EDGE ZETA FUNCTIONS OF GRAPH COVERINGS

Iwao SATO* Oyama National College of Technology, Oyama, Tochigi 323-0806, JAPAN

June 21, 2006

Abstract

We give a decomposition formula for the edge zeta function of a regular covering \tilde{G} of a graph G. Furthermore, we present a determinant expression for some L-function of an oriented line graph $\tilde{L}(G)$ of G. As a corollay, we obtain a factorization formula for the edge zeta function of \tilde{G} by L-functions of $\tilde{L}(G)$.

Key words: zeta function, graph covering, L-function

1 Introduction

Graphs and digraphs treated here are finite and simple. Let G = (V(G), E(G)) be a connected graph with vertex V(G) and arc set E(G), and D the symmetric digraph corresponding to G. Note that E(G) = E(D). For $e = (u, v) \in E(G)$, let o(e) = u and t(e) = v. The inverse arc of e is denoted by \bar{e} . A path P of length n in D(or G) is a sequence $P = (v_0, v_1, \dots, v_{n-1}, v_n)$ of n+1 vertices and n arcs(or edges) such that consecutive vertices share an arc(or edge) (we do not require that all vertices are distinct). Also, P is called a (v_0, v_n) -path. If $e_i = (v_i, v_{i+1})$ for $i = 1, \dots, n-1$, then we can write $P = (e_1, \dots, e_{n-1})$. We say that a path has a backtracking if a subsequence of the form \dots, x, y, x, \dots appears. A (v, w)-path is called a cycle (or closed path) if v = w.

We introduce an equivalence relation between cycles. Two cycles $C_1 = (v_1, \dots, v_m)$ and $C_2 = (w_1, \dots, w_m)$ are called equivalent if there exists an integer k such that $w_j = v_{j+k}$ for all j. Let $\overline{[C]}$ be the equivalence class

^{*}Supported by Grant-in-Aid for Science Research (C)

which contains a cycle C. Let B^r be the cycle obtained by going r times around a cycle B. Such a cycle is called a <u>multiple</u> of B. A cycle C is said to be <u>reduced</u> if both C and C^2 have no backtracking. A cycle C is <u>prime</u> if $C \neq B^r$ for any other cycle B and $r \geq 2$.

The (Ihara) zeta function of a graph G is defined to be a formal power series of a variable u, by

$$\mathbf{Z}(G, u) = \mathbf{Z}_G(u) = \prod_{[C]} (1 - u^{|C|})^{-1},$$

where [C] runs over all equivalence classes of prime, reduced cycles of G, and |C| is the length of C.

Zeta functions of graphs started from zeta functions of regular graphs by Ihara [7]. In [7], he showed that their reciprocals are explicit polynomials. A zeta function of a regular graph G associated to a unitary representation of the fundamental group of G was developed by Sunada [14,15]. Hashimoto [6] treated multivariable zeta functions of bipartite graphs. Bass [2] generalized Ihara's result on the zeta function of a regular graph to an irregular graph, and showed that the reciprocal of the zeta function of a graph G is a polynomial:

$$\mathbf{Z}(G, u)^{-1} = (1 - u^2)^{r-1} \det(\mathbf{I} - u\mathbf{A}(G) + u^2(\mathbf{D} - \mathbf{I})),$$

where r and A(G) is the Betti number and the adjacency matrix of G, respectively, and $D = (d_{ij})$ is the diagonal matrix with $d_{ii} = \deg v_i(V(G) = \{v_1, \dots, v_n\})$.

Stark and Terras [12] gave an elementary proof of Bass' Theorem, and discussed three different zeta functions of any graph. Furthermore, various proofs of Bass' Theorem were given by Foata and Zeilberger [4], Kotani and Sunada [9]. Mizuno and Sato [10] obtained a decomposition formula for the zeta function of a regular covering of a graph.

Stark and Terras [12] introduced two zeta functions of graphs based on edge and path, and presented determinant expressions of them.

