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Abstract

A graph on n vertices having no vertex of degree greater thanf, 2 < f< n — 2, is called
an f-graph of order n. For a given f the vertices of degree less than f are called orexic. An
JS-graph to which no edge can be added without violating the f-degree restriction is called
an edge maximal f-graph (EM f-graph). An upper bound, as a function of n and f, for the
oumber of m orexic vertices in an EM f-graph and the structure of the subgraph induced
by its orexic vertices is given. For any n and f, the maximum size, minimum size, and
realizations of extremal size EM f-graphs having m orexic vertices and order n are ob-
tained. This is also done for any given n and f independent of m. The number of size
classes of EM f-graphs of order » and fixed m is determined. From this the maximum
number of size classes over all m follows. These results are related to the study of
(f+ 1)-star-saturated graphs.

1. Introduction

Simple graphs of order n and size t having no vertex of degree greater than f,
2<f<n-2, are considered. Such graphs are called f-graphs and their vertices
of degree less than f are called orexic vertices (cf. [14]). An f-graph to which no
edge can be added without violating the degree restriction is said to be edge
maximal (EM). Graphs with bounded degree are of importance and interest
because in most applications the graphs involved have specific restrictions on
their vertex degrees. One such instance of this is in chemistry, where in graph
models for molecules the vertex degrees correspond to chemical bonding re-
strictions, such as, degree 4 corresponds to carbon, degree 1 corresponds to
hydrogen, etc. (see [11, 16]). :

Perhaps the most important aspect of EM f-graphs is the fact that these
graphs are a generalization of regular graphs in the following sense. The termi-
nal graph G of a process involving the evolution of a graph obtained by sequen-
tially adjoining one edge at a time to a set of » fixed vertices under the restric-
tion that no vertex shall have degree greater than f, is not an f-regular graph, but
G is an EM f-graph of order n (see [8]). Such processes play a role in both
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physical applications [10, 13} and in theoretical studies [2, 3]. It is known that
for this process, with nf even and n going to infinity, almost all f-graphs will be
regular [1]. On the other hand, for the uniform distribution of EM f graphs, for
nf even and n going to infinity, the proportion of f-regular graphs is 2/5 when
f=2 and in general equal to 2/( f + 1) (see {4]). However, when n and f are
fixed, it is an open problem to determine, the proportion of f-regular graphs
relative to the set of EM f-graphs. The problem is for both the above sequential
process and the uniform distribution case (see [5, 7]).

In the context of extremal graph theory and in particular relative to Turédn
type problems (see [12] and references therein) we can state our resuts as fol-
lows. A graph is (f+ 1)-star saturated means it does not contain an (f+ 1)-star
and the addition of any edge will introduce an (f+ 1)-star. Let G(n, f, m) denote
the set of all EM f-graphs of order n having m arexic vertices and G(n, f) the
union of G(n, f, m) over all m. Thus, G(n, f) is the set of all ( f+ 1)-star saturated
graphs of order n. In [12), included with other results on saturated graphs, there
is a theorem on minimum size star-saturated graphs (see Theorem 4 [12] and
compare to Thearem 3.3).

We determine the extremal sizes (maximum and minimum) and explicit re-
alizations for graphs in each G(n, f, m) and for G(n, f) (see Sections 2 and 3,
respectively). In Section 4, the determination and study of size classes of EM
F-graphs is carried out. A pair of open problems is given in Section 5.

Some structural properties of EM f-graphs are given in the following theo-
rems (cf. [14]).

Theorem 1.1. If G is an EM f-graph of order n with m 2 1 orexic vertices,
then the orexic vertices induce a complete subgraph of order m in G. Furher-
more, mSf.w

Corollary 1.2. If G is an EM f-graph of order n, then

1) if 1 Sm<f- 1, then either the m orexic vertices form a K,, component of G
or they induce a K, which is adjacent in various ways to vertices of degree f,
and ‘

2) if m = f, then the orexic vertices form a K; component of G. =

If f is such that (n - 1)/2 <f, then there is a bound smaller than f for the
numbser of orexic vertices (see Theorem 1.3, its corollary, and Figure 1.1).

