Panpositionable Hamiltonian Graphs

Shin-Shin Kao^a * Cheng-Kuan Lin[†],
Hua-Min Huang[†] and Lih-Hsing Hsu[‡]

^a Department of Applied Mathematics,
Chung-Yuan Christian University

[†] Department of Mathematics,
National Central University

[‡] Information Engineering Department,
Ta Hwa Institute of Technology

Abstract

A hamiltonian graph G is panpositionable if for any two different vertices x and y of G and any integer k with $d_G(x,y) \leq k < |V(G)|/2$, there exists a hamiltonian cycle C of G with $d_C(x,y) = k$. A bipartite hamiltonian graph G is bipanpositionable if for any two different vertices x and y of G and for any integer k with $d_G(x,y) \leq k < |V(G)|/2$ and $(k-d_G(x,y))$ is even, there exists a hamiltonian cycle C of G such that $d_C(x,y) = k$. In this paper, we prove that the hypercube Q_n is bipanpositionable hamiltonian if and only if $n \geq 2$. The recursive circulant graph G(n;1,3) is bipanpositionable hamiltonian if and only if $n \geq 6$ and n is even; G(n;1,2) is panpositionable hamiltonian if and

^{*}Correspondence to: Associate Professor S.S. Kao, Department of Applied Mathematics, Chung-Yuan Christian University, Chong-li City, Tao-Yuan, Taiwan 320, R.O.C. e-mail: skao@math.cycu.edu.tw.

only if $n \in \{5, 6, 7, 8, 9, 11\}$, and G(n; 1, 2, 3) is panpositionable hamiltonian if and only if $n \ge 5$.

Keywords: hamiltonian, pancyclic, panconnected.

1 Introduction

For the graph definitions and notations we follow [3]. G = (V, E)is a graph if V is a finite set and E is a subset of $\{(u,v) \mid (u,v)\}$ is an unordered pair of V. We say that V is the vertex set and E is the edge set of G. Two vertices u and v are adjacent if $(u, v) \in E$. A path is represented by $\langle v_0, v_1, v_2, \dots, v_k \rangle$, where all vertices are distinct. The length of a path Q is the number of edges in Q. We also write the path $\langle v_0, v_1, v_2, \cdots, v_k \rangle$ as $\langle v_0, Q_1, v_i, v_{i+1}, \cdots, v_j, Q_2, v_t, \cdots, v_k \rangle$, where Q_1 is the path $\langle v_0, v_1, \cdots, v_{i-1}, v_i \rangle$ and Q_2 is the path $\langle v_j, v_{j+1}, \cdots, v_{t-1}, v_t \rangle$. Hence, it is possible to write a path $\langle v_0, v_1, Q, v_1, v_2, \cdots, v_k \rangle$ if the length of Q is zero. We use $d_G(u, v)$ to denote the distance between u and v in G, i.e., the length of the shortest path joining u and v in G. A cycle is a path of at least three vertices such that the first vertex is the same as the last vertex. A hamilto $nian\ cycle\ of\ G$ is a cycle that traverses every vertex of G exactly once. We use $d_C(u, v)$ to denote the distance between u and v in a hamiltonian cycle C of G, i.e., the length of the path joining uand v in C. A hamiltonian graph is a graph with a hamiltonian cycle.

Hamiltonian graphs is perhaps the most important outstanding materials in graph theory and has been defying solutions for more than a century. Further attempts at hamiltonian problems led researchers into the study of super-hamiltonian graphs, such as pancyclic graphs and panconnected graphs.

A graph is pancyclic if it contains a cycle of every length from 3 to |V(G)| inclusive. The concept of pancyclic graphs is proposed by Bondy [2]. A graph $G = (V_0 \cup V_1, E)$ is bipartite if

 $V(G) = V_0 \cup V_1$ and E(G) is a subset of $\{(u,v) \mid u \in V_0, v \in V_1\}$. It is known that there is no odd cycle in any bipartite graph. Hence, any bipartite graph is not pancyclic. For this reason, the concept of bipancyclicity is proposed [8]. A bipartite graph is bipancyclic if it contains a cycle of every even length from 4 to |V(G)| inclusive. It is proved that the hypercube is bipancyclic [5, 9].

