uk,
where all vertices are distinct. The length of a path Q is the
number of edges in Q. We also write the path (v, 1,2, -+, vk)
as (vO:erviyvi-l-l) tte >vj’Q2)vt: Tt 1vk): where Ql is the pa’t‘h
('Uo,vh’ o $vi-lsvi) and Q2 is the pa‘th (vjivj+l, T :vt—lzvt)~
Hence, it is possible to write a path (vo,v1, @, v1,v2," -, vk) if
the length of Q is zero. We use dg(u,v) to denote the distance
between u and v in G, i.e., the length of the shortest path join-
inguand v in G. A cycle is a path of at least three vertices such
that the first vertex is the same as the last vertex. A hamilto-
nian cycleof G is a cycle that traverses every vertex of G exactly
once. We use de(u,v) to denote the distance between u and v in
a hamiltonian cycle C of G, i.e., the length of the path joining u
and v in C. A hamiltonian graph is a graph with a hamiltonian
cycle.

Hamiltonian graphs is perhaps the most important outstand-
ing materials in graph theory and has been defying solutions for
more than a century. Further attempts at hamiltonian problems
led researchers into the study of super-hamiltonian graphs, such
as pancyclic graphs and panconnected graphs.

A graph is pancyclic if it contains a cycle of every length
from 3 to |V(G)| inclusive. The concept of pancyclic graphs is
proposed by Bondy [2]. A graph G = (Vo U W, E) is bipartite if
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V(G) = VUV, and E(G) is a subset of {(u,v) | u € Vo,v € W1}
. It is known that there is no odd cycle in any bipartite graph.
Hence, any bipartite graph is not pancyclic. For this reason, the
concept of bipancyclicity is proposed [8]. A bipartite graph is
bipancyclic if it contains a cycle of every even length from 4 to
|[V(G)| inclusive. It is proved that the hypercube is bipancyclic
5, 9].

A graph G is panconnected if there exists a path of length [
joining any two different vertices z and y with dg(x,y) <1 <
[V(G)| — 1. The concept of panconnected graphs is proposed
by Alavi and Williamson [1]. It is obvious that any bipartite
graph with at least 3 vertices is not panconnected. For this
reason, we say a bipartite graph is bipanconnected if there exists
a path of length ! joining any two different vertices z and y with
de(z,y) <UL |V(G)|-1 and (I - dg(z,y)) is even. It is proved
that the hypercube is bipanconnected [5].

Here, we introduce a new concept, called panpositionable
hamiltonian. A hamiltonian graph G is panpositionable if for
any two different vertices z and y of G and any integer k with
de(z,y) < k < |[V(G)|/2, there exists a hamiltonian cycle C of
G with dc(z,y) = k. Obviously, the complete graph K, with
n 2> 3 is panpositionable. It is easy to see that the length of the
shortest cycle for any panpositionable hamiltonian graph is 3.
A hamiltonian bipartite graph G is bipanpositionable if for any
two different vertices z and y of G and for any integer k with
de(z,y) < k < |V(G)|/2 and (k—dg(z,y)) is even, there exists a
hamiltonian cycle C of G such that d¢(z,y) = k. Obviously, the
complete bipartite graph Ky, with n > 2 is bipanpositionable.

Let u = Up_jUp_o...u1% and V = ¥,_1Un_s... v be two
n-bit binary strings. The Hamming distance h(u,v) between
two vertices u and v is the number of different bits in the corre-
sponding strings of both vertices. The n-dimensional hypercube,
Qn, consists of all n-bit binary strings as its vertices and two
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vertices u and v are adjacent if and only if h(u,v) = 1. Let Qj,
be the subgraph of Q,, induced by {un—1Un—z. .. Ur1to | Un—1 = 1}
for i = 0,1. Obviously, @, can be constructed recursively by
taking two copies of Qn—1, @Q%_, and Q}_,, and adding a perfect
matching. We will prove that @, is bipanpositionable hamilto-
nian.

Assume that n, sy, 8o, - . - , Sy are integers with 1 < 5; < 53 <
... < s, £ 3. The circulant graph G(n;s1, 82,...,5) is the
graph with the vertex set {0,1,...,n—1}. Two vertices 7 and j
are adjacent if and only if i—j = £sx (mod n) for some k where
1 < k < r. We will prove that G(n; 1, 3) is bipanpositionable for
any even integer with n > 6, and G(n;1,2) is panpositionable
if and only if n € {5,6,7,8,9,11}. Morcover, G(n;1,2,3) is
panpositionable for n > 6.

