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Abstract

Graceful labellings have both a mathematical beauty in their own
right and considerable connections with pure and applied combina-
torics (edge-decomposition of graphs, coding systems, communica-
tion networks, etc.). In the present paper we exhibit a graceful la-
belling for each generalised Petersen graph P, 3 witht > 1. As a
consequence we obtain, for any fixed ¢, a cyclic edge-decomposition
of the complete graph Kys:+1 into copies of Py 3. Due to its ex-
treme versatility, the technique employed looks promising for finding
new graceful labellings, not necessarily involving generalised Petersen
graphs.

Keywords: Edge decomposition, generalised Petersen graph, graceful
graph, graph labelling.
AMS Subject Classification: 05C78.

1 Introduction

Let G = (V, E) be a connected graph with no loops and A: V — {0,1,2,...,
|E|} be an injective vertex labelling. Let us also denote by X the induced
labelling, on the edges, assigning the value [A(x) — A(v)| to the edge {u,v}.
In keeping with the standards, we provide the following notion.

Definition 1.1. In the above setting, the labelling A is termed graceful if
X' is injective (equivalently, if it is a bijection on {1,2,...,|E|}). A graph
which admits a graceful labelling is termed graceful as well.
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Starting from the work of Rosa in [9], many types of graphs have so
far been proved to be graceful, whereas a number of necessary conditions
for gracefulness have been recorded which, because of their absence, have
ruled out some other types of graphs. Nonetheless, a considerable amount
of graphs still keep their secret as to being graceful or not. For example the
“graceful tree conjecture”, stating that every tree is graceful, has not been
proved or disproved yet (see (7], a thorough survey on graph labellings).
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Figure 1: Graceful labellings for the 6-path and the complete graph K4
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The gracefulness problem has also been tackled from a more general
viewpoint, namely, that of relazed graceful labellings (see [10]). For a par-
ticular kind of these labellings, A and )’ are allowed to take larger values
than |E|, injectivity still being required for both maps. Relaxed graceful
labellings have been recently investigated also from the asymptotic point
of view (see (3]), while connections with the so-called Golomb rulers can be
found, for example, in [1]. '

Among the classes of graphs which have unveiled only partial informa-
tion on gracefulness, we find that of generalised Petersen graphs.

Definition 1.2. Let n, k be positive integers such that n >3 and 1 <k <
[(n — 1)/2). The generalised Petersen graph Py is the graph whose vertex
set is {a;, b;: 1 < i < n} and whose edge set is {{a;, b}, {ai, aiv1}, {bi, biv}
: 1 <1 < n}, where apyc = ac and bayc = b for every c 2 1.

Figure 2: The generalised Petersen graphs Ps; and Ps3
In [6] gracefulness has been established for all graphs Pr; . Such graphs

are known as prisms. Other proofs that prisms are graceful - each proof not
covering the whole spectrum — were provided earlier (see [7]). Furthermore,
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by a comparatively recent computer search gracefulness was certified for
finitely many P, x’s with k& > 1 (see [8]).

In the present paper we exhibit graceful labellings for an infinite class
of generalised Petersen graphs having k > 1. More precisely, in the second
section we prove the following.

Theorem 1.3. P 3 is graceful for every t > 1.

The basic idea in the proof is that of splitting any given graph into a
cycle and a residual family of 3-ray stars, whose endvertices are connected
to the cycle, and whose edges are altogether as many as those forming
the cycle. After endowing the cycle with a labelling that yields all even
differences, and whose labels are all even integers, it is not an impossible
task to provide the star centres with suitable odd numbers that complete
the labelling.

Besides its unquestionable aesthetic appeal, gracefulness has many con-
nections with real-life models. A relevant starting point in the literature
appears to be [2], by Bloom and Golomb, in which graceful labellings and
other kinds of labellings were shown to be quite helpful when dealing with
e.g. coding systems, communication networks, X-ray analysis.

Without going far from pure mathematics, we can find an immediate
and precious application of graceful graphs in the realm of graph theory
itself. It is indeed not difficult to see that any gracefully labelled graph G
on v vertices yields a cyclic decomposition of the complete graph Ky, into
copies of G (this property was first highlighted by Rosa in [9]). Accord-
ingly, in the third section of this paper, after recalling some basic notions on
graph decompositions, we exploit the main theorem to obtain decomposi-
tions of complete graphs by means of graceful generalised Petersen graphs.
Subsequent considerations will eventually flow into a conjecture involving
a stronger notion than gracefulness, namely the o-labelling property.

