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1 Introduction

A complete graph of order v, denoted by Ky, is a graph with v ver-
tices, where any two distinct vertices z and y are joined by one edge
{z,y}. Let G be a finite simple graph. A G-design of K, denoted by
G-GD(v), is a pair of (X, B), where X is the vertex set of K, and B
is a collection of subgraphs of K, called blocks, such that each block
is isomorphic to G and any two distinct vertices in K, are joined in
exactly one block of B. The necessary conditions for the existence
of a G-GD(v) are
v(v—1) =0 (mod 2¢), (v—1)=0 (mod d) and v > g,

where V(G) and E(G) denotes the set of vertices and edges of G
respectively, e = |E(G)|, g = |V(G)|, and d is the greatest common
divisor of the degrees of all vertices in G.

t
Let X = |J X; be the vertex set of Ky, n,,....n,» & complete mul-
i=1
tipartite graph consisting of ¢ parts with size ny,ng,- -+, n respec-

tively, where the sets X; (1 < ¢ < t) are disjoint and |X;| = n;.
Let v= i n; and G = {X1, X2, --,X:}. For any given graph G, if
the edge::cl)f Ky ng,ne can be decomposed into edge-disjoint sub-
graphs A, each member of which is isomorphic to G and is called
a block, then the system (X,G,A) is called a holey G-design, de-
noted by G-HD(T'), where T = n}n}---n} is the type of the holey
G-design. Usually, the type is denoted by exponential form, for ex-
ample, the type 1?2273 . .. denotes i occurrences of 1, 7 occurrences of
2, ete. A G-HD(1v"%w!) is called an incomplete G-design, denoted
by G-ID(v,w) = (V,W, A), where [V| =v, [W|=wand W C V.
Obviously, a G-GD(v) is a G-HD(1?) or a G-ID(v,w) with w =0
or 1.

For the path P, the star K and the cycle Cy, the existence
problem of Py-GD(v), K1 x-GD(v) and Cy-GD(v) has been solved,
refer [1,6,11]. The graph design problem for some other grapbs, e.g.,
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k-cubel™], cycle with one chord!4l and so onl121316] has also been
researched. On the other hand, for the graphs with fewer vertices
and fewer edges, the existence of their graph design has already been
solved (2391,

In this paper, we will discuss the graphs with six vertices and
seven edges. There are twenty such graphs without isolated vertices
(see the Appendix I in [10], pp 254-255). For two graphs among
them, i.e. 6-cycle with a chord, the existence of their graph designs
has been given in [14]. For other two graphs among them, i.e. K3
with a pendent edge, the existence of their graph designs has been
given in [8]. The remaining 16 graphs G, 1 < k < 16, are listed
as follows and are denoted by (a,b,c,d, ¢, f) according the vertex-
labels in each graph. Note that the graph design for graph G, as
a theta-graph, has been already given in [5]. However, for the sake
of completeness, we will still show our construction.

f f—e
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a/N\d e_la 4 e d p/ |
b—¢ b —c—f b—wc
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In what follows, element (z,%) in Zn, x Z, may be denoted by x; for
brevity. Moreover, z;+y; = (z,%)+(¥,J) = (z+y,i+37) = (z+¥)i+4)
00+ = 00, 00+ z; = 0o. For the block B = (z, y, z,u,v,w), B mod
m denotes the blocks (z+t, y+t, z+t, u+t, v+t, w+t), 0 <t <m—1.
In Zp, x Zp, a block mod (m,n) denotes that the first (resp. second)
coordinate taken modulo m (resp. n), while mod (m,—) denotes
that the first coordinate taken modulo m, the second invariant.

In this paper, we shall prove that the necessary conditions for the
existence of a Gx-GD(v) are also sufficient for each Gy with the ex-
ceptions (v,k) € {(7,6),(7,7),(7,12),(7,15),(7,16), (8,11),(8,14),
(8,16)} and possible exceptions (v, k) € {(14¢ + 8,16) : t > 1}. The
main way to get all constructions is the following lemma.