Let G be a connected graph and $V(G) = \{v_1, \ldots, v_n\}$. We associate with each of its arc $e = (v_i, v_j)$ a complex variable $w_e = w(e) = w(v_i, v_j)$. For each path $P = (v_{i_1}, \ldots, v_{i_r})$ of G, the weight w(P) of P is defined as follows: $w(P) = w(v_{i_1}, v_{i_2})w(v_{i_2}, v_{i_3}) \ldots w(v_{i_{r-1}}, v_{i_r})$. The edge zeta function of G is defined by

$$\zeta_G(w) = \prod_{[C]} (1 - w(C))^{-1},$$

where [C] runs over all equivalence classes of prime, reduced cycles of G. Let G = (V, E) be a connected graph. The <u>oriented line graph</u> $\vec{L}(G) = (V_L, E_L)$ of G is defined as follows:

$$V_L = E; E_L = \{(e_1, e_2) \in E \times E \mid \bar{e}_1 \neq e_2, t(e_1) = o(e_2)\}.$$

Theorem 1 (Stark and Terras) Let G be a connected graph. Then we have

$$\zeta_G(w)^{-1} = \det(\mathbf{I} - \mathbf{U}\mathbf{A}(\vec{L}(G))) = \det(\mathbf{I} - \mathbf{A}(\vec{L}(G))\mathbf{U}),$$

where U is the diagonal matrix

$$\mathbf{U} = \operatorname{diag}(w_{e_1}, \dots, w_{e_{2l}}), E(G) = \{e_1, \dots, e_l, e_{l+1}, \dots, e_{2l}\}.$$

Let $E(G) = \{e_1, \ldots, e_l, e_{l+1}, \ldots, e_{2l}\}$, where $e_{l+i} = \bar{e}_i (1 \leq i \leq l)$. Furthermore, let $\vec{\mathbf{W}} = \mathbf{W}(\vec{L}(G))$ be a $2l \times 2l$ matrix with ij entry the variable w_{e_i} if $t(e_i) = o(e_j)$, $e_j \neq \bar{e}_i$, and 0 otherwise. The matrix $\vec{\mathbf{W}} = \mathbf{W}(\vec{L}(G))$ is called the weighted matrix of G.

Mizuno and Sato [11] gave another determinant expression for the edge zeta function of a graph.

Theorem 2 (Mizuno and Sato) Let G be a connected graph. Then the reciprocal of the edge zeta function of G is

$$\zeta_G(w)^{-1} = \det(\mathbf{I} - \vec{\mathbf{W}}).$$

Foata and Zeilberger [4] gave a new proof of Bass' Theorem by using the algebra of Lyndon words. Let X be a finite nonempty set, < a total order in X, and X^* the free monoid generated by X. Then the total order < on X derives the lexicographic order < on X^* . A Lyndon word in X is defined to a nonempty word in X^* which is prime, i.e., not the power l^r of any other word l for any $r \ge 2$, and which is also minimal in the class of its cyclic rearrangements under < (see [8]). Let L denote the set of all Lyndon words in X.

Foata and Zeilberger[4] gave a short proof of Amitsur's identity [1].

Theorem 3 (Amitsur) For square matrices A_1, \dots, A_k ,

$$\det(\mathbf{I} - (\mathbf{A}_1 + \cdots + \mathbf{A}_k)) = \prod_{l \in L} \det(\mathbf{I} - \mathbf{A}_l),$$

where the product runs over all Lyndon words in $\{1, \dots, k\}$, and $A_l = A_{i_1} \cdots A_{i_p}$ for $l = i_1 \cdots i_p$.

In Section 2, we give a decomposition formula for the edge zeta function of a regular covering \tilde{G} of a graph G. In Section 3, we present a determinant expression for some L-function of an oriented line graph $\tilde{L}(G)$ of G. As a corollay, we obtain a factorization formula for the edge zeta function of \tilde{G} by L-functions of $\tilde{L}(G)$.

For a general theory of the representation of groups, the reader is referred to [3].

2 Edge zeta functions of regular coverings

Let G be a connected graph, and let $N(v) = \{w \in V(G) \mid (v, w) \in E(G)\}$ for any vertex v in G. A graph H is called a covering of G with projection $\pi: H \longrightarrow G$ if there is a surjection $\pi: V(H) \xrightarrow{} V(G)$ such that $\pi|_{N(v')}: N(v') \longrightarrow N(v)$ is a bijection for all vertices $v \in V(G)$ and $v' \in \pi^{-1}(v)$. When a finite group Π acts on a graph G, the quotient graph G/Π is a simple graph whose vertices are the Π -orbits on $\overline{V(G)}$, with two vertices adjacent in G/Π if and only if some two of their representatives are adjacent in G. A covering $\pi: H \longrightarrow G$ is said to be regular if there is a subgroup G of the automorphism group G and G is said to be regular if there is a subgroup G of the automorphism group G is said to be regular if there is a subgroup G of the automorphism group G is some G is said to be regular if there is a subgroup G of the automorphism group G is some G is said to be regular if there is a subgroup G of the automorphism group G is some G is said to be regular if there is a subgroup G is some G.