2 Some bipanpositionable hamiltonian
graphs

Theorem 1 Q. is bipanpositionable hamiltonian forn > 2.

Proof. Obviously, the theorem is true for Q2. Now, we
assume that the theorem is true for @Q,_; for some n > 3. Let
u and v be two distinct vertices of @, with h(u,v) = r. It is
known that h(u,v) = dg,(u, v). We need to show that for any
integer i with r <4 < 2"! — 1 and i — r is even, there exists a
hamiltonian cycle C of @, such that de(u,v) = 4. Since @, is
edge symmetric, Q, can be split into @Q9_, and Q;_, such that
ue@l andveQ@, . Lety=yn1¥n2..-%1% € V(Qn)-
We use y* to denote the vertex Yn—1Yn—2..-Tk- - - Y1%o for some
0 <k <n-1. Let z=v*~'. Obviously, dgo_ (u,z) =7—1and
z = u if dg, (u, v) = 1. By induction assumption, there exists a
hamiltonian cycle C = (X;,Xa,. .., Xzn-1,%1) of Q2_, such that
dc(u,z) = r — 1. Without loss of generality, we assume that
x; = u and x, = z. Note that 7 < 2% and x~! = v. Let
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Figure 1: The hamiltonian cycle in Theorem 1.

= (xl)x2r 3 Xr, . 1x—'f—-) and
P2 = (x_§_+,,x%_+2, , Xon-1,X;). We set
(x_j-_ 7x‘_t. It ,x,.‘ )xl l) and

P; - < :x2n-1;x2n— 11y ‘_-5_.,.1)

Let C; = (xl,Pl,x%;, i ,Pl ,xp! Pz:xit_+1’x++vp2’xl)
Obviously, C; be a hamﬂtoman cycle of Q, and de(u,v) = i.
See Figure 2 as an illustration. (]

Theorem 2 G(n;1,3) is bipanpositionable hamiltonian if and
only if n is an even integer and n > 6.

Proof. Let H = G(n;1,3). Obviously, H is bipartite if and
only if n is even. Thus, H is not bipanpositionable hamiltonian
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if n is odd. Assume that n is an even integer with n > 6. With
the symmetric property of H, it suffices to show that there exists
a hamiltonian cycle C such that d¢(0,4) = k for any vertex u
of H with 1 < u < %, and any integer k with dg(0,u) < k < 3
and k — dy(0,u) is even. It is easy to see that dy(0,u) = [§].
We set 7 = [#]. To describe the required hamiltonian cycles,
we define some path patterns:

p(i’J) = (i1i+1)i+2)"')j_1)j);
q(i,i+3) = (i,i+3)
g '(i,i-3) = (i,i—3).

Then we define the path pattern ¢' by executing the path
pattern ¢ for ¢ times. Similarly for (¢~'). More precisely,

¢'(,i+3t) = (i,q(i,i+3),i+3,9(i+3,i+6),...,
i+ 3(t —1),q( + 3(t — 1),i + 3t),i + 3t);
()G, -3t = (i,q7*(i,i—3),i—3,¢7'(i—3,i—6),...,
i—3(t—1),¢g7 - 3(t —1),i — 3t),i — 3t).

There are three cases:
Case 1. u =0 (mod 3).
(11)r<k<u Letl= 5—;5 The hamiltonian cycle is

C = (0,p(0,30),3l,¢"F (3, u),u,u+1,
(@) (w+1,31+1),30 +1,3. +2,
qxiﬂ(3l+2,u+2),u+2,p(u+2,n—1),

n—1,0).

1.2)u<k< 3 Letl= k= The hamiltonian cycle is

C = (0,p(0,u—1),u— 1,¢(u—1,u+3l—1),u+3l—-1,
u+3l—-2,(¢ ) (w43l -2, u+1),u+1,y,
¢ (u,u +31),u+3l,p(u+3l,n—1),n—1,0).
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Case 2. u =1 (mod 3).

(2.1) 7 £k < u. Let | = £5~. The hamiltonian cycle is

C = (0,1,p(1,3+1),3l+1,¢*3 Bl + 1,u), u,u+ 1,
(@) (u+ 1,31 +2),
u—3l—-1

3+2,3+3,g 3 (Bl+3,u+2),
u+2,p(u+2,n-1),n—1,0).