Lemma 1. For given graph G and positive integers h,w, m, if there
exist G-HD(h™), G-ID(h+w,w) and G-GD(w) (or G-GD(h+w)),
then G-GD(mh + w) exists, too.

2 Constructions for holey designs

A quasigroup is a set Q with a binary operation “”, denoted by
(Q,-), such that the equations a -z = b and y - a = b are uniquely
solvable for every pair of elements a, b € Q. It is well known that the
multiplication table of a quasigroup defines a Latin square. Similarly,
a quasigroup can be obtained from a Latin square. A quasigroup is
said to be idempotent (or symmetric) if the identity z - = z (or
z-y=1y-z) holds for all z € Q (or =,y € Q). Let § be a finite set
and H = {51,852,---,Sn} be a partition of S. A holey Latin square
with holes H is a |S| x |S| array L on S such that:

(1) every cell of L either contains an element of S or is empty;

(2) every element of S occurs at most once in any row or column

of L;
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(3) the subarrays indexed by S; x S; are empty for 1 < i < n;
(4) element s € S occurs in row (or column) ¢ if and only if

(s,8) € (S x S)\igl(s,- x ;).

The type of L is the multiset T = {|S;] : 1 < i < n} and will
be denoted by exponential notation. A holey symmetric quasigroup
corresponding a holey symmetric Latin square with type T is denoted
by HSQ(T) = (S,H,-). Two Latin squares L; and Ly on a set S
said to be orthogonal if their superposition yields every ordered pair
in § x S. A Latin square is called self-orthogonal if it is orthogonal
to its transpose. A self-orthogonal quasigroup corresponding to a
self-orthogonal Latin Square of order v is denoted by SOQ(v). An
idempotent SOQ is denoted by 1SOQ.

Lemma 2.9

(1) There exists an idempotent quasigroup of order v if and only
ifv#2;

(2) There exists an idempotent symmetric quasigroup of order v
if and only if v is odd;

(8) There exists an HSQ(2") for alln > 3;

(4) There exists an ISOQ(v) for v # 2,3,6.

Let (I,,-) be an idempotent quasigroup and (I,,™,-) be an
HSQ(2") with holes H = {{2r — 1,2r} : 1 < r < n}, where I,, =
{1,2,---,n} and Ir, = {1,2,--+,2n}. Define six subsets of I, x I,
and three subsets of Iy, x I, as follows:
P={Gij):1<i<j<n}, Q={(,j-i):1<i<j<n},
R={(,j-9):1<i<j<n}, S={(j,i-j):1<i<j<n},
M={(4):1<i<j<n}, N={(i-j,ji):1<i<j<n)
P'={(,5-7):1<i<j<2n,{ij} ¢H}
@ ={(,é-5):1<i<j <255} ¢ M),
M ={(,7):1<i<j<2n,{j} ¢H)

Lemma 3. Under the definitions above-mentioned,
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(1) PuQ (or RUS, or MU M™1) forms all ordered 2-subsets
in I,.

(2) NUN-! forms all ordered 2-subsets in I, if (In,-) is self-
orthogonal.

(8) PUQ’ (or R'US', or M'UM'~1) forms all ordered 2-subsets
in Ion without H. '
Proof.

(1) From |P| = |Q| = |R| = |S| = |M]| = |N| = (3), we have

|P| +1Q| = |R| +|S| = |M| + M~ = [N|+ N7} = n(n - 1),
which is just the number of all ordered 2-subsets in I,. And, it is
easy to see that the ordered 2-subsets in each one of P,Q,R,S,M
and M~! are distinct. Furthermore, we have

PNnQ=9, RNS=0and MNM!=0.