Let G be a graph and Γ a finite group. Then a mapping $\alpha: E(G) \longrightarrow \Gamma$ is called an ordinary voltage assignment if $\alpha(v,u) = \alpha(u,v)^{-1}$ for each $(u,v) \in E(G)$. The pair (G,α) is called an ordinary voltage graph. The derived graph G^{α} of the ordinary voltage graph (G,α) is defined as follows:

$$V(G^{\alpha}) = V(G) \times \Gamma$$
 and $((u, h), (v, k)) \in E(G^{\alpha})$ if and only if $(u, v) \in E(G)$ and $k = h\alpha(u, v)$.

The natural projection $\pi:G^{\alpha}\longrightarrow G$ is defined by $\pi(u,h)=u,(u,h)\in V(G^{\alpha})$. The graph G^{α} is called a derived graph covering of G with voltages in Γ or a Γ -covering of G. The natural projection π commutes with the right multiplication action of the $\alpha(e),e\in E(G)$ and the left action of $g\in\Gamma$ on the fibers: $g\circ(u,h)=(u,gh),g\in\Gamma$, which is free and transitive. Thus, the Γ -covering G^{α} is a $|\Gamma|$ -fold regular covering of G with covering transformation group G. Furthermore, every regular covering of a graph G is a G-covering of G for some group G-covering of G-coverin

Let G be a connected graph, Γ a finite group and $\alpha: E(G) \longrightarrow \Gamma$ an ordinary voltage assignment. In the Γ -covering G^{α} , set $v_g = (v,g)$ and $e_g = (e,g)$, where $v \in V(G), e \in E(G), g \in \Gamma$. For $e = (u,v) \in E(G)$, the arc e_g emanates from u_g and terminates at $v_{g\alpha(e)}$. Note that $\bar{e_g} = (\bar{e})_{g\alpha(e)}$. Let $w: E(G) \longrightarrow \mathbb{C}$ be a weight of G. Then we define the weight \tilde{w} of G^{α} derived from w as follows:

$$ilde{w}(u_g,v_h) := \left\{ egin{array}{ll} w(u,v) & ext{if } (u,v) \in E(G) ext{ and } h = g lpha(u,v), \\ 0 & ext{otherwise.} \end{array}
ight.$$

Thus, the weighted matrix $\tilde{\mathbf{W}} = \mathbf{W}(\vec{L}(G^{\alpha})) = (\tilde{w}(e_g, f_h))$ of G^{α} is given by

$$\tilde{w}(e_g, f_h) := \left\{ egin{array}{ll} w(e) & ext{if } (e, f) \in E(\vec{L}(G)) ext{ and } h = g lpha(e), \\ 0 & ext{otherwise.} \end{array}
ight.$$

For $g \in \Gamma$, let the matrix $\vec{\mathbf{W}}_g = (w_{ef}^{(g)})$ be defined by

$$w_{ef}^{(g)} := \left\{ egin{array}{ll} w(e) & \mbox{if } \alpha(e) = g \mbox{ and } (e,f) \in E(\vec{L}(G)), \\ 0 & \mbox{otherwise.} \end{array}
ight.$$

Let $M_1 \oplus \cdots \oplus M_s$ be the block diagonal sum of square matrices M_1, \cdots, M_s . If $M_1 = M_2 = \cdots = M_s = M$, then we write $s \circ M = M_1 \oplus \cdots \oplus M_s$. The Kronecker product $A \otimes B$ of matrices A and B is considered as the matrix A having the element a_{ij} replaced by the matrix $a_{ij}B$.