A graph G is panconnected if there exists a path of length l joining any two different vertices x and y with $d_G(x,y) \leq l \leq |V(G)|-1$. The concept of panconnected graphs is proposed by Alavi and Williamson [1]. It is obvious that any bipartite graph with at least 3 vertices is not panconnected. For this reason, we say a bipartite graph is bipanconnected if there exists a path of length l joining any two different vertices x and y with $d_G(x,y) \leq l \leq |V(G)|-1$ and $(l-d_G(x,y))$ is even. It is proved that the hypercube is bipanconnected [5].

Here, we introduce a new concept, called panpositionable hamiltonian. A hamiltonian graph G is panpositionable if for any two different vertices x and y of G and any integer k with $d_G(x,y) \leq k < |V(G)|/2$, there exists a hamiltonian cycle C of G with $d_C(x,y) = k$. Obviously, the complete graph K_n with $n \geq 3$ is panpositionable. It is easy to see that the length of the shortest cycle for any panpositionable hamiltonian graph is 3. A hamiltonian bipartite graph G is bipanpositionable if for any two different vertices x and y of G and for any integer k with $d_G(x,y) \leq k < |V(G)|/2$ and $(k-d_G(x,y))$ is even, there exists a hamiltonian cycle C of G such that $d_C(x,y) = k$. Obviously, the complete bipartite graph $K_{n,n}$ with $n \geq 2$ is bipanpositionable.

Let $\mathbf{u} = u_{n-1}u_{n-2}\dots u_1u_0$ and $\mathbf{v} = v_{n-1}v_{n-2}\dots v_1v_0$ be two n-bit binary strings. The Hamming distance $h(\mathbf{u}, \mathbf{v})$ between two vertices \mathbf{u} and \mathbf{v} is the number of different bits in the corresponding strings of both vertices. The n-dimensional hypercube, Q_n , consists of all n-bit binary strings as its vertices and two

vertices **u** and **v** are adjacent if and only if $h(\mathbf{u}, \mathbf{v}) = 1$. Let Q_n^i be the subgraph of Q_n induced by $\{u_{n-1}u_{n-2}\dots u_1u_0 \mid u_{n-1}=i\}$ for i=0,1. Obviously, Q_n can be constructed recursively by taking two copies of Q_{n-1} , Q_{n-1}^0 and Q_{n-1}^1 , and adding a perfect matching. We will prove that Q_n is bipanpositionable hamiltonian.

Assume that n, s_1, s_2, \ldots, s_r are integers with $1 \le s_1 < s_2 < \ldots < s_r \le \frac{n}{2}$. The circulant graph $G(n; s_1, s_2, \ldots, s_r)$ is the graph with the vertex set $\{0, 1, \ldots, n-1\}$. Two vertices i and j are adjacent if and only if $i-j=\pm s_k \pmod n$ for some k where $1 \le k \le r$. We will prove that G(n; 1, 3) is bipanpositionable for any even integer with $n \ge 6$, and G(n; 1, 2) is panpositionable if and only if $n \in \{5, 6, 7, 8, 9, 11\}$. Moreover, G(n; 1, 2, 3) is panpositionable for $n \ge 6$.

2 Some bipanpositionable hamiltonian graphs

Theorem 1 Q_n is bipanpositionable hamiltonian for $n \geq 2$.