Theorem 1.3. ([6]) Let G be an EM f-graph of order n with m orexic verti-
ces,25f<Sn—2.Then

osmsmin{-"z—((:—:%'-_-'%,f}- 1
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Corollary 1.4. ([6]) Let G be an EM f-graph of order n.
If2sfs(n-1)2, then0<m<f
and
—— _ a(n—f-1)
fn-12<f<n 2,then05m52(n_f)_].l

In Figure 1.1 (cf. [9]) the upper bound for the number of orexic vertices is
shown as a function of f with n fixed. Note that if f= n — 2, then m < n/3.

m n = const ,°
1
)
)
m=n/3 pecomemcfoua- it bbbt S L) !
H '
! ]
4 ]
' ]
' '
: 0 (n—1)2 n-2 f
Figure 1.1. The upper bound for the mumber of orexic vertices as a function of f with n
fixed

The bounds on the number of edges of an EM f-graph are given in the fol-
lowing theorem.

Theorem 1.5. ([14]) Let G be an EM j-graph of order n and size t. If G has
m orexic vertices, then

(n-mf+mim-1)<2t<nf-m.m (1.2

2. The maximum size and its realizations

By the global maximum size of EM jf-graphs of order n we mean the maxi-
mum number of edges that such a graph can have. A realization of this maxi-
mum size depends on the parity of »f. It is known (cf. [15], p.249) that a regular
graph of order n with degree of regularity fexists if nfis even and fS n— 1.

Let R, sbe a regular f-graph and A, ; denote an almost regular f-graph of or-
der n, the latter being a graph having n - 1 vertices of degree f and one vertex of
degree f— 1. We define a method for constructing a graph A, ; when nf is odd,
i.e., both n and f are odd (cf. Figure 2.1).
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Construction A. Given n and f with nf odd construct an almost regular
Fgraph A, ; of order n, as follows.
1. Start with an initial graph, G=R U K| where R=R,_, s is a regular f-graph
of order n—1 (note that n—1 and f— 1 are even). If f=n—2, then the initial
graph isG=K,_;UK,.
2. Select k = ( f— 1)/2 independent edges in R and delete them.
3. Add I = 2k new edges between the endvertices of the deleted edges and the
K,.» .

)

Figure 2.1. An example of Construction A forn=7, f=3; A: Rs 3 UK; = Ay 3

Theorem 2.1. The global maximum size for an EM f-graph of order n is
f(nf)= l%J @

and its realization is R,.; (a regular f-graph of order n with m = 0) when nf is
even, and A, ; (an almost regular f-graph of order n with m = 1) when nfis odd.
Proof. By Theorem 1.5 the size of EM f-graph of crder n is bounded from above:

:si;ﬂ. This is maximum when m =0 and a realization is R, ; a regular f-

graph of order n. However if nf is odd, such a regular graph does not exist and
the upper bound is maximum when m = 1. Here a realization is A,, 5 an almost
regular f-graph of order n. Therefore, 1'(n, f) = Lnfr2] in all cases. m

We next obtain the maximum size for an EM f-graph of order n having m
orexic vertices where m satisfies (1.1). To do this we define Construction B
which will provide us with realizations of the extremal graphs.

Construction B. Given n, f, and m (3 S f< n—2, and m as in (1.1)) construct
B.;m an EM fgraph of order n with m orexic vertices and size

o, f,,,.)-.-l"f —m| as follows.

2
Case L. Ifn-m>f+1, thenletk:[m(f—m)&l
a) If (n—m)fis even, then choose an initial graph G=RU K, With R=R,,_. 5
delete k edges from R and add I =2k edges between the endvertices of the
deleted edges and the K.,

b) If (n - m)fis odd, then choose an initial graph G=A U Ky, A=A,_p g de-
lete k- 1 edges from A and add new edges: one edge between the orexic ver-
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tex of A and any vertex of the X,,, and 2(k — 1) edges between the endverti-
ces of the deleted edges and the K,,..

Case2. If n~m=f+1, then the initial graph is G=K;,,UK,. Delete
k= |.m( f-my2] edges from K, | and add I = 2k edges (one edge between of a
deleted edge and the K,).

