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Abstract

We give a decomposition formula for the edge zeta function of a
regular covering G of a graph G. Furthermore, we present a determi-
nant expression for some L-function of an oriented line graph L(G)
of G. As a corollay, we obtain a factorization formula for the edge
zeta function of G by L-functions of L(G).
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1 Introduction

Graphs and digraphs treated here are finite and simple. Let G = V(G),
E(G)) be a connected graph with vertex V(G) and arc set E(G), and D the
symmetric digraph corresponding to G. Note that E(G) = E(D). For e =
(u,v) € E(G), let o(e) = u and ¢(e) = v. The inverse arc of e is denoted by
€. A path P of length n in D(or G) is a sequence P = (v, v1,: "+, Un—1, Un)
of n 41 vertices and n arcs(or edges) such that consecutive vertices share
an arc(or edge) (we do not require that all vertices are distinct). Also, P
is called a (vo,vn)-path. If e; = (vi,vi41) for i = 1,--+,n — 1, then we
can write P = (ej,--,en—1). We say that a path has a backtracking if a. -
subsequence of the form ---,z,y,z,--- appears. A (v, w)-path is called a
cycle (or closed path) if v = w.

We introduce an equivalence relation between cycles. Two cycles C; =
(v1,++, vm) and Cz = (wy, - -, wy,) are called equivalent if there exists an
integer k such that w; = ;4 for all j. Let [C] be the equivalnce class
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which contains a cycle C. Let B" be the cycle obtained by going r times
around a cycle B. Such a cycle is called a multiple of B. A cycle C is said
to be reduced if both C and C? have no backtracking. A cycle C is prime
if C # BT for any other cycle B and r > 2.

The (Ihara) zeta function of a graph G is defined to be a formal power
series of a variable u, by

Z(G,u) = Zo(w) = [J1 - !N,
(€]

where [C] runs over all equivalence classes of prime, reduced cycles of G,
and | C | is the length of C.

Zeta functions of graphs started from zeta functions of regular graphs by
Thara [7]. In [7], he showed that their reciprocals are explicit polynomials.
A zeta function of a regular graph G associated to a unitary representation
of the fundamental group of G was developed by Sunada [14,15]. Hashimoto
[6] treated multivariable zeta functions of bipartite graphs. Bass [2] gener-
alized Ihara’s result on the zeta function of a regular graph to an irregular
graph, and showed that the reciprocal of the zeta function of a graph G is
a polynomial:

Z(G,u)"! = (1 — u?)" "' det(I — vA(G) + v*(D - 1)),

where r and A(G) is the Betti number and the adjacency matrix of G,
respectively, and D = (d;;) is the diagonal matrix with di; = deg v;(V(G) =
{vlv te yvn})-

Stark and Terras [12] gave an elementary proof of Bass’ Theorem, and
discussed three different zeta functions of any graph. Furthermore, various
proofs of Bass' Theorem were given by Foata and Zeilberger [4], Kotani
and Sunada [9]. Mizuno and Sato [10] obtained a decomposition formula
for the zeta function of a regular covering of a graph.

Stark and Terras [12] introduced two zeta functions of graphs based on
edge and path, and presented determinant expressions of them.

Let G be a connected graph and V(G) = {v1,...,v,}. We associate with
each of its arc e = (v;,v;) a complex variable w. = w(e) = w(v;,v;). For
each path P = (v;,,...,v;,) of G, the weight w(P) of P is defined as follows:
w(P) = w(v;,,vi, ) w(viy, Vig) - - - w(¥i,_,, v, ). The edge zeta function of G

is defined by
¢ow) = [Ja-wen™,
(%]
where [C] runs over all equivalence classes of prime, reduced cycles of G.

Let G = (V,E) be a connected graph. The oriented line graph E(G) =
(Vi, EL) of G is defined as follows:

Vi =E; EL = {(e1,e2) € Ex E | & # ea,t(e1) = o(ez2)}.

226



Theorem 1 (Stark and Terras) Let G be a connected graph. Then we

hav
: Co(w)™! = det(I - UA(L(G))) = det(I ~ A(L(G))U),

where U is the diagonal matriz
U = diag(we,, ..., Wey), E(G) = {ey,...,e1,e141,...,ex}.

Let E(G) = {e1,...,e1,€141,...,eu}, where e1; = &(1 < i < ). Fur-
thermore, let W = W(L(G)) be a 2 x 2l matrix with i5 entry the variable
we, if t(e;) = o(e;), e; # &;, and 0 otherwise. The matrix W = W(L(G))
is called the weighted matrix of G.

Mizuno and Sato [11] gave another determinant expression for the edge
zeta function of a graph. :

Theorem 2 (Mizuno and Sato) Let G be a connected graph. Then the
reciprocal of the edge zeta function of G is

Ce(w)™! = det(I - W).