Proof. Obviously, the theorem is true for Q_2 . Now, we assume that the theorem is true for Q_{n-1} for some $n \geq 3$. Let u and v be two distinct vertices of Q_n with h(u,v)=r. It is known that $h(u,v)=d_{Q_n}(u,v)$. We need to show that for any integer i with $r \leq i \leq 2^{n-1}-1$ and i-r is even, there exists a hamiltonian cycle C of Q_n such that $d_C(u,v)=i$. Since Q_n is edge symmetric, Q_n can be split into Q_{n-1}^0 and Q_{n-1}^1 such that $u \in Q_{n-1}^0$ and $v \in Q_{n-1}^1$. Let $v = v_{n-1}v_{n-2}\cdots v_1v_0 \in V(Q_n)$. We use v to denote the vertex $v_{n-1}v_{n-2}\cdots v_1v_0 \in V(Q_n)$. We use v to denote the vertex $v_{n-1}v_{n-2}\cdots v_1v_0 \in V(Q_n)$. Obviously, v if v is an v if v induction assumption, there exists a hamiltonian cycle v is v induction assumption, there exists a hamiltonian cycle v is v induction assumption, there exists a hamiltonian cycle v is v induction assumption, there exists a hamiltonian cycle v is v induction assumption, there exists a hamiltonian cycle v is v induction assumption, there exists a hamiltonian cycle v is v induction assumption, we assume that v is v induction v induction v is v induction v induction

Figure 1: The hamiltonian cycle in Theorem 1.

$$\begin{array}{l} P_1 = \langle \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_r, \dots, \mathbf{x}_{\frac{i+r}{2}} \rangle \text{ and } \\ P_2 = \langle \mathbf{x}_{\frac{i+r}{2}+1}, \mathbf{x}_{\frac{i+r}{2}+2}, \dots, \mathbf{x}_{2^{n-1}}, \mathbf{x}_1 \rangle. \text{ We set } \\ P_1^* = \langle \mathbf{x}_{\frac{i+r}{2}}^{n-1}, \mathbf{x}_{\frac{i+r}{2}-1}^{n-1}, \dots, \mathbf{x}_r^{n-1}, \dots, \mathbf{x}_1^{n-1} \rangle \text{ and } \\ P_2^* = \langle \mathbf{x}_1^{n-1}, \mathbf{x}_{2^{n-1}}^{n-1}, \mathbf{x}_{2^{n-1}-1}^{n-1}, \dots, \mathbf{x}_{\frac{i+r}{2}+1}^{n-1} \rangle. \\ \text{Let } C_i = \langle \mathbf{x}_1, P_1, \mathbf{x}_{\frac{i+r}{2}}, \mathbf{x}_{\frac{i+r}{2}}^{n-1}, P_1^*, \mathbf{x}_1^{n-1}, P_2^*, \mathbf{x}_{\frac{i+r}{2}+1}^{n-1}, \mathbf{x}_{\frac{i+r}{2}+1}^{n-1}, P_2, \mathbf{x}_1 \rangle. \\ \text{Obviously, } C_i \text{ be a hamiltonian cycle of } Q_n \text{ and } d_C(\mathbf{u}, \mathbf{v}) = i. \\ \text{See Figure 2 as an illustration.} \\ \Box$$

Theorem 2 G(n; 1, 3) is bipanpositionable hamiltonian if and only if n is an even integer and $n \ge 6$.

Proof. Let H = G(n; 1, 3). Obviously, H is bipartite if and only if n is even. Thus, H is not bipanpositionable hamiltonian

if n is odd. Assume that n is an even integer with $n \geq 6$. With the symmetric property of H, it suffices to show that there exists a hamiltonian cycle C such that $d_C(0,u)=k$ for any vertex u of H with $1 \leq u \leq \frac{n}{2}$, and any integer k with $d_H(0,u) \leq k \leq \frac{n}{2}$ and $k-d_H(0,u)$ is even. It is easy to see that $d_H(0,u)=\lceil \frac{u}{3} \rceil$. We set $r=\lceil \frac{u}{3} \rceil$. To describe the required hamiltonian cycles, we define some path patterns:

$$p(i,j) = \langle i, i+1, i+2, \dots, j-1, j \rangle;$$

$$q(i, i+3) = \langle i, i+3 \rangle;$$

$$q^{-1}(i, i-3) = \langle i, i-3 \rangle.$$

Then we define the path pattern q^t by executing the path pattern q for t times. Similarly for $(q^{-1})^t$. More precisely,

$$q^{t}(i, i+3t) = \langle i, q(i, i+3), i+3, q(i+3, i+6), \dots, i+3(t-1), q(i+3(t-1), i+3t), i+3t \rangle;$$

$$(q^{-1})^{t}(i, i-3t) = \langle i, q^{-1}(i, i-3), i-3, q^{-1}(i-3, i-6), \dots, i-3(t-1), q^{-1}(i-3(t-1), i-3t), i-3t \rangle.$$

There are three cases:

Case 1. $u \equiv 0 \pmod{3}$.