Case3. If n—~m<f+1, then the initial graph is G=K;.,VK,_, with

x=(f+1)~(n~m), the number of vertices of K, , that are of degree f before

the construction and are orexic (of degree f— 1) after the construction (we call

these vertices “shared”).

Delete from Ky, ,:

a) ¥ =x(m-x+ 1) edges with exactly one end in the shared orexic vertices and

b) K= [m(f —m) ‘;(f +1 "“’)J edges between vertices not used in a).

Obtain B = B, ; ., by adding:

a) I'=m - x edges between each shared vertex and the X,,_, and

b) I” =K + 2k” edges, i.e., one edge between each other endvertex of a deleted
edgeandthe K,,_,. ®

Examples of Construction B are given in Figure 2.2 (cf. [9]).

(o]
o—-0 .
- -
X X

a) Case 1a): Rg.4UKz—)Bg'4’2 b) Caselb):A«,‘suK; —’B&S.l
o—-0 [}
% y N “9 4 N
Ny A N, 4
¢) Case 2a): KsU K, > Bg 5.2 d) Case 2b): Kz U K; — By 7.,

Figure 2.2. Examples of Construction B.a) n=8,f=4,m=2,b)n=8,f=5,m=1,¢)
n=8,f=5m=2,andd)n=9,f=7,m=2
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Theorem 2.2. The maximum size for an EM f-graph of order n with m (m as
in (1.1)) orexic vertices is

. nf—-m
£(n, f, m) = [—Lz—j @2
and a realization of this size is B = B, s given by Construction B.

Proof. By using the inequality of Theorem 1.5 and Construction B, we show
there exist an EM f-graph B, ;. of order n with m orexic vertices and size
£'(n, f, m) for all cases that parameters n, f, and m fulfill. A construction of such
a graph starts with an initial graph G = FUK,, with F=F,_,, s an EM f-graph
of order n —m and size ¢ = r*(n —m, f). The size of F being the maximum size,
over all m, for an EM f-graph of order n—m, provided n—m is not less than
f+1 (the order of a complete graph with vertices of degree /).

In the case when n — m is less than f+ 1 the initial graph and a procedure of
obtaining the result is modified. The basic idea of this construction is to increase
the number of edges of G by deleting some (independent) edges from the main
component (in most cases with vertices of degree f) of G and then adding new
edges between the two components (two new edges for each deleted edge). In
all cases a resulting graph B is of order n (with m orexic vertices) and size
t=1"(n,f,m).m :

3. Minimum size and its realizations

We first obtain the minimum size for an EM f-graph of order n with m orexic
vertices and realizations of graphs with this size. At the end of this section, the
global minimum size of such graphs and their realizations are determined. Spe-
cifically, the global minimum size of an EM f-graph of order n is the minimum
size independent of its number of orexic vertices.

Theorem 3.1. The minimum size for an EM f-graph of order n with m orexic
vertices,
. jn(n=f=1 R
OSmSmm{———z(”_f)_l ,f}
is

t(n, f, m) =P’-‘-’21)’:]+[';J . G.D)

Proof. By using the inequality of Theorem 1.5. m

We define two constructions, H and J, for EM f-graphs of order » and mini-
mum size as given in Theorem 3.1.
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Construction H. Given n, f, and m (with m as in (1.1), (2~ m)f odd, ard
n—m2 f+ 1) construct H, s, an EM f-graph of order n with m orexic vertices
and size £.(n, f, m) as follows.

1. Start with an initial graph G =A U K., with A=A, _,, ; (an almost regular
Jf-graph of order n — m).

2. Add an edge between the orexic vertex of A and a vertex of Ky o

In Figure 3.1 two examples of Construction H are shown (cf. [9]).

Y%

QTR @

a)H:A5'3UK2—>H-,'3 b)H:A-,.sUK;—)Hlo_s
Figure 3.1. Two examples of Construction H: 8) n=7,f=3,b)n=10,f=5

ConstmctionJ.Givenn,on/Z,masin(l.l),andfkn—mconsu'uctl,.,ﬁm
an EM f-graph of order n with m orexic vertices and size t.(n, f, m).
1. Start with the initial graph K= X,,_,, U K,,.
2. Letd=f-(n-m —l).whereu—m-listhedggteeoftheverﬁcesofK,_m.
3. Add!=d(n-m) edges, i.e., d edges from each vertex of the K, _ , to vertices

of the K, in such a way that the vertices of the K, remain orexic. Note that
in some cases not all / edges will be used.®

Two realizations of Construction J for n=8, f= 6 and m = 2 are shown in
Figure 3.2 (cf. [9)).