In fact, if (u,v) € PNQ, let (u,v) = (3,i-j) = (§/,5' - ¢') then i = §'
and i-j = j' - i'. Therefore j = i’ and 7 = j/, the conditions i < j
and 7’ < j' can’t be simultaneously satisfied. Similarly, we can prove
that RNS=0and MNM~1 =0

(2) The cell in the ith row and the jth column of the superposi-
tion of the corresponding Latin squares L and LT is (i-4,7-1). These
cells are distinct if (I,,-) is self-orthogonal, which implies that the
ordered 2-subsets in N or N~ are distinct. Suppose N N N~1 3 0,
then there is (u, v) = (i-4,5-3) = (j’-7,4'-j’). Thereby (i,7) = (5',')
by the self-orthogonality, which is still a contradiction with ¢ < j and
i<y

(3) From |P'| = Q] = M| = M| = (§) —n = 2n(n - 1),
we have

|P'| + Q| = M| +|M 7| = dn(n - 1),
which is just the number of all ordered 2-subsets in I, without H.
And, similar to (1), we can show that the ordered 2-subsets in each
one of P',Q', M’ and M’ are distinct and
PNQ =0and M'nM-1=0
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both hold also. O

Let G be a given simple graph and let e = |E(G)|. In order to
construct a holey graph design G-H D(e™), we may take Z, x I, as the
vertex set and Z, as the automorphism group of the block set, where
(In,) is an idempotent quasigroup on the set I, = {1,2,---,n}.
A G-HD(e™) consists of (;Zez = "(n; 1¢ blocks. For our methods,
the range of the subscripts of 1'1'—‘2_—12 base blocks A;; is taken as
1<i<j<n.

On the other hand, in order to construct a holey graph design
G-HD((2e)"), we may take Z. x Is, as the vertex set, Z. as the
automorphism group of the block set, where I, = {1,2,---,2n}
and (I2n,H,-) forms an HSQ(2") with holes H = {{2r — 1,2r} :
1 < r < n}, which exists for n > 3 by Lemma 2(3). In fact, for
the original G-HD((2e)™), the vertex set Zs. X I,, contains n holes
with size 2e: H; = Zj, x {i}, 1 < ¢ < n. Now, halve each hole
H; into Hy;—y and Hy;, where each H; = Z, x {j} has size e, 1 <
J < 2n. Then, equivalently, the holes of the G-HD((2e)") can be
regarded as Hy, Ho,- -, Ho, with such restriction that there is no
edge between Hop;_y and Ho;, 1 < i < n. A G-HD((2e)") consists
of Q@i = 2n(n — 1)e blocks. For our methods, the range of the
subscripts of 2n(n — 1) base blocks A;; is taken as 1 < i < j < 2n
and {7,7} ¢ H. Below, it suffices to construct only one base block
A;; for constructing G-HD(e™) and G-HD((2e)"), where 4,j are
variable in the given range.

Let z,d € Z, and %,j be in the given range for A;; in above-
mentioned constructions G-HD(e™) and G-HD((2¢)"). Each ver-
tex in the base block may be labelled as one among four forms:
(z,9), (,5), (z,i - j) and (=,j - i), where (z,i-j) and (z,j - i) are
the same for the symmetric quasigroup. Each unordered edge in the
base block may be one among six forms:

{(z,9), (z +4d, )}, {(z,9),(z+d,i D)}, {(2,5-9),(z+d,5)}

263



{(zsi)7 (:B+d,j 2)}’ {(x’zj), (l‘-l-d,j)}, {(a:,i-j),(:v+d,j Z)}
For given d € Z,, u,v € {i,5,%- 4,7 - i} and u # v, the edge joining
vertices (,u) and (z + d,v) in base block A; ; is denoted by d(u, v),
which represents a mixed difference orbit {{(z,u),(z + d,v)} : z €
Z.}. And, denote D(u,v) = {d: d(u,v) € A;;}.