(1.1) $r \le k \le u$. Let $l = \frac{k-r}{2}$. The hamiltonian cycle is

$$C = \langle 0, p(0,3l), 3l, q^{\frac{u-3l}{3}}(3l,u), u, u+1, (q^{-1})^{\frac{u-3l}{3}}(u+1,3l+1), 3l+1, 3l+2, q^{\frac{u-3l}{3}}(3l+2,u+2), u+2, p(u+2,n-1), n-1,0 \rangle.$$

(1.2) $u < k \le \frac{n}{2}$. Let $l = \frac{k-u}{2}$. The hamiltonian cycle is

$$C = \langle 0, p(0, u - 1), u - 1, q^{l}(u - 1, u + 3l - 1), u + 3l - 1, u + 3l - 2, (q^{-1})^{l-1}(u + 3l - 2, u + 1), u + 1, u, q^{l}(u, u + 3l), u + 3l, p(u + 3l, n - 1), n - 1, 0 \rangle.$$

Case 2. $u \equiv 1 \pmod{3}$.

(2.1) $r \leq k \leq u$. Let $l = \frac{k-r}{2}$. The hamiltonian cycle is

$$C = \langle 0, 1, p(1, 3l+1), 3l+1, q^{\frac{u-3l-1}{3}}(3l+1, u), u, u+1, (q^{-1})^{\frac{u-3l-1}{3}}(u+1, 3l+2), 3l+2, 3l+3, q^{\frac{u-3l-1}{3}}(3l+3, u+2), u+2, p(u+2, n-1), n-1, 0 \rangle.$$

(2.2) $u < k \le \frac{n}{2}$. Let $l = \frac{k-u}{2}$. The hamiltonian cycle is

$$C = \langle 0, p(0, u - 1), u - 1, q^{l}(u - 1, u + 3l - 1), u + 3l - 1, u + 3l, (q^{-1})^{l}(u + 3l, u), u, u + 1, q^{l}(u + 1, u + 3l + 1), u + 3l + 1, p(u + 3l + 1, n - 1), n - 1, 0 \rangle.$$

Case 3. $u \equiv 2 \pmod{3}$.

(3.1) $r \le k < u$. Let $l = \frac{k-r}{2}$. The hamiltonian cycle is

$$C = \langle 0, p(0, 3l+2), 3l+2, q^{\frac{u-3l-2}{3}}(3l+2, u), u, u-1, (q^{-1})^{\frac{u-3l-5}{3}}(u-1, 3l+4), 3l+4, 3l+3, q^{\frac{u-3l-2}{3}}(3l+3, u+1), u+1, p(u+1, n-1), n-1, 0 \rangle.$$

(3.2) k = u. The hamiltonian cycle is

(1)
$$C = \langle 0, p(0, n-1), n-1, 0 \rangle$$
.

(3.3) $u < k \le \frac{n}{2}$. Let $l = \frac{k-u}{2}$. The hamiltonian cycle is

$$C = \langle 0, p(0, u-2), u-2, q^{l}(u-2, u+3l-2), u+3l-2, u+3l-1, (q^{-1})^{l}(u+3l-1, u-1), u-1, u, q^{l}(u, u+3l), u+3l, p(u+3l, n-1), n-1, 0 \rangle.$$

The theorem is proved.

3 Some panpositionable hamiltonian graphs

Theorem 3 G(n; 1, 2) is panpositionable hamiltonian if and only if $n \in \{5, 6, 7, 8, 9, 11\}$.