- !
i
% "

a)

Figure 3.2. Two realizations of Construction J for #=8, f=6 and m = 2 (d = 1) with
distinct degree sequences of arexic vertices a) deg=4,4 and b) deg =5, 3

o
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Theorem 3.2. A realization of the minimum size t.(n, f, m) for EM f-graphs
of order n with m orexic vertices (m as in (1.1)) is as follows.

Case 1. Ifn—m>f+ 1, then there are two cases:

a) if (n—m) fis even, then the realization is G=R U K,,, where R=R,_,,; isa
regular f-graph of order n — m, and

b) if (n —m) fis odd, then the realization is H = H, ; » (cf. Construction H).

Case 2. If n—m=f+ 1, then the realization is K= K, _ U Kp.

Case 3. If n—m < f+ 1, then the realization is J = J, ;. n(cf. Construction J).
Proof. Cases 1 and 2 are obvious. In Case 3, for a given n and f the value of m is
too big and vertices of a K, _ ,, are of degree less than f. Degrees of these vertices
are increased (up to the value of f) as defined in Construction J. m

Remark. In cases when for a given n, f, and m the maximum and the minimum
sizes are equal we obtain the same structure of EM f-graph using constructions
for the corresponding size (e.g., B for maximum size and J for minimum size
withn=6,f=4, m=2, cf. [9]).

Theorem 3.3. The global minimum size of EM f-graphs of order n is
t(nf) = _(:t_—m_)f]_‘_ m .
¥ [ 2 2 3.2)
with the value of m determined as follows.

Case A. If3<f<|n2l, then

1) if f is even, then can use either m =L(f+ l)/2_l orm= r(f-i- 1)12-]; a realiza-
tion is G=Ry.pm ;I K,

2) if fis odd, then m= (f+ 1)/2 is an integer; thus, if (n - m) is even, then a
realization is G = R, _  ;\J K; otherwise a realization is H=H,, ; .

CaseB. If ln2)l<f<n-2, then m=n-(f+1) and the realization is
K=Ky UK, g1y

Proof. From Theorem 1.5 we have (n — m)f + m(m — 1) < 2¢. The left hand side
is quadratic with absolute minimum value attained at m = (f+ 1)/2. In the event
(f+ 1)/2 is not an integer and since m must be an integer, the minimum value of
(n—m)f + m(m— 1) at integer values of m is attained at m =L(f+ 1)/2] and, by
symmetry, also at m=[(f+ 2] If (n - m)f is odd, then 2¢ can be no smaller
than (n —~ m)f + m(m — 1) + 1. Thus, the lower bound for ¢ is in all cases equal to

[ (n-m)me].

2 2

If 3 S f<Ln/2), there are the following types of EM f-graphs that realize the
above bound. Namely, if fis odd, then m = (f+ 1)/2 is an integer. When n—m
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is odd, then the bound is realized by H = H, ; . obtained by Construction H. For
all other cases in this range of f, the bound is realized by a regular fgraph of
order n —m union K,

If Lns2] <f<n-2, we have f> nf2, Thus, ms"i('—'-:}f_—)-l—:(see Corollary 1.4).
n—f)—

For a regular f-graph of order n - m to exist we need f< n —m — 1, which yields

n(n—f-1)
mSn-f l<2(n-f)—l'
To obtain the minimum size we want the smallest order regular f-graph R
such that R K, has minimum size. This is achieved when m=n—f-1 and
R= K,g. 1- 8

4. Size classes

The set of all EM f-graphs of order n is subdivided into size classes. When
the number m of orexic vertices is fixed, the number of size classes is

S(n, f, m)=1£(n,f, m) - tu(n; f, m) + 1.