Theorem 4 Let G be a connected graph with l unoriented edges, Γ a finite group and $\alpha: E(G) \longrightarrow \Gamma$ an ordinary voltage assignment. Furthermore, let $\rho_1 = 1, \rho_2, \cdots, \rho_t$ be all inequivalent irreducible representations of Γ , and f_i the degree of ρ_i for each i, where $f_1 = 1$. Suppose that the Γ -covering G^{α} of G is connected. Then the reciprocal of the edge zeta function of G^{α} is

$$\zeta_{G^{\alpha}}(\tilde{w})^{-1} = \zeta_{G}(w)^{-1} \cdot \prod_{i=2}^{t} \det(\mathbf{I}_{2lf_{i}} - \sum_{h \in \Gamma} \rho_{i}(h) \bigotimes \vec{\mathbf{W}}_{h})^{f_{i}}.$$

Proof. Let $E(G) = \{e_1, \dots, e_l, e_{l+1}, \dots, e_{2l}\}$ and $\Gamma = \{1 = g_1, g_2, \dots, g_m\}$. Arrange arcs of G^{α} in m blocks: $(e_1, 1), \dots, (e_{2l}, 1); (e_1, g_2), \dots, (e_{2l}, g_2); \dots; (e_1, g_m), \dots, (e_{2l}, g_m)$. We consider the weighted matrix $\mathbf{W}(\vec{L}(G^{\alpha}))$ under this order. For $h \in \Gamma$, the matrix $\mathbf{P}_h = (p_{ij}^{(h)})$ is defined as follows:

$$p_{ij}^{(h)} = \left\{ egin{array}{ll} 1 & ext{if } g_i h = g_j, \\ 0 & ext{otherwise.} \end{array}
ight.$$

Suppose that $p_{ij}^{(h)} = 1$, i.e., $g_j = g_i h$. Then $((e, g_i), (f, g_j)) \in E(\vec{L}(G^{\alpha}))$ if and only if $(e, f) \in E(\vec{L}(G))$ and $(o(f), g_j) = o(f, g_j) = t(e, g_i) = (t(e), g_i \alpha(e))$, i.e., $\alpha(e) = g_i^{-1} g_j = g_i^{-1} g_i h = h$. Thus we have

$$\tilde{\mathbf{W}} = \mathbf{W}(\vec{L}(G^{\alpha})) = \sum_{h \in \Gamma} \mathbf{P}_h \bigotimes \vec{\mathbf{W}}_h.$$

Let ρ be the right regular representation of Γ . Furthermore, let $\rho_1 = 1, \rho_2, \dots, \rho_t$ be all inequivalent irreducible representations of Γ , and f_i the degree of ρ_i for each i, where $f_1 = 1$. Then we have $\rho(h) = \mathbf{P}_h$ for $h \in \Gamma$. Furthermore, there exists a regular matrix \mathbf{P} such that $\mathbf{P}^{-1}\rho(h)\mathbf{P} = (1) \oplus f_2 \circ \rho_2(h) \oplus \cdots \oplus f_t \circ \rho_t(h)$ for each $h \in \Gamma(\text{see [3]})$. Putting $\mathbf{B} = (\mathbf{P}^{-1} \bigotimes \mathbf{I}_{2i})\mathbf{W}(\vec{L}(G^{\alpha}))(\mathbf{P} \bigotimes \mathbf{I}_{2i})$, we have

$$\mathbf{B} = \sum_{h \in \Gamma} \{(1) \oplus f_2 \circ \rho_2(h) \oplus \cdots \oplus f_t \circ \rho_t(h)\} \bigotimes \vec{\mathbf{W}}_h.$$

Note that $\mathbf{W}(\vec{L}(G)) = \sum_{h \in \Gamma} \vec{\mathbf{W}}_h$ and $1 + f_2^2 + \dots + f_t^2 = m$. Theorem 2 implies that

$$\begin{aligned} \zeta_{G^{\alpha}}(\tilde{w})^{-1} &= \det(\mathbf{I}_{2lm} - \tilde{\mathbf{W}}) \\ &= \det(\mathbf{I}_{2l} - \vec{\mathbf{W}}) \prod_{i=2}^{t} \det(\mathbf{I}_{2lf_{i}} - \sum_{h} \rho_{i}(h) \bigotimes \vec{\mathbf{W}}_{h})^{f_{i}} \end{aligned}$$