2 The main theorem

The whole section is devoted to the proof of the main theorem.

Proof of Theorem 1.3. The initial spark of the proof is the splitting of some
given Py 3 into a cycle of length 12¢ and a family of 4¢ 3-ray stars, with the
three endvertices of each star lying on the (12t)-cycle. The high symmetry
of the initial graph reflects in the easily understandable, and harmonious,
law that governs the linkages between the stars and the cycle.

The length of the cycle allows for a graceful labelling of this subgraph
~ in fact, a well-known result (see [9]) states that the graceful cycles are
precisely those of length congruent to 0 or 3 (mod 4). After gracefully
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Figure 3: Looking at Py, 3 in a different way

labelling this 12t-cycle, we shall multiply labels by 2, thus obtaining all
the required even differences. Subsequently, labelling the star centres by
suitable odd numbers will result in a complete graceful labelling of the
initial graph.

As the first step let us formally introduce the above-mentioned (12¢)-
cycle. Bearing in mind Definition 1.2, we define the required cycle as

(b3 a3 a2 a1 by by by ar as as bs bg b an1 ...

. Ggi_5 Ggt—6 Qst—7 Dst—7 bst—a bse—1 Gse—1 Gse—2 ase—3 bsi—3 bst )

(see Figure 3). After a little thought, the reader will realise that the above
cycle is indeed contained in Ps 3 and that the stars completing the graph
can be grouped in two subfamilies: stars, say, of class 1, having the centre
bai—o connected to bgi—s5, aai-2, bais1 for 1 < i < 2¢, and stars of class 2,
having a4; connected to agi—1, bai, asi41 for 1 <i < 2t.1

On the above cycle, and in the same order, we now define and amplify
by 2 a graceful labelling, as follows.

bat+3

bs a3 az a; bat—3 bae
(24t, 0, 24t-2, 2, ..., 18t+2, 6t—2, 18¢,
a4e43 G442 Q4041 bae—3 bae
6t+2, 186 -2, 6t+4, ..., 12t +2, 12t).
In formal terms, every a; with i = 1,2,3 (mod 4) is labelled respectively
by 2+3(@—1)/2+€:, 24t — 2= 3(i — 2)/2, 3(i — 3)/2+¢€;, where g; = 2

1 This splitting is applicable to the more general class {P4s,3: s > 1}. However, if s
is odd the resulting cycle is not graceful, because 6s = 2 (mod 4). It would be nice to
adapt the present construction to the odd s case.
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if i > 4t + 1 and ¢; = 0 otherwise; also, every b; with ¢ = 0,1,3 (mod 4) is
labelled respectively by 4+3(i—4)/2+¢;, 24t—4—-3(i—1)/2, 24t -3(i—3)/2,
where €; = 2 if i > 4t + 4 and ¢; = 0 otherwise.

Leaving aside four exceptions, two for each class, it can be easily seen
that the labels of the three endvertices of each class-1 star turn out to be
of the form X, X — 8, X — 16, while those of each class-2 star are of the
form X, X +4, X + 8 (we have used different orderings merely to take into
account the cycle orientation). More precisely, denoting respectively by [X]
and [[X]] the above triples, with little effort the reader can prove that, if
t > 2, the arising triples are

{[6z]: 2t+3 <z < 4t}U{[[6z]): 0< z < t—-2}U{([6z+2)): t <z < 2t—2}

together with the triples { {12¢+ 12,12t + 4, 24t — 4}, {12t + 6, 24t — 2, 24¢ —
10}, {6t — 6,6t — 2,6t + 4}, {12t — 4,12¢,2} }, whereas if ¢ = 1 the only
triples are the last four. In the sequel, these exceptional triples will be
shortly denoted by (a), where ¢ is the first entry of each of them.

The assignment procedure for the star centres splits in two infinite fam-
ilies of constructions, depending on the parity of t > 4, plus three construc-
tions “ad hoc” for the smallest values of t. With a slight abuse of notation,
we shall often identify triples and corresponding centres.

Case 1: t even and greater than 2.