Proof. Let H = G(n; 1, 2). We first show that H is panpositionable if $n \in \{5, 6, 7, 8, 9, 11\}$. With the symmetric property of H, it suffices to show that for any vertex u with $1 \le u \le \frac{n}{2}$ and for any integer k with $d_H(0, u) \le k \le \frac{n}{2}$, there exists a hamiltonian cycle C such that $d_C(0, u) = k$. It is easy to see that $d_H(0, u) = \lceil \frac{u}{2} \rceil$. We set $r = \lceil \frac{u}{2} \rceil$. To describe the required hamiltonian cycles, we define some path patterns:

$$p(i,j) = \langle i, i+1, i+2, \dots, j-1, j \rangle;$$

 $q(i,j) = \langle i, i+2, i+4, \dots, j-2, j \rangle;$
 $q^{-1}(j,i) = \langle j, j-2, j-4 \dots, i+2, i \rangle.$

Case 1. $n \in \{5, 7, 9, 11\}$.

$\{0,u\}$	$d_C(0,u)$	Hamiltonian cycle C
{0,1}	1	$\langle 0, p(0, n-1), n-1, 0 \rangle$.
$n \in \{5, 7, 9, 11\}$	2	(0,2,1,3,p(3,n-1),
		$ n-1,0\rangle$.
İ	$3, n \in \{7, 9, 11\}$	(0,2,3,1,n-1,
		$q^{-1}(n-1,4),4,5,$
		$q(5, n-2), n-2, 0\rangle.$
	$4, n \in \{9, 11\}$	(0,2,4,3,1,n-1,
		$q^{-1}(n-1,6),6,5,$
		$ q(5,n-2),n-2,0\rangle.$
	5, n = 11	$(0,9,q^{-1}(9,1),1,2,$
		$ q(2,10),10,0\rangle.$

	1 (6)	T + + + + + + + + + + + + + + + + + + +
$\{0,u\}$	$d_C(0,u)$	Hamiltonian cycle C
$\{0, 2\}$	1	(0,2,1,3,p(3,n-1),
		$ n-1,0\rangle$.
$n \in \{5, 7, 9, 11\}$	2	$\langle 0, p(0, n-1), n-1, 0 \rangle$.
	$3, n \in \{7, 9, 11\}$	(0, n-1, 1, p(1, n-2),
		$ n-2,0\rangle$.
	$4, n \in \{9, 11\}$	$\langle 0, n-1, 1, 3, 2, 4,$
		p(4, n-2), n-2, 0.
	5, n = 11	$\langle 0, 9, q^{-1}(9,3), 3, 2, \rangle$
		$ q(2,10),10,1,0\rangle.$
$\{0, 3\}$	2	(0,2,p(2,n-1),n-1,
		$ 1,0\rangle$.
$n \in \{7, 9, 11\}$	3	$\langle 0, p(0, n-1), n-1, 0 \rangle$.
	$4, n \in \{9, 11\}$	(0,1,2,4,3,5,
		$p(5, n-1), n-1, 0\rangle.$
	5, n = 11	$\langle 0, 10, 1, 2, 4, 3, 5,$
		$p(5,9),9,0\rangle$.
$\{0, 4\}$	2	$\langle 0, q(0, n-1), n-1, 1, 1 \rangle$
		$q(1,n-2),n-2,0\rangle.$
$n \in \{9,11\}$	3	(0,2,p(2,n-1),n-1,
		1,0).
	4	(0, p(0, n-1), n-1, 0).
	5, n = 11	(0, p(0,3), 3, 5, 4, 6,
		$p(6, 10), 10, 0\rangle$.
{0,5}	3	(0,1,q(1,9),9,10,
		$q^{-1}(10,0),0$.
n = 11	4	$\langle 0, 10, 1, q(1, 9), 9, 8, \rangle$
		$q^{-1}(8,0),0$.
·	5	$\langle 0, p(0,10), 10, 0 \rangle$.

Case 2. $n \in \{6, 8\}$.