Lemma 4A. Let (I,,-) be an idempotent quasigroup on the set I, =
{1,2,---,n} and G be a graph with e edges, then A= {A;;:1<i<
j < n} can be taken as a base of a G-HD(e") under the action of
automorphism group Z. if the following conditions hold.

(1) D(i,i-5) = D(j,j -4), D(i,5 -4) = D(j,%-4), D(3,5) = D(3,1);
(2) D(@i-j,j i) =D(j-14,%-7) when (In,:) is self-orthogonal;

(3) D(4, 5)UD(i, i-5)UD (54, 5)UD(, §-1)UD (-5, H)VD(i-§, 1) = Ze.
Proof. By the conditions and the conclusion (1), (2) of Lemma 3,
each ordered (mixed) difference between any two of n holes appears
in the base A. Note that, for symmetric (I, -), the conditions become
D(iyi-j) = D(j,i - j) and D(5,5) UD(i,i-j)UD(G - §,5) = Ze. O

Lemma 4B. Let (Ion, H,-) be an HSQ(2™) with holes H = {{2r —
1,2r} : 1 <r < n} and G be a graph with e edges. Then {A;;:1<
i<j<2n{ij} ¢ H} can be taken as a base of a G-HD((2e)")
under the action of automorphism group Z. if
D(":"‘J) = D(],Z]) and D(Z,J)UD('&,%j)UD('Lj,j) = Ze.

Proof. By the conditions and the conclusion (3) of Lemma 3, each
ordered (mixed) difference between any two holes of n holes appears
in the base A. O

Lemma 5. There erist Gx-HD(7?*1) and Gx-HD(14**2) for 1 <
k<14 andt>1.

Proof. By Lemma 2(2), there exists an idempotent symmetric
quasigroup (Io;4+1,-) on the set Ipy; = {1,2,...2t + 1}. For each
G, 1 < k < 14, define a system Ai = {Ax(¢,7) mod (7,-):1<i<
j < 2t+1} on the set X = Z7 x Ip41, where each base A (2, j) is as
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follows.

Al(i,j) = ((0» i): (2ri .7)’ (O7j), (l,i ’ J)’ (4aj)) (3,j)),

A2(i’j) = ((O’ i)a (2:'5 : .7)7 (O?j): (lai ) .7)1 (3:j)a (63 7’))7

A3(i’j) = ((01 i)) (2’i J)’ (O:j)1(1'i 'j)’(4>j), (4)i)),

A4(i1j) = ((O,j), (3v i)v (5aj)) (O! i)r (1)7: : .7)) (G,j)),

A5(":aj) = ((Oa i): (5vj)a (3s i)’ (Osj)’ (l’i .7)1 (477:)):

AG(i,j) = ((2ai -3), (0, i), (1,4 - 5), (0,5), (5,9), (5,j)),

A7(i’j) = ((1:7: .7)9 (0’ i)’ (2’7: .7): (O’j)’ (4’ i)’ (5vj)),

AS(ivj) = ((O’i)’ (G’j)a (2, i)’ (3’j)’ (O,j)a (2ai : .7)))

AQ(i,j) = ((Oa i)’ (11 i')v (37 i)’ (O)j)1 (3,.1): (5ai : .7)))

Alo(isj) = ((Oai : .7)1 (Lj): (3’ i), (3aj)’ (lv i), (5,2 - 7)),

All(i»j) = ((0’ i)’ (lai : .7), (3, i)’ (31j)) (4,j), (Sai . .7)),

A12(i7j) = ((O’i)a (3,j)1 (3: i)a (Ovj)’ (1,2' .7)1 (2"’: .7)):

AIS(i:j) = ((5,j), (177: ) .7): (31i ' .7)’ (2aj)v (0) i)a (51 z)):