3 Weighted L-function of oriented line graphs

Let G be a connected graph, Γ a finite group and $\alpha: E(G) \longrightarrow \Gamma$ an ordinary voltage assignment. Furthermore, let ρ be a representation of Γ and d its degree. Then we define the function $\alpha_{\vec{L}}: E(\vec{L}(G)) \longrightarrow \Gamma$ as follows: $\alpha_{\vec{L}}(e,f) = \alpha(e), (e,f) \in E(\vec{L}(G))$. For each path $P = (e_1, \cdots, e_r)$ of $\vec{L}(G)$, let $\alpha_{\vec{L}}(P) = \alpha(e_1) \cdots \alpha(e_r)$. The weighted L-function of $\vec{L}(G)$ associated to ρ and α is defined by

$$\zeta_{\vec{L}(G)}(w,\rho,\alpha) = \prod_{|C|} \det(\mathbf{I}_d - \rho(\alpha_{\vec{L}}(C))w(C))^{-1},$$

where [C] runs over all equivalence classes of prime cycles of $\widetilde{L}(G)$.

Let $1 \le i, j \le n$. Then, the (i, j)-block $\mathbf{B}_{i, j}$ of an $dn \times dn$ matrix \mathbf{B} is the submatrix of \mathbf{B} consisting of $d(i-1)+1, \cdots, di$ rows and $d(j-1)+1, \cdots, dj$ columns.

Theorem 5 Let G be a connected graph with l unoriented edges, Γ a finite group and $\alpha: E(G) \longrightarrow \Gamma$ an ordinary voltage assignment. Furthermore, let ρ be a representation of Γ , and d the degree of ρ . Then the reciprocal of the weighted L-function of $\vec{L}(G)$ associated to ρ and α is

$$\zeta_{\vec{L}(G)}(w, \rho, \alpha)^{-1} = \det(\mathbf{I} - \sum_{h \in \Gamma} \rho(h) \bigotimes \vec{\mathbf{W}}_h).$$

Proof. At first, let $E(G) = \{e_1, \dots, e_l, e_{l+1}, \dots, e_{2l}\}$ and consider the lexicographic order on $E(G) \times E(G)$ derived from a total order of E(G): $e_1 < e_2 < \dots < e_{2l}$. If (e_i, e_j) is the m-th pair under the above order, then we define the $2ld \times 2ld$ matrix $\mathbf{W}_m = ((\mathbf{W}_m)_{p,q})_{1 \le p,q \le 2l}$ as follows:

$$(\mathbf{W}_m)_{p,q} = \left\{ \begin{array}{ll} \rho(\alpha(e_i))w(e_i) & \text{if } p = i, q = j \text{ and } (e_i, e_j) \in E(\vec{L}(G)), \\ \mathbf{0} & \text{otherwise.} \end{array} \right.$$

Furthermore, let $\mathbf{B} = \mathbf{W}_1 + \cdots + \mathbf{W}_k, k = 4l^2$. Then we have

$$\mathbf{B} = \sum_{\mathbf{h}} \vec{\mathbf{W}}_{h} \bigotimes \rho(h).$$

Let L be the set of all Lyndon words in $E(G) \times E(G)$. Then we can also consider L as the set of all Lyndon words in $\{1, \dots, k\}$: $(e_{i_1}, e_{j_1}) \cdots (e_{i_q}, e_{j_q})$ corresponds to $m_1 m_2 \cdots m_q$, where $(e_{i_r}, e_{j_r}) (1 \le r \le q)$ is the m_r -th pair. Theorem 3 implies that

$$\det(\mathbf{I}_{2ld} - \mathbf{B}) = \prod_{t \in L} \det(\mathbf{I}_{2ld} - \mathbf{W}_t),$$

where $\mathbf{W}_t = \mathbf{W}_{i_1} \cdots \mathbf{W}_{i_p}$ for $t = i_1 \cdots i_p$. Note that $\det(\mathbf{I}_{2ld} - \mathbf{W}_t)$ is the alternating sum of the diagonal minors of \mathbf{W}_t . Thus, we have

$$\det(\mathbf{I} - \mathbf{W}_t) = \left\{ \begin{array}{ll} \det(\mathbf{I} - \rho(\alpha_{\vec{L}}(C))w(C)) & \text{if } t \text{ is a prime cycle } C, \\ 1 & \text{otherwise.} \end{array} \right.$$

Therefore, it follows that

$$\zeta_{\vec{L}(G)}(w,\rho,\alpha)^{-1} = \det(\mathbf{I}_{2ld} - \sum_{h \in \Gamma} \vec{\mathbf{W}}_h \bigotimes \rho(h)) = \det(\mathbf{I}_{2ld} - \sum_{h \in \Gamma} \rho(h) \bigotimes \vec{\mathbf{W}}_h).$$

By Theorems 4,5, the following result holds.