	1 (0)	IIilai.a. aala C
$\{0,u\}$	$d_C(0,u)$	Hamiltonian cycle C
$\{0, 1\}$	1	$\langle 0, p(0, n-1), n-1, 0 \rangle$.
$n \in \{6, 8\}$	2	(0,2,1,3,p(3,n-1),n-1,0).
	3	$(0,2,3,1,n-1,q^{-1}(n-1,5),5,4,$
		$q(4,n-2),n-2,0\rangle.$
	4, n = 8	(0,2,4,3,1,7,5,6,0).
$\{0, 2\}$	1	(0,2,1,3,p(3,n-1),n-1,0).
$n \in \{6, 8\}$	2	$\langle 0, p(0, n-1), n-1, 0 \rangle$.
	3	(0,1,3,2,4,p(4,n-1),n-1,0).
	4, n = 8	(0,7,1,3,2,4,5,6,0).
{0,3}	2	(0,2,p(2,n-1),n-1,1,0).
$n \in \{6, 8\}$	3	$\langle 0, p(0, n-1), n-1, 0 \rangle$.
	4, n = 8	(0,1,2,4,3,5,6,7,0).
{0,4}	2	$\langle 0, q(0,6), 7, q^{-1}(7,1), 1, 0 \rangle$.
n=8	3	(0,2,p(2,7),7,1,0).
	4	$\langle 0, p(0,7), 7, 0 \rangle$.

To show that H is not panpositionable hamiltonian if n=10 or $n \geq 12$, we prove that there exists no hamiltonian cycle in H such that the distance between 0 and 2 is 5. Suppose that C is a hamiltonian cycle of H with $d_C(0,2)=5$. Obviously, $P_1=\langle 0,n-2,n-1,1,3,2\rangle, P_2=\langle 0,n-1,1,3,4,2\rangle$ and $P_3=\langle 0,1,3,5,4,2\rangle$ are all the possible paths of length 5 joining 0 and 2. Then C contains exactly one of P_1 , P_2 and P_3 .

If C contains P_1 , then $\{(0,1),(0,n-1)\} \not\subseteq C$. Thus, C contains (n-2,0,2). This means C contains a cycle $(0,P_1,2,0)$, which is impossible. If C contains P_2 or P_3 , then $\{(2,1),(2,3)\} \not\subseteq C$. Thus, C contains (0,2,4). This means that C contains a cycle $(0,P_2,2,0)$ or $(0,P_3,2,0)$, respectively, which is impossible. The theorem is proved.

Theorem 4 G(n; 1, 2, 3) is panpositionable hamiltonian for $n \ge 5$.

Proof. Let H = G(n; 1, 2, 3) and u be any vertex of H with $1 \le u \le \frac{n}{2}$. Since G(n; 1, 2) is a spanning subgraph of H, with

Theorem 3, H is panpositionable hamiltonian when n=5. It is easy to see that $d_H(0,u)=\lceil \frac{u}{3} \rceil$. We set $r=\lceil \frac{u}{3} \rceil$. With the symmetric property of H, it suffices to show that there exists a hamiltonian cycle C such that $d_C(0,u)=k$ for any integer k with $r \leq k \leq \frac{n}{2}$. Suppose that k-r is even. Since G(n;1,3) is a spanning subgraph of H, we can use the similar argument as in Theorem 2, no matter n is odd or even, to prove that there exists a hamiltonian cycle C of H such that $d_C(0,u)=k$. Therefore, we only consider the cases k-r is odd. To describe the required hamiltonian cycles, we define some path patterns:

$$p(i,j) = \langle i,i+1,i+2,\ldots,j-1,j\rangle;$$

$$q(i,i+3) = \langle i,i+3\rangle;$$

$$q^{-1}(i,i-3) = \langle i,i-3\rangle;$$

$$q^{t}(i,i+3t) = \langle i,q(i,i+3),i+3,q(i+3,i+6),\ldots,i+3(t-1),q(i+3(t-1),i+3t),i+3t\rangle;$$

$$(q^{-1})^{t}(i,i-3t) = \langle i,q^{-1}(i,i-3),i-3,q^{-1}(i-3,i-6),\ldots,i-3(t-1),q^{-1}(i-3(t-1),i-3t),i-3t\rangle;$$

$$r_{1}^{t}(0,3t) = \langle 0,p(0,3t-3),3t-3,3t-2,3t\rangle;$$

$$s_{1}^{t}(u-1,u+1) = \langle u-1,q^{t}(u-1,u+3t-1),u+3t-1,u+3t+1,(q^{-1})^{t}(u+3t+1,u+1),u+1\rangle;$$