Al4(iaj) = ((5)j)1 (lsi .7)) (3:'5 .7)’ (2’j)x (Ox i), (07.7))
It is not difficult to verify that each A(4, 7) satisfies the conditions
in Lemma 4A, so each Ay, forms a G-HD(7%+1), Furthermore, let’s
consider the HSQ(2*2) = (Iye44,H, ) with holes H = {{2r—1,2r} :
1 < r < t+2}, which exists for t > 1 by Lemma 2(3). So, by Lemma
4B, Ai = {Ak(i,5) mod (7,-) : 1 < i< j <2t +4,{i,j} ¢ H} will
form a Gp-HD(14**2) for 1 < k < 14. 0
Lemma 6. There exist a G15-HD(T') fort # 2,3,6, a Gls-HD(14‘)
Jort > 3 and a Gi16-HD(14%) for t > 4.
Proof. By Lemma 2(4), there exists an ISOQ(t) = (I3, -) on the set
I; ={1,2,-- -t} for t # 2,3,6. It is easy to verify that the base blocks
in following each construction satisfy the conditions in Lemma 4A.

Gis-HD(7") X =27 x I,
(3]',01;,3,',0_7', 1:4,155) mod (7,-), 1<i<j<t.
Gls-HD(14t) X=2ZuxhL 1<i< j<t,
(6i:5, 15,15, 45.5,04,07), (574,24, 9,13;4,0;,7;) mod (14, ~).
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G15-HD(143) X = Z14 X Z3,
(01,62, 115,19,00,21), (31,22,122,9),00,51) mod (14,3).

G15-HD(146) X = Z14 X Zs,
(104, 79,139, 114,00, 102), (113,71, 50, 73, 0o, 13,),
(21,52, 11,90,00,43), (41,92,01,50,00,63), mod (14, 6);
(01,12,15,04,00,03) + 35, (02,24, 91, 75,00, 73) + %5,
0<i<13, 0<j<2

Gls-HD(14t) X=7Z14xLi 1<i<j<y,
(15,05, 65,454, 15, 1;), (445,6:,05,15.4,0;, 7;) mod (14, -).

Gls-HD(146) X = Z14 X Zs,
(43, 0o, 31, 112, 50, 01), (21, 0o, 122, 44, 50, 02),
(63, 00,11, 02,10, 51), (111, 0p, 22,64, 10,82) mod (14, 6);
(01,00, 33, 14, 10, 13) + 145, (04,03,30,11,10,83) +1;,
0<i<13, 0<j<2. O

3 Constructions for GD

In this section, we will give the existence for Gx-GD(v), 1 < k < 16.

Lemma 7. There ezist no Gx-GD(7) for k =6,7,12,15,16 end no
Gr-GD(8) for k = 11,14, 16.
Proof. Let graph G have m; vertices with degree d;, where1 <i <r
and 3_m; = 6. Consider the existence of G-GD(v) with b blocks by
the following steps:

1° Solving the equations

er diz; = v—1 with conditions i z; <band z; >0, (%)

i=1 i=1
obtain s integer solutions (z1,Z2, - *,Zr) = (@15,82j,"*",8rj), 1 <
j < s. The jth solution means that some element o of v-set may
appear in a;; blocks as degree d; vertex, 1 <4 < r. We will say the
element o has the degree-type diVdy” ---dr™.
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2° Solve the further equations

S 3
Yyi=v and Y ayyj=mb 1<i<r ()
Jj=1 Jj=1
Each solution (yi,y2,:-,¥s) means that a possible structure of G-

GD(v): y; elements in the v-set have degree-type d/dy - - - dr™,1 <
Jj<s.

3° For each solution obtained above, discuss the existence of
such structure.

Now, let us prove this Lemma by these steps above-mentioned.

(1) Ge-GD(7), v = 7,b = 3, (di,m;) = (1,2),(2,1),(3,2), (4,1).
There are five solutions for (%), where r = 4 and s = 5.