Foata and Zeilberger [4] gave a new proof of Bass’ Theorem by using the
algebra of Lyndon words. Let X be a finite nonempty set, < a total order
in X, and X* the free monoid generated by X. Then the total order <
on X derives the lexicographic order < on X*, A Lyndon word in X is
defined to a nonempty word in X* which is prime, i.., not the power I” of
any other word ! for any r > 2, and which is also minimal in the class of its
cyclic rearrangements under <(see [8]). Let L denote the set of all Lyndon
words in X. A

Foata and Zeilberger[4] gave a short proof of Amitsur’s identity [1].

Theorem 3 (Amitsur) For square matrices Ay, ---, A,

det(I— (A1 +---Ag)) = [] det(1 - Ay),
leL

where the product runs over all Lyndon words in {1,---,k}, and A; =
Aip Ay forl =iy i

In Section 2, we give a decomposition formula for the edge zeta function
of a regular covering G of a graph G. In Section 3, we present a determinant
expression for some L-function of an oriented line graph f(G) of G. As a
corollay, we obtain a factorization formula for the edge zeta function of G
by L-functions of L(G).

For a general theory of the representation of groups, the reader is referred
to [3].
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2 Edge zeta functions of regular coverings

Let G be a connected graph, and let N(v) = {w € V(G) | (v,w) € E(G)}
for any vertex v in G. A graph H is called a covering of G with prOJectxon
7+ H — G if there is a surjection 7 : V(H) — V(G) such that =| Nt
N(v') — N(v) is a bijection for all vertices v € V(G) and v' € 7~ '().
When a finite group II acts on a graph G, the quotient graph G/II is a
simple graph whose vertices are the IT-orbits on V(G), with two vertices
adjacent in G/II if and only if some two of their representatives are adjacent
in G. A covering w : H — G is said to be regular if there is a subgroup B
of the automorphism group AutH of H acting freely on H such that the
quotient graph H/B is isomorphic to G.

Let G be a graph and I" a finite group. Then a mapping o : E(G) —7T
is called an ordinary voltage assignment if a(v,u) = a(u,v)~! for each
(u,v) € E(G). The pair (G, ) is called an ordinary voltage graph. The
derived graph G of the ordinary voltage graph (G, ) is defined as follows:

V(G*) = V(G) x T and ((u, h), (v, k)) € E(G*) if and only
if (u,v) € E(G) and k = ha(u,v).

The natural projection 7 : G* — G is defined by n(u, k) = u,(u,h) €
V(G?). The graph G* is called a derived graph covering of G with voltages
in T or a I'-covering of G. The natural projection 7 commutes with the
right multiplication action of the a(e),e € E(G) and the left action of
g €T on the fibers: go (u,h) = (u,gh),g € T, which is free and transitive.
Thus, the I'-covering G* is a | T" |-fold regular covering of G with covering
transformation group I'. Futhermore, every regular covering of a graph G
is a I-covering of G for some group I'(see [5]).

Let G be a connected graph, I' a finite group and « : E(G) — T’ an
ordinary voltage assignment. In the I'-covering G*, set v, = (v,g) and
eg = (e,9), where v € V(G),e € E(G),g € T. For e = (u,v) € E(G), the
arc e, emanates from u, and terminates at vgq(c). Note that é; = (e)ga(e)

Let w : E(G) — C be a weight of G. Then we define the weight w of
G* derived from w as follows:

- _ | w(u,v) if (u,v) € E(G) and h = go(u,v),
B(ug, vn) 1= { 0 otherwise.

Thus, the weighted matrix W = W(L(G®)) = (1(eg, fn)) of G* is given

by

w(e) if (e f) € B(L(G)) and h = gofe),
otherwise.

w(eg, fr) = {
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For g €T, let the matrix W, (w(g)) be defined by

0@ { w(e) if ofe) = g and (e, f) € E(L(G)),
ef * 0

otherwise.

Let M, ®-- - ® M, be the block diagonal sum of square matrices My, - - -,
M,. IfM; =M; =--- = M, = M, then we write soM =M, &---®M,.
The Kronecker product A @ B of matrices A and B is considered as the
matrix A having the element a;; replaced by the matrix a;;B.

Theorem 4 Let G be a connected graph with | unoriented edges, I a finite
group and o : E(G) — T' an ordinary voltage assignment. Furthermore,
let p1 = 1,p2,: - -, p; be all inequivalent irreducible representations of T', and
fi the degree of p; for each i, where fy = 1. Suppose that the T'-covering
G* of G is connected. Then the reciprocal of the edge zeta function of G*
is
t
Cea(@) ™! = Co(w)™ - [ det(Tary, — Y pu(h) Q) Wh)%.
i=2 her
Proof . Let E(G) = {e1,+*,e1,€141," -+, e} andT' = {1 = g, 92, , gm }-

Arrange arcs of G* in m blocks: (eg,1),-- -, (ea, 1); (€1, g2), - - 3] (eat, 92);- -
(e1,9m),- - -, (€21, gm). We consider the weighted matrix W(L(G’“‘)) under
this order. For h € T, the matrix Pj, = (p,h)) is defined as follows:

(h) _ 1 if gih=g;,
P =91 0 otherwise.