$$r_{2}^{t}(0,3t+1) = \langle 0,p(0,3t-1),3t-1,3t+1\rangle;$$

$$s_{2}^{t}(u-1,u) = \langle u-1,q^{t}(u-1,u+3t-1),u+3t-1,u+3t-3,(q^{-1})^{t-1}(u+3t-3,u),u\rangle;$$

$$r_{3}^{t}(0,3t+2) = \langle 0,p(0,3t),3t,3t+2\rangle;$$

$$s_{3}^{t}(u-1,u) = \langle u-1,q^{t+1}(u-1,u+3t+2),u+3t+2,u+3t,(q^{-1})^{t}(u+3t,u),u\rangle.$$

There are three cases:

Case 1. $u \equiv 0 \pmod{3}$.

(1.1) r < k < u. Let $l = \frac{k-r+1}{2}$. The hamiltonian cycle is

$$C = \langle 0, r_1^l(0, 3l), 3l, q^{\frac{u-3l}{3}}(3l, u), u, u + 1, (q^{-1})^{\frac{u-3l}{3}}(u+1, 3l+1), 3l+1, 3l-1, q^{\frac{u-3l+3}{3}}(3l-1, u+2), u+2, p(u+2, n-1), n-1, 0 \rangle.$$

(1.2) $u < k \le \frac{n}{2}$. Let $l = \frac{k-u-1}{2}$. The hamiltonian cycle is

$$C = \langle 0, p(0, u - 1), u - 1, s_1^l(u - 1, u + 1), u + 1, u, q^{l+1}(u, u + 3l + 3), u + 3l + 3, u + 3l + 4, u + 3l + 2, u + 3l + 5, p(u + 3l + 5, n - 1), n - 1, 0 \rangle.$$

Case 2. $u \equiv 1 \pmod{3}$.

(2.1) r < k < u. Let $l = \frac{k-r+1}{2}$. The hamiltonian cycle is

$$C = \langle 0, r_2^l(0, 3l+1), 3l+1, q^{\frac{u-3l-1}{3}}(3l+1, u), u, u-1, (q^{-1})^{\frac{u-3l-1}{3}}(u-1, 3l), 3l, 3l+2, q^{\frac{u-3l-1}{3}}(3l+2, u+1), u+1, p(u+1, n-1), n-1, 0 \rangle.$$

(2.2) $u < k \le \frac{n}{2}$. Let $l = \frac{k-u+1}{2}$. The hamiltonian cycle is

$$C = \langle 0, p(0, u - 1), u - 1, s_2^l(u - 1, u), u, u + 1, q^{l-1}(u + 1, u + 3l - 2), u + 3l - 2, u + 3l, p(u + 3l, n - 1), n - 1, 0 \rangle.$$

Case 3. $u \equiv 2 \pmod{3}$.

(3.1) r < k < u. Let $l = \frac{k-r+1}{2}$. The hamiltonian cycle is

$$C = \langle 0, p(0, 3l-1), 3l-1, q^{\frac{u-3l+1}{3}}(3l-1, u), u, u-1, (q^{-1})^{\frac{u-3l-2}{3}}(u-1, 3l+1), 3l+1, 3l, q^{\frac{u-3l+1}{3}}(3l, u+1), u+1, p(u+1, n-1), n-1, 0 \rangle.$$

(3.2) k = u. The hamiltonian cycle is

$$C = \langle 0, p(0, n-1), n-1, 0 \rangle.$$

(3.3) $u < k \le \frac{n}{2}$. Let $l = \frac{k-u}{2}$. The hamiltonian cycle is

$$C = \langle 0, p(0, u-2), u-2, q^{l}(u-2, u-2+3l), u-2+3l, u-1+3l, q^{-l}(u-1+3l, u-1), u-1, u, q^{l}(u, u+3l), u+3l, p(u+3, n-1), n-1, 0 \rangle.$$

The theorem is proved.