02 0 1 0
1 00 1 3
TS
(a1 00 2 1 0
1100 0

And, the equations () have only two solutions: (y1,¥2,¥3,%4,¥s) =
(1,2,2,2,0), (0,3,3,0,1), neither is viable. In fact, if yo > 2 then
there are two elements ¢, 3 having degree-type 1241. But, for graph
Gé, it will imply that the edge o3 will appear twice.

(2) G7-GD(7) and G16-GD(7), v="T7,b =3, (d;,m;) = (1,2),(3,4).
There is only one solution for (*): (a11,a2) = (0,2). Obviously, it
is impossible.

(3) G12-GD(7) and G15-GD(7), v =T7,b =3, (di,m:) = (2,4), (3,2).
The solutions for () are

(ai)7? = ( 3 g )

Furthermore, (**) has only one solution (y;,y2) = (4,3). But, for
graph Gy, if y3 > 2 then there are two elements a, 8 having degree-
type 32. It is not available since the edge af will not appear. As for
graph Gis, let the four elements having degree-type 23 be a, 8,7, 6,
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then the six edges in the three blocks will form a one-factorization
of the K4 on the set {«, 3,7,d} as follows.

o 0 a a
MJ Ma M’y
But, the other three.elements having degree-type 32 can not be ar-
ranged well.
(4) G11-GD(8), v = 8,b = 4, (di;m;) = (1,1),(2,2),(3,3). The
solutions for () are

1 0 2 1
(ai)¥*=0 2 1 3
1 1

And, the unique solution for (%) is (y1,%2,¥3,¥s) = (4,4,0,0). Let
the four elements having degree-type 1132 form a 4-set F. The six
edges in K4 over F must appear in the triangle consisting of three
degree 3 vertices since the degree 1 and degree 3 vertices are disjoint.
The unique possibility to form six edges by 4 X2 vertices is a partition
of K, into two triangles. Of course, it is impossible.

(5) G14-GD(8), v = 8,b = 4, (d;,m;) = (1,1),(2,4),(5,1). The

solutions for () are

0 2 1
(@ )*=]1 0 3
110

And, the unique solution for (**) is (y1,y2,y3) = (4,0,4). Let the
four elements having degree-type 215! form a 4-set F. There are six
edges in K4 over F. But, in the Gi4-blocks, four degree 2 vertices
and four degree 5 vertices form only four edges.

(6) G16-GD(8), v = 8,b = 4, (di,m;) = (1,2),(3,4). The unique
solution for (*) is (z1,z2) = (1,2). So, the unique possibility is that
each element has the same degree-type 1132, Suppose the Kj in a
Gig-block (G16 = K4 U K3) is edge af. The element o (and §) will
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appear in two of other three Gjg-blocks, so o and § must simulta-
neously appear in some block. Thus, edge o will be repeated. O

Lemma 8. There exists no Gi6-ID(14 + 8, 8).

Proof. Let X = I4U {00,002, -,008}. Since G1g = K4U K3, any
infinity element may be arranged only in one degree 3 vertex or in
one degree 1 vertex of Gig. The number of Gjg-blocks is 29, and the
total degree of all infinity elements is 8 X 14 = 112. There are only
two cases for arranging infinity elements:

(1) in 29 degree 3 vertices and 25 degree 1 vertices;

(2) in 28 degree 3 vertices and 28 degree 1 vertices.
Therefore, the Kj4 over the set Ij4 needs to be partitioned into
twenty nine K3 and four K3 for case (1), or into twenty eight K,
one K, and one Kj. It is impossible, since the maximum packing
number P(14,3,1) = 28 (see [7]) and K3 C K. a

Theorem. There erists a Gx-GD(v) if and only if v= 10,1 (mod 7)
for k # 8 or v = 1,7 (mod 14) for k = 8 with the exceptions
(v,k) = (7,6),(7,7),(7,12),(7,15), (7, 16),(8,11), (8,14),(8,16) and
possible ezceptions (v, k) € {(14t +8,16) : t > 1}.