Theorem 4.1. The number of size classes of EM f-graphs of order n with m
orexic vertices (m as in (1.1)) is

St =,[nf;mJ - [(n-M)f]_[':] +1 @1

2

Proof. Follows from Theorems 2.2 and 3.1. m

Let S(n, f) denote the number of size classes of EM f-graphs of order n. Then
SmN=r0N-tmH+1 @42

Theorem 4.2, The number of size classes of EM f-graphs of order n is as fol-

lows.

Case A. If2 S £ <Ln2) then S(n, f) = { a, f=3mod4),n odd
a

+1, otherwise
where a =[m7f‘l+[';] withm=(f+ 1)/2].

Case B. If Ln2] <f<n -2, then S(n, f)=[%J-(f ;IJ-—(';)H,

withm=n-(f+1).
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Proof. Straightforward calculations with m = L(f+ 1)/2] and the results of Theo-
rems 2.1 and 3.3 yield the statement of the Theorem. m

Theorem 4.3. The maximum number of size classes of EM f-graphs of order
n(nz4)is
S’m=Ln"ne+1l @.3)
There is one value of f such that S(n, f) = S"(n):

a) f'(n)=L3n/4 - 1] when n=0, 4 or 7 (mod 8),

b) f*(n) =3n/4 - 11 when n=1 (mod 8),

and there are two values of f-

o) f () =L3n/4 - 1) and f*(n) =[3n/4 - 11when n=2,3, 5, and 6 (mod 8).

Proof. Maximizing S(n, f) =ll{-J-(f ;lJ—("-g —l)ﬂ as a function of f shows

S(n, f) has its maximum value |n%/16 + 1] at f=3n/4 — 1. However, f must be an
integer. This occurs when n = 0 (mod 4) and a partition of the values of n
modulo 4 is sufficient to find when the maximum is achieved at
f=L3nd-1]or [3n/4 - 1] or in some cases at both of these values. A further

artitioning of the values of n modulo 8 distinguishes precisely when
f3n/4 —1J#[3n/4 - 1] and both yield the maximum value of S(n, f). m

Table 4.1 shows, for n=9 and n = 10, the partition of the number of all EM
f-graphs (f=2, 3, ..., n—2) of order n into classes with m orexic vertices and a
given size t=t*(n, f)—i, with i=0, 1, ... (cf. Table A.3 in [9] with 4<n<10).
Note that the maximum number of size classes is $°(9) = 6 with £°(9) =6 and
§°(10) = 7 with £ *(10) = 6, 7. However, there is no general formula for the num-
ber of EM f-graphs with f> 2. :

Table 4.1. The number of EM f-graphs of order n=9,and 10, 2= 1%(n, f) -i,0<m<f

n=9
f=2 f=3 f=4 f=5 f=6 f=7

m|Oj1|2]1 1 |2{3] O 1 2 |3]4]1 1 213 |oj1] 2 (3]1]2]3
i

5 1

4 1 2

3 211 1 2 11 6 |3]1

2 6 | 16 {3]1 10} 7 2111 |4]1]2

1 312] 6 |4]|2 28|41 j0j0) 1331 |11 5110joj1{1]1
0 j4j0j0]20]j0|0]16] O 0|0 0| o0 Jai0] O |O]LjO]|O
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n=10

|f=2 =3 f=4 f=5 ' =6 l =7 |f=
.MIOIZ 0j{1]2j0] 1] 2 3f 0j1]2]3 oj1]1 213 4!01] 213 ﬁo 213
1
6 1 1
5 112 2
4 3 |1n 519 6|4 1
3 6 |2 29 [13]1 4136|352 |1{13]10 113
2 6 16 | 63 9|1 28 (206 |5812 2013]663' 412411313} (121
1 413 20]24 12620000§ 1783610 [0 60]4]00'7'600'1]'
0 |5|oj0j21j0|060] O | O IOIOIGO 0jo0]o |0|2l 0|0 }0 IUTS-'O 0 0‘0'”0 0[0!

S. Two problems

The number of size classes of EM f-graphs of order n and structures of ex-
tremal size graphs have been obtained. We propose the following open prob-
lems.

1. What is the number of extremal size EM f-graphs of order n with m orexic
vertices?
2. Determine the number of extremal size EM f-graphs of order ».
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