4 Concluding Remark

A k-container C(x,y) in a graph G is a set of k internal vertexdisjoint paths between x and y. Based on Menger's Theorem [7], there exists a k-container between any pair of vertices in a kconnected graph. The length of a k-container C(x,y), written as l(C(x,y)), is the length of the longest path in C(x,y). Suppose that G is a k-connected graph. The k-distance between x and y, denoted by $d_k(x,y)$, is defined as $\min\{l(C(x,y)) \mid C(x,y)\}$ is a k-container. The k-diameter of G, denoted by $D_k(G)$, is defined as $\max\{d_k(x,y) \mid x \neq y; x, y \in V(G)\}$. The k-diameter, proposed by Hsu [4], measures the performance of multigraph communication.

Now, we introduce another type of containers. A k^* -container C(x,y) is a k-container such that every vertex of G is incident with a path in C(x,y). A graph G is k^* -connected if there exists a k^* -container between any two vertices x and y with $x \neq y$. Obviously, a graph G is 1^* -connected if and only if it is hamiltonian connected. Moreover, a graph G is G-connected if it is hamiltonian. The concept of G-connected graphs is proposed by Lin et. al. [6].

Suppose that G is a k^* -connected graph. Similar to the definitions of k-distance and k-diameter, we can define the k^* -distance, $d_k^*(x,y)$, as $\min\{C(x,y) \mid C(x,y) \text{ is a } k^*\text{-container}\}$. The k^* -diameter, denoted by $D_k^*(G)$, is defined by $\max\{d_k^*(x,y) \mid x \neq y; x, y \in V(G)\}$.

Assume that G is a panpositionable hamiltonian graph with n vertices. Obviously, $d_2^*(u,v) = \lceil \frac{n}{2} \rceil$ if u and v are two different vertices in G. Hence $D_2^*(G) = \lceil \frac{n}{2} \rceil$. Similarly, let G be a bipanpositionable hamiltonian graph with n vertices. Obviously, $d_2^*(u,v)$ is either $\lceil \frac{n}{2} \rceil + 1$ or $\lceil \frac{n}{2} \rceil$ depending on the parity of d(u,v). (Note that $d_2^*(u,v) = d(u,v)$.) Thus, $D_2^*(G) = \lceil \frac{n}{2} \rceil + 1$. In particular, $D_2^*(Q_n) = 2^{n-1} + 1$ for $n \geq 2$.

Let f(n) denote the minimum number of edges among any panpositionable hamiltonian graph with n vertices. With Theorem 4, we know that $f(n) \leq 3n$ if $n \geq 6$. It is interesting to find the asymptotic value of f(n) as n is large. Similarly, let $f_b(n)$ be the minimum number of edges among any bipanpositionable hamiltonian graph with n vertices. Obviously, f(n) = 0 if n is odd. With Theorem 2, $f_b(n) \leq 2n$ if n is an even integer with $n \geq 6$. It is interesting to find the asymptotic value of $f_b(n)$ as n is large and n is even.

References

- [1] Y. Alavi, and J.E. Williamson, *Panceonnected graphs*, Studia Sci. Math. Hungar.10(1975), 1-2,19-22.
- [2] J.A. Bondy, *Pancyclic graphs*, I, J. Combinatorial Theory Ser., B Vol. 11(1971), 80-84.
- [3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1980.

- [4] D.F. Hsu, On container width and length in graphs, groups and networks, IEICE Trans. Fundamental, E77-A(1994), 668-680.
- [5] T.K. Li, C.H. Tsai, J.M. Tan, and L.H. Hsu, Bipanconnected and edge-fault-tolerant bipancyclic of hypercubes, Information Processing Letters, 87(2003), 107-110.
- [6] C.K. Lin, H.M. Huang, and L.H. Hsu, The super connectivity of the pancake graphs and the super laceability of the star graphs, submitted.
- [7] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math., 10(1927), 95-115.
- [8] J. Mitchem and E. Schmeichel, Pancyclic and bipancyclic graphs-a survey. Graphs and Applications (1982), 271-278.
- [9] Y. Saad and M.H. Schultz, Topological properties of hypercubes, IEEE Transaction Comput. 37(1988), 867-872.