Proof. Obviously, the necessary conditions for the existence of G-
GD(v) are v = 0,1 (mod 7) for k # 8, and v = 1,7 (mod 14) for
k = 8. By Lemmas 1, 5, 6, 7 and 8, we list the following table, where
t>1, s> 4 and s # 6. The desired HD-designs in the table have
been already given in §2. The other desired designs, i.e. ID and
GD, will be constructed in the Appendix. m]

The authors should like to thank the referees for their useful
suggestions.
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v =(mod 14) 0 1 7 8
G — Gs, HD 1 4t+2 1 4t+2 72t+1 72t+1
Go,G10,G1s | GD(v) | 14,28 | 15,29 7 8
HD 1 4t+2 1 4t+2 1 4t+2 72t+1
GG) G71 G12 ID(U’ 'LU) (2137)
GD(v) | 14,28 | 1529 | 21,35 8
Gs HD 14t+2 72+1
GD(v) 15,29 7
HD 1 4t+2 1 4t+2 72t+1 1 4t+2
Gu, G14 ID('U, w) (22,8)
GD(v) | 1428 | 1529 7 22,36
HD 1 4t+2 78 1 4t+2 78
Gis ID(v,w) (21,7)
GD(v) | 14,28 | 8,1543 | 21,35 | 8,22
HD 1 4t+3 1 4t+3 1 4t+3
GIG ID('U, w) (21, 7) ?
GD(v) | 14,28,42 | 15,2943 | 21,35,49
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Appendix