A short computation shows that‘the labelling
[6z] = 24t — 5 — 6z (x 0dd) , [6z] — 24t + 3 — 6z (z even),

where 3t + 3 < = < 4t, generates the differences {12t + 25+ 42: 0< 2 <
3¢t — 7}. The labels employed are {1 + 12u,3 + 12u: 0 < u < t/2 — 2}.
Similarly, the labelling

[6z] — 24t + 11 — 6z (z odd) , [6z] — 24t + 19 — 6z (z even),

where 2¢ + 3 < x < 3t, generates the differences {9+42:0< 2 < 3t - 7}.
This time the labels employed are {6t + 17 + 12u,6t + 19 + 12u: 0 < u <
t/2 -2},

The centres of the remaining two stars of class 1 are labelled by [18¢ +
12] + 6t — 11 and [18¢ + 6] — 6t — 13, thus obtaining the differences
{12t +3+42:0< z < 5}.

Now we deal with the stars of class 2. Using the labelling

([6z]] — 24t —1—-62: 0<z<t-3
we obtain the differences {12¢+27+42: 0 < z < 3¢t~ 7}, while the labelling
([6x+2]))—24t -3 -6z : t<z<2t—2
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generates the differences {11 +42: 0 < z < 3t — 4}. The labels employed
in the above cases are, respectively, {18¢ + 17 + 6u: 0 < v < t — 3} and
{12t +9+6u:0<u<t-2}.

The remaining triple, namely [[6¢ — 12]], is mapped to 18t + 9 so as to
obtain the differences {12t + 13 + 42: 0 < 2 < 2}.

Finally, we deal with the exceptional stars, as follows. (12t + 12) —
24t — 3, (12t + 6) ~— 12t + 1,(6t — 6) — 18t + 3,(12t — 4) — 12t + 3.
These assignments produce altogether the differences {1,3,5,7} U {12t —
15+42: 0< 2 <6}u {12t -1}

It can be easily checked that, in the whole procedure, no label appears
more than once and that all the required differences are obtained, with no
repetition.

Case 2: t odd and greater than 3.
The labelling

[6z]) = 24t — 5 — 62 (z odd) , [6z] — 24t + 3 — 6z (z even),

where 3t + 4 < z < 4t, generates the differences {12t +37+42: 0 < z <
3t — 10}. The labels employed are {1+ 121,34+ 12u: 0 < u < (t — 5)/2}.
Furthermore, if t # 5, the labelling

[6z] = 24t + 9 — 6z (z odd) , [6z] — 24t + 17 — 6z (z even),

where 2t + 3 < z < 3t — 3, generates the differences {11 +42z: 0 < z <
3t — 16} (if t = 5 such a labelling is not required, and we skip to the next
assignment). The labels employed are {6t + 33 + 12u,6t + 35 + 12u: 0 <
u< (t-7)/2}.

The remaining six labellings for stars of class 1 are [18¢ + 18] ~» 6t —
17, [18t+12] - 6t— 19, and [18¢ — 12+ 6z] s 6t+11+4z with 0 < £ < 3,
the first two yielding the differences {12¢ + 15 + 4z: 0 < z < 5}, the other
four yielding {12t — 39 +22: 0 < z < 11}.

We now deal with the stars of class 2. First we consider the labelling

[[6z]] — 24t —1—-6z: 0<zx<t—4,

which produces the differences {12t + 39 + 42: 0 < z < 3t — 10} and, if
t # 5, the labelling

([6x+2])— 24t —5—6z : t+4<z<2t—2

(if t = 5 we skip this labelling, as above) generating the differences {9 +
4z: 0 < z < 3t — 16}. The labels employed in these cases are, respectively,
{18t +23+6u: 0 <u<t—4}and {12t +7+6u:0<u <t -6}
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It remains to label the centres of six stars, which is done as follows. (I)
(6t — 18]] — 18t + 15 and [[6t — 12]] — 18t + 9. (II) [[6t + 2]) — 18t -3
and [[6t + 8]] = 18t 4 19. (III) [[6¢ + 14]] — 18t — 27 and [[6t + 20]] ~—
18t — 23. These assignments yield, respectively, the differences {12¢ + 13 +
42: 0 < 2 < 5}, {12t — 13+ 42: 2 € {0,1,2,4,5,6}}, {12t — 51+ 22: 0 <
z < 5}. The six corresponding labels make up the set {18t + u: u €
{~27,-23,-3,9,15,19}}.

Finally, the four exceptional centres are labelled as in the even case.
Again, the not so troublesome routine checks are left to the reader.