(2.2) u <k < 3. Let | = &%, The hamiltonian cycle is

C = (0,p(0,u—-1),u—1,¢(u—1,u+3l— 1),u+3l-1,
u+3L (g ) (u+3Lu),uu+1,¢u+1,u+ 3 +1),
u+3l+1,p(u+3l+1,n—-1),n—-1,0).

Case 3. v =2 (mod 3).

(8.1) r<k<wu. Let | =%~ The hamiltonian cycle is

C = (0,p(0,3+2),3l + 2,5 (3 + 2,u),u,u—1,
(@)Y (u—1,31+4),31 +4,31 + 3,

u—3

¢ ¥ (31 +3,u+1),u+1,p(u+1,n-1),n—1,0).

(3.2) k£ = u. The hamiltonian cycle is
(]) C=(0»p(07n_1):n—1>0)‘

(3.3) u< k< 2. Let | = 5%, The hamiltonian cycle is

C = (0,p(0,u-2),u—2,¢'(u—2,u+31-2),u+3-2,
u+3l-1,(g )Y (u+3l-1Lu-1),u—1,uy,
¢'(u,u + 31),u+ 31, p(u + 3l,n — 1),n—1,0).

The theorem is proved. (]

215



3 Some panpositionable hamiltonian
graphs

Theorem 3 G(n;1,2) is panpositionable hamiltonian if and only
ifn € {5,6,7,8,9,11}.

Proof. Let H = G(n;1,2). We first show that H is panposi-
tionable if n € {5,6,7,8,9,11}. With the symmetric property
of H, it suffices to show that for any vertex v with 1 <u < %
and for any integer k with dy(0,u) < k < %, there exists a
hamiltonian cycle C such that dc(0,u) = k. It is easy to see
that dy(0,u) = [%]. We set r = [}]. To describe the required
hamiltonian cycles, we define some path patterns:

p(zaj) = (i:i+1;i+2,'-‘:j—'1)j);
(I(Z,]) = ('I«,Z+2,Z+4,,]—2,]),
¢'(G,i) = (Gi—23-4...,i+2,9).

Case 1. n€ {5,7,9,11}.

{0,u} de(0,u) Hamiltonian cycle C
{Osl} 1 (O,p(O,n—l),n—l,O).
ne {57,911} 2 ©0,2,1,3,p(3,n— 1),
n —1,0).

3,ne {7,911} { (0,2,3,1,n -1,
q-l(n_ 114))4)5)
Q(5:n_2'))n_2)0>'
4, ne {911} [(0,2,4,3,1,n-1,
g~ '(n-1,6),6,5,
q(5,n —2),n—2,0).
5, n=11 0,9,477(9,1),1,2,
g(2,10),10,0).
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{0,u} dc(0,u) Hamiltonian cycle C
{0,2} 1 0,2,1,3,p(38,n— 1),
n—1,0).
n € {5,7,9,11} 2 (0,p(0,n —1),n — 1,0).

3,ne {7,911}

(O)n_ 1»17p(1sn_ 2):
n —2,0). :

4,ne {911}

(Osn - 1)1:3’2)4’
p(47n — 2))"‘ — 210)

5, n=11

(O’ 9) q—](g’ 3)’ 3’ 27
q(2,10),10, 1,0).

{0,3}

n € {7,9,11}

2

(0)27p(2)n_ 1):"’— 11
1,0).

3

(0,])(0,1?.— 1)1n— 110)

4, n e {9,11}

(0; 1,2,4,3,5,
p(5,n — 1))"’ _ 110)

5, n=11

{0,10,1,2,4,3,5,
p(5,9),9,0).

{0,4}

n € {9,11}

(O)Q(O;n_ 1))7"_’ 1)1)
q(1,n - 2),n - 2,0).

(0)2)p(2,n_ 1):" - 11
1,0).

(O,IJ(O,R'— 1)}"‘ - 1x0)

(0,p(0,3),3,5,4,6,
p(6,10), 10, 0).

(0’ 1) q(]" 9)) 91 10’
g~'(10,0),0).

(0,10,1,¢(1,9),9,8,
q-'(8,0),0).

{0, p(0, 10, 10, 0).