Corollary 1 Let G be a connected graph, Γ a finite group and $\alpha : E(G) \longrightarrow \Gamma$ an ordinary voltage assignment. Then we have

$$\zeta_{G^{\alpha}}(\tilde{w}) = \prod_{\sigma} \zeta_{\tilde{L}(G)}(w, \sigma, \alpha)^{\deg \sigma},$$

where σ runs over all inequivalent irreducible representations of Γ .

Let G be a connected graph, Γ a finite group and $\alpha: E(G) \longrightarrow \Gamma$ an ordinary voltage assignment. Furthermore, let ρ be any representation of Γ and $d = \deg \rho$. The <u>L-function</u> of G associated to ρ and α is defined by

$$\mathbf{Z}_G(u, \rho, \alpha) = \prod_{|C|} \det(\mathbf{I}_d - \rho(\alpha(C))u^{|C|})^{-1},$$

where [C] runs over all equivalence classes of prime, reduced cycles of G. Let $w_{ij} = u$ unless $w_{ij} = 0$. Then we obtain Corollary 2 in [10].

Corollary 2 (Mizuno and Sato) Let G be a connected graph, Γ a finite group and $\alpha: E(G) \longrightarrow \Gamma$ an ordinary voltage assignment. Suppose that the Γ -covering G^{α} of G is connected. Then we have

$$\mathbf{Z}(G^{\alpha},u)=\prod_{a}\mathbf{Z}_{G}(u,
ho,lpha)^{d},$$

where ρ runs over all inequivalent irreducible representations of Γ and $d = \deg \rho$.

Proof. At first, we have

$$\zeta_{G^{\alpha}}(\tilde{w}) = \zeta_{G^{\alpha}}(u) = \mathbf{Z}(G^{\alpha}, u)$$

and

$$\zeta_{\vec{L}(G)}(w,\rho,\alpha) = \zeta_{\vec{L}(G)}(u,\rho,\alpha) = \mathbf{Z}_G(u,\rho,\alpha).$$

By Corollary 1, the result follows. □

References

- [1] S. A. Amitsur, On the characteristic polynomial of a sum of matrices, Linear and Multilinear Algebra 9 (1980), 177-182.
- [2] H. Bass, The Ihara-Selberg zeta function of a tree lattice, *Internat. J. Math.* 3 (1992), 717-797.
- [3] M. Burrow, Representation Theory of Finite Group, Academic Press, New York, 1965.
- [4] D. Foata and D. Zeilberger, A combinatorial proof of Bass's evaluations of the Ihara-Selberg zeta function for graphs, *Trans. Amer. Math.* Soc. 351 (1999), 2257-2274.
- [5] J. L. Gross and T. W. Tucker, Topological Graph Theory, Wiley-Interscience, New York, 1987.
- [6] K. Hashimoto, Zeta Functions of Finite Graphs and Representations of p-Adic Groups, Adv. Stud. Pure Math. Vol. 15, pp. 211-280, Academic Press, New York, 1989.
- [7] Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18, (1966), 219-235.
- [8] M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, Mass., 1983.
- [9] M. Kotani and T. Sunada, Zeta functions of finite graphs, J. Math. Sci. U. Tokyo 7 (2000), 7-25.
- [10] H. Mizuno and I. Sato, Zeta functions of graph coverings, J. Combin. Theory Ser. B 80 (2000), 247-257.
- [11] H. Mizuno and I. Sato, Zeta functions of oriented line digraphs of graph coverings, submitted.

- [12] H. M. Stark and A. A. Terras, Zeta functions of finite graphs and coverings, Adv. Math. 121 (1996), 124-165.
- [13] H. M. Stark and A. A. Terras, Zeta functions of finite graphs and coverings, part II, Adv. Math. 154 (2000), 132-195.
- [14] T. Sunada, L-Functions in Geometry and Some Applications, in Lecture Notes in Math., Vol. 1201, pp. 266-284, Springer-Verlag, New York, 1986.
- [15] T. Sunada, Fundamental Groups and Laplacians (in Japanese), Kinokuniya, Tokyo, 1988.