Case 3: ad hoc constructions fort =1,2,3.

If t = 1, we use the following labelling. (24) — 1,(18) ~— 13,(0) —
21,(8) — 15. If t = 2, we make the assignments [48] — 1, [42] > 25, [[0]] —
45, ([14]) — 33, (36) > 23, (30) > 3, (6) ~ 39, (20) > 27. Finally, the case
t = 3 is managed as follows. (72] — 3, [66] — 1, [60] — 33, [54] > 23, [[0]]
71, (6] > 65, [[20]] > 67, [126]] > 43,(48) 69, (42) 1 37, (12) = 57,
(32) — 39. Routine calculations are, as usual, left to the reader.

O

3 A corollary and some remarks

We are confident that some more familiarity with the present method will
allow to construct graceful labellings for other classes of P, ’s. Actually,
our hopes are not confined to generalised Petersen graphs, for we believe
that even the graceful tree conjecture might become a little more affordable,
using the present method. In the case of trees, however, some inductive
argument should in our opinion back the above technique, thus keeping the
pace of the “rocketing” of trees when the number of vertices increases.

Leaving aside the hoped for consequences in the next future, let us come
back to the present theorem and exploit it in a classical fashion. We first
recall some terminology. Let G = (V, E) be a finite graph and L = (V, E")
be a subgraph of G such that |E| = w|E’| for some integer w. If G contains
w copies of L, say L = Ly, La, ..., L,, whose overall edge set is equal to
E, then we are in the presence of a decomposition of G into copies of L,
also known as a (G, L)-design (see for example [5]). When interpreting the
vertices of G as elements of (Zjv), +), and letting this group act on V itself
through the sum operation (the action naturally extends to the incidence
structure, by defining the new edges as the images of the old edges), the
above decomposition is termed cyclic if, for any z € Z)v| and any copy L;,
we have that 2z + L; = L; for some j.

We are now in a position of proving the following.

Corollary 3.1. There ezists a cyclic (K4se41, Pat 3)-design for everyt > 1.
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Proof. Let us think of the labels of a gracefully labelled graph Py 3 as
integers (mod 48t + 1). By doing so, this graph becomes a subgraph of the
complete graph Kg;41 whose vertex set is Z4g¢4+1. Now it can be easily seen
that the family {z+ Ps¢,3: 0 < z < 48t} provides an edge-decomposition of
Kagi41. Such decomposition is clearly cyclic. O

It is well known that the above argument is applicable to whatever
gracefully labelled graph G, thus yielding a cyclic (K2jg(q)|+1, G)-design.
Such a general scheme dates back to Rosa ([9]). In the same quoted paper, a
stronger property than gracefulness was defined which, if satisfied, enables
a graph to edge-decompose infinitely many complete graphs. The next
definition deals with this property.

Definition 3.2. Using the terminology of Definition 1.1, the labelling A
is termed an a-labelling if it is graceful and there exists an integer I such
that, for any edge {u,v} with A(x) < A(v), the inequality A(u) < I < A(v)
holds.

We remark that — as it could be proved with few difficulties — a graph
admits an a-labelling only if it is bipartite. The following result points out
the mentioned connection between a-labellings and graph decompositions.

Proposition 3.3. ([9]) If a graph G having e edges admits an a-labelling,
then there ezists a cyclic (Kace+1, G)-design for everyc > 1.

Our interest in a-labellings stems from the fact that the graceful la-
bellings devised in the above main proof are very close to be a-labellings.
More precisely, in the two general constructions the only obstacle is given
by the labels of the exceptional stars, (12t + 12), mapped to 24t — 3. This
assignment prevents the choice of I = 12t + 1 for obtaining an a-labelling.
Instead, I = 13 and I = 25 are suitable values for the cases t = 1,{ = 2
respectively, whereas in the case ¢t = 3 the assignment (48) — 69 preju-
dices the choice of I = 37. It seems then natural to propose the following
conjecture.

Conjecture 3.4. There exzists an a-labelling for every graph Pg3 with
t>1.

Needless to say, this conjecture would not make sense if some Py 3 were
not bipartite. However, using the above cycle-stars splitting, the reader
can immediately obtain a vertex bipartition for every t. More generally,
and with no resort to the splitting, it would be extremely easy to show that
P, admits a vertex bipartition if and only if n is even and k is odd.
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