Case 2. n € {6,8]}.
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{0,u} | dc(0,u) | Hamiltonian cycle C

{0)1} 1 (O)p(oin— 1)’"’- 1)0)'
n € {6,8} 2 {0,2,1,3,p(3,n—1),n — 1,0).
3 (0:213:1777"" lﬁq—l(n" 1)5);5’4;
q(4,n — 2),n —2,0).
2 n=8]1(0,204.317,5,6,0).

{0,2} 1 0,2,1,3,p(3,n —1),n — 1,0).
n € {6,8} 2 0,p(0,n—1),n—1,0).
3 {0,1,3,2,4,p(4,n—1),n — 1,0).
I n=8]10,71,324,5,6,0).

{0,3} 2 0,2,p(2,n—1),n —1,1,0).
n € {6,8} 3 0,p(0,n—1),n—1,0).
2 n=281(0,1,24,35,6,7,0).
{0,4} 2 (0,4(0,6),7,4-7(7,1),1,0).
n=38 3 (0,2,p(2,7),7,1,0).
4 (0,p(0,7),7,0).

To show that H is not panpositionable hamiltonian if n = 10
or n > 12, we prove that there exists no hamiltonian cycle in
H such that the distance between 0 and 2 is 5. Suppose that
C is a hamiltonian cycle of H with d¢(0,2) = 5. Obviously,
P1 = (O,n— 2,n—- 1,1,3,2), P2 = (O,n— 1,1,3,4,2) and P3 =
(0,1,3,5,4,2) are all the possible paths of length 5 joining 0 and
2. Then C contains exactly one of P;, P, and Ps.

If C contains Py, then {(0,1),(0,n—1)} € C. Thus, C con-
tains {(n — 2,0,2). This means C contains a cycle (0, P1,2,0),
which is impossible. If C contains P or Ps, then {(2,1),(2,3)} €
C. Thus, C contains {(0,2,4). This means that C contains a cy-
cle {0, P2,2,0) or (0, P3,2,0), respectively, which is impossible.
The theorem is proved. |

Theorem 4 G(n;1,2,3) is panpositionable hamiltonian forn >
5.

Proof. Let H = G(n;1,2,3) and u be any vertex of H with
1 <u < 2. Since G(n;1,2) is a spanning subgraph of H, with
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Theorem 3, H is panpositionable hamiltonian when n = 5. It
is easy to see that dy(0,u) = [3]. We set r = [§]. With the
symmetric property of H, it suffices to show that there exists
a hamiltonian cycle C such that dc(0,u) = k for any integer k
with 7 < k < 3. Suppose that k — r is even. Since G(n;1,3)
is a spanning subgraph of H, we can use the similar argument
as in Theorem 2, no matter n is odd or even, to prove that
there exists a hamiltonian cycle C of H such that dc(0,u) = k.
Therefore, we only consider the cases k — r is odd. To describe
the required hamiltonian cycles, we define some path patterns:

p(5,7) = (G,i+1,i+2,...,5—1,5)%
q(i,i +3) (4,5 + 3);
q~' (3,4 - 3) (3,1 - 3);
q'(5,i+3t) = (3,9(3,i+3),i+3,9(i+3,i+6),...,
i+3(t—1),q( +3(t - 1),i + 3¢),
i+ 3t);
(@1)'G,i-3t) = (i,7'(5,i—8),i—3,¢"'(i—3,i—6),...,
i—3(t-1),¢7'(i -3 -1),i-3t),
i — 3t);
r1(0,3t) = (0,p(0,3t — 3),3t — 3,3t — 2, 3t);
sfu—lu+1) = (u—-1,¢(u—1,u+3t—1),u+3t—1,
u+3t+1,(g ) u+3t+1,u+1),
u+1);
r5(0,3t+1) = (0,p(0,3t — 1),3t — 1,3t + 1);
ss(u—1,u) = (u—1,¢(u—1,u+3t—1),u+3t—1,
u+3t—3,(¢7) " Nu+ 3t - 3,u),u);
50,3t +2) = (0,p(0,3t),3t,3t + 2);
ssu—1,u) = (u—1,¢""(u—1,u+3t+2),u+3t+2,
u+3t, (g7 (u + 3t,u), u).

There are three cases:
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Case 1. u =0 (mod 3).
(1.1) r < k < u. Let ! = £=Z*1. The hamiltonian cycle is

C = (0,74(0,30),3L,0"F" (3, 0), wu+1,
(@) (w+1,31+1),3l+ 1,3l - 1,
q"__:'f*ﬂ(& —-1Lu+2),u+2,p(u+2,n-1),n—1,0).
(12)u<k< % Letl= "—"2‘-‘—' The hamiltonian cycle is

C = (0)p(0:u— 1),’U.— l)st[(u_ 1,U+1),u+ l,u,
¢t (u,u+314+3),u+3l+3,u+3l +4,u+3l+2,
u+3l+5,pu+3l+5n-1),n-1,0).