Suppose that p}) = 1, i.e., 95 = gih. Then ((e,9:), (f,95)) € E(L(G*))

if and only if (e, f) € E(L(Q)) and (o(f),9;) = o(f,9;) = tle, @) =
(t(e), gia(e)), i-e., a(e) = g; g; = g; ' gsh = h. Thus we have

W=W(I(G)) =) P,Q W

her

Let p be the right regular representation of I'. Furthermore, let p; =
1,p2,---, p¢ be all inequivalent irreducible representations of T, and f; the
degree of p; for each i, where fi = 1. Then we have p(h) = P} for
heTl. F\lrthermore, there exists a regular matrix P such that P~1p(h)P =
(1)@ fao pg(h) ® - @ fi o pe(h) for each h € I(see [3]). Putting B =
(P! ®121)W(L(G°‘) )(P ®12), we have

B= Z{(l) @ fao pg(h) @---®fio pg(h)} ®Wh

her
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Note that W(L(G)) = Y per Wh and 14 2 + -+ + f2 = m. Theorem 2
implies that

(ea(®)™! = det(lom — W)

= det(Tp — W) [Ti_p det(Taty, — Ly pi(h) @ W)
D .

3 Weighted L-function of oriented line graphs

Let G be a conhected graph, T’ a finite group and a : E(G) — T an
ordinary voltage assignment. Furthermore, let p be a representation of I’
and d its degree. Then we define the function a; : E(L(G)) — T as

follows: ajy(e, f) = afe), (e, f) € E(L(G)). For each path P = (1, -, €)
of I(G), let o 7(P) = aler)---o(er). The weighted L-function of L(G)
associated to p and « is defined by

¢y (w.pr@) = [ det(@a — plaz(C)w(C)
(C]

where [C] runs over all equivalence classes of prime cycles of L.

Let 1 < i, < n. Then, the (i, j)-block B; ; of an dn x dn matrix B is the
submatrix of B consisting of d(i—1)+1,---,di rows and d(j —1)+1,---,dj
columns.

Theorem 5 Let G be a connected graph with | unoriented edges, I" a finite
group and a : E(G) — T an ordinary voltage assignment. Furthermore,
let p be a representation of I', and d the degree of p. Then the reciprocal of
the weighted L-function of L(G) associated to p and o is

Cxey P 0) ™ = det(T = 3 o(h) @ W),
her

Proof. At first, let E(G) = {e1,+,et, €141, +,ea} and consider the
lexicographic order on E(G) x E(G) derived from a total order of E(G):
e1 < ey < -+ < eg. If (ei,e;) is the m-th pair under the above order, then
we define the 2ld x 2ld matrix Wy, = ((Wm)p,q)1<p,g<21 as follows:

(Wrnpa = { g(a(ei))w(ei)‘ ftﬁe;fi* S‘Ie .=J' and (ei, ;) € B(L(G)),

Furthermore, let B = W, + -+ - + Wy, k = 412, Then we have

B=)Y Wi n(h)
h
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Let L be the set of all Lyndon words in E(G) x E(G). Then we can also
consider L as the set of all Lyndon words in {1,---,k}: (e,l 1€5,) (€, e,q)
corresponds to m;m; - - - m,, where (e;,,e;,.)(1 < r < q) is the m,-th pair.
Theorem 3 implies that

det(Izzd -B)= H det(lzzd - W,),
' tel
where Wy = W, --- W, for t =4, :--ip. Note that det(Iziq — W,) is the
alternating sum of the dlagonal minors of W,. Thus, we have

det(I — p(ap(C))w(C)) iftis a prime cycle C,

det(I - W,) = { Sthe

Therefore, it follows that

¢ E©) (w,p, a)—l = det(lzld—z W ® p(h)) = det(lzu—z p(h) ® W},)

her her
D .
By Theorems 4,5, the following result holds.

Corollary 1 LetG be a connected graph, T a finite group and a:EG) —
T an ordinary voltage assignment. Then we have

(g (W) = H CE(G) (w,o0, a)dega’

where o runs over all inequivalent irreducible representations of T.

Let G be a connected graph, I' a finite group and a : E(G) — 1" an
ordinary voltage assignment. Furthermore, let p be any representatlon of
I' and d = degp. The L-function of G associated to p and « is defined by

Zo(u, p, ) = [ ] det(la ~ p(a(C))ul),
(€]

where [C] runs over all equivalence classes of prime, reduced cycles of G.
Let w;; = u unless w;; = 0. Then we obtain Corollary 2 in [10].

Corollary 2 (Mizuno and Sato) LetG be a connected graph, T" @ finite
group and a : E(G) — T’ an ordinary voltage assignment. Suppose that
the I'-covering G* of G is connected. Then we have

Z(Go, ’u) = H ZG('“, Py a) ’

where p Tuns over all inequivalent irreducible representations of ' andd =
degp.
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Proof. At first, we have
Cga (D) = (ga(u) = Z(G*,u)

and
CE(G) (wr Py a) ¢ L©) (u, P a) Zc (u, P a)

By Corollary 1, the result follows. O
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