Case 2. u =1 (mod 3).

(2.1) 7 < k < u. Let | = &Z*L. The hamiltonian cycle is

C = (0,74(0,3+1),3l +1,¢" 5 (3l + 1,u),u,u—1,
u—=3t—1

(@) (- 1,30),30,30 + 2,43 (31 + 2,u + 1),
u+1,p(u+1,n-1),n—1,0).

(2.2) u < k < 3. Let | = 5=2£L. The hamiltonian cycle is

C = (O,p(O,u—-l),u—l,sg(u—l,u),u,u—}-l,
¢ u+1,u+3l —2),u+3l—2,u+3,pu+3l,n-1),
n—1,0).

Case 3. u = 2 (mod 3).

(3.1) r < k < u. Let I = 251, The hamiltonian cycle is

u=31+1

Cc = (0,p(0,3/-1),3l-1,g 35 (3 —1,u),u,u—-1,
@ (- 1,31+1),3 + 1,3, ¢* 5 3L u + 1),
u+1,p(u+1,n—1),n—1,0).
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(3.2) k=u. The hamiltonian cycle is
(in(())n - 1))n - 1: 0)

(3-3) u < k < Z. Let [ = 5%, The hamiltonian cycle is

C = (0,p(0,u—2),u—2,¢u—-2u—2+30),u—2+3l,
—1+3lq“(u—1+3!u—1),u—1u,q(uu+3l),
v+3,p(u+3,n~-1),n-1,0).

The theorem is proved. (]

4 Concluding Remark

A k-container C(z,y) in a graph G is a set of k internal vertex-
disjoint paths between z and y. Based on Menger’s Theorem
[7], there exists a k-container between any pair of vertices in a k-
connected graph. The length of a k-container C(z,y), written as
I(C(z,y)), is the length of the longest path in C(z,%). Suppose
that G is a k-connected graph. The k-distance between = and
Yy, denoted by di(x,y), is defined as min{l(C(z,y)) | C(z,y)
is a k-container}. The k-diameter of G, denoted by Di(G), is
defined as max{di(z,y) | z # y; 2,y € V(G)}. The k-diameter,
proposed by Hsu [4], measures the performance of multigraph
communication.

Now, we introduce another type of containers. A k*-container
C(z,y) is a k-container such that every vertex of G is incident
with a path in C(z,y). A graph G is k*-connected if there exists
a k*-container between any two vertices z and y with = # y.
Obviously, a graph G is 1*-connected if and only if it is hamil-
tonian connected. Moreover, a graph G is 2*-connected if it is
hamiltonian. The concept of k*-connected graphs is proposed
by Lin et. al.[6].
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Suppose that G is a k*-connected graph. Similar to the
definitions of k-distance and k-diameter, we can define the k*-
distance, di(z,y), as min{C(z,y) | C(z,y) is a k*-container}.
The k*-diameter, denoted by D}(G), is defined by max{dj(z,y) |
z#y;x,y € V(G)}.

Assume that G is a panpositionable hamiltonian graph with
n vertices. Obviously, dj(u,v) = [§] if u and v are two dif-
ferent vertices in G. Hence D3(G) = [3]. Similarly, let G be
a bipanpositionable hamiltonian graph with n vertices. Obvi-
ously, d3(u, v) is either [3]+1 or [5] depending on the parity of
d(u,v). (Note that dj(u, 'u) d(u, v)) Thus, D3(G) = [5] + 1.
In particular, D3(Qn) =2""' +1forn > 2.

Let f(n) denote the minimum number of edges among any
panpositionable hamiltonian graph with n vertices. With Theo-
rem 4, we know that f(n) < 3nif n > 6. It is interesting to find
the asymptotic value of f(n) as n is large. Similarly, let fy(n)
be the minimum number of edges among any bipanpositionable
hamiltonian graph with n vertices. Obviously, f(n) = 0 if n is
odd. With Theorem 2, fy(n) < 2n if n is an even integer with
n > 6. It is interesting to find the asymptotic value of fy(n) as
n is large and n is even.
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