In the following constructions, the block set of each Gi-GD(v) is
denoted by By(v), and its vertex set is taken as (Z3 x Z2) U{oo} for
v="1,or Z, for v =8,15,29, or Z,_1 |J{oo} for v = 14,28 besides
other set, which will be specially denoted.
1. By(7): (0p,00,11,01,10,2;) mod (3, -);
Bi®): (0,2,1,3,5,6),(6,2,3,7,1,5),
(7,4,1,5,0,2), (4,2,5,3,0,6);
B(14): (0,3,1,5,6,00) mod 13;
B (15): (0,3,1,5,6,7) mod 15;
By(28): (0,5,1,7,2,12),(0,11,3,13,9,00) mod 27;
By(29): (0,5,1,7,2,9),(0,11,3,13,12,14) mod 29.
2. By(7): (0p,00,21,10,01,1;) mod (3,-);
By@®): (0,2,4,3,1,5),(7,3,2,5,0,6),
(6,2,1,3,5,0), (4,1,7,6,5,3);
By(14): (0,3,1,5,6,00) mod 13;
By(15): (0,3,1,5,6,13) mod 15;
By(28): (0,5,1,7,2,14),(0,11,3,13,9,00) mod 27;
By(29): (0,5,1,7,2,14),(0,11,3,13,9,23) mod 29.
3. B3(7): (09, 00,2, 10,01, 1;) mod (3,-);
Bs®): (0,2,1,3,6,7),(2,6,3,7,4,5),
(4,0,5,1,3,2),(6,4,7,5,1,0);
Bs(14): (0,5,1,3,6,00) mod 13;
Bs(15): (0,5,1,3,6,8) mod 15;
Bs(28): (0,5,1,7,2,10),(0,11,3,13,12,00)  mod 27;
Bs(29): (0,5,1,7,2,10),(0,11,3,13,12,17)  mod 29.
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4. By(7): (1o, 17,00, 00, 21,01) mod (3, -);
By(8): (2,4,3,0,1,5),(5,0,4,7,2,6),
3,7,1,6,2,0),(5,6,4,1,3,7);
By(14): (3,9,4,0,1,00) mod 13;
By(15): (3,9,4,0,1,2) mod 15;
By(28): (25,9,4,0,12,6), (9, 26,6,0,8,00) mod 27;
B4(29): (26,10,4,0,12,20),(9,16,5,0,8,14) mod 29.
8. Bs(7):  (19,00,11,21,00,2) mod (3,-);
Bs@®): (2,3,4,0,1,5),(0,7,5,6,3,4),
(6,2,5,1,7,3),(7,3,5,4,2,1);
Bs(14): (0,4,9,3,1,00) mod 13;
Bs(15): (0,4,9,3,1,10) mod 15;
Bs(28): (0,4,9,25,12,00),(0,6,26,9,8,12) mod 27;
Bs(29): (0,4,10,26,12,16),(0,5,16,9,8,7)  mod 29.
6. Bs(®): (0,2,5,4,3,6),(1,5,7,0,2,6),
(6,2,3,7,4,5), (3,1,7,4,5,6);
Bg(14): (0,1,7,3,5,00) mod 13;
Bg(15): (0,1,7,3,5,8) mod 15;
Bs(28): (0,1,10,3,4,12),(0,5,19,11,10,00)  mod 27;
Be(29): (0,1,10,3,12,13),(0,5,19,11,10,4) mod 29;
Bg(21): X = Z3 x Z,
(10, 0o, 14, 13,03, 25), (11,01, 22, 16, 14,24),
(13, 03,26, 15,21,01), (14,04, 25, 16, 02, 22),
(12,02, 15, 16, 03, 23), (15, 05, 13,04, 21, 29),
(16, 06, 14, 03, 29, 19), (0o, 01, 03,02, 04, 12),
(01,20, 14, 12,05, 24), (05, 21, 16, 09, 12,02) mod (3, —-);
Bg(35): X = (Zl7 X Z2) U{OO},
(0o, 30, 51, 40, 60, 71), (01, 31, 50, 41, 60, 40),
(01, 71,10, 51, 70, 81), (0o, 70, 101, 50, 41, 80),
(61,09, 00,0y, 149, 150) mod (17, —).
7. Bx®): (0,2,4,3,1,5),(5,0,7,6,3,2),
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(4,1,3,6,0,7),(7,1,2,5,4,6);
B;(14): (0,1,7,3,5,00) mod 13;
Bq(15): (0,1,7,3,8,2) mod 15;
Br(28): (0,1,10,3,12,20),(0,5,19,11,4,00)  mod 27;
Br(29): (0,1,10.3,12,23),(0,5,19,11,4,9)  mod 29;
By(21): X = Z3 x Z7,
(10,00, 12, 13,1¢,04), (11,01,22, 16, 15, 13),
(12,09, 15, 16, 05, 20), (13, 03, 26, 15, 20, Oo),
(14,04, 25, 16, 00, 22), (15, 05, 13,04, 00, 11),
(16,06, 14, 03,21,02), (0o, 01, 13,02, 16, 14),
(01,20, 14,12,23,21), (05,21,04,00,1;,01)  mod (3,-);
By(35): X = (Z17 x Z2) U{oo},
(0o, 30, 51,40, 71, 10), (01,31,50,41,9,00),
(0o, 7o, 101, 50, 131, 21), (01, 71, 109, 51, 70, 20),
(61,00, 69, 01, 00, 15:) mod (17, -).
8. Bg(7): (00, 00, 11,04, 10, 21) mod (3, —);
Bg(15): (0,4,11,5,1,3) mod 15;
Bg(29): (0,28,9,25,2,7),(0,8,25,11,3,9) mod 29.
9. By(7): (0p, 1p,00,01,11,21) mod (3, -);
Bo®): (0,1,4,5,2,3),(1,2,5,6,7,4),
(2,3,6,7,4,5), (3,4,7,0,1,6);

By(14): (0,1,7,3,00,8) mod 13;

By(15): (0,1,7,3,5,10) mod 15;

By(28): (0,12,2,13,00,8),(0,7,1,9,3,5) mod 27;

By(29): (0,13,2,14,3,8),(0,8,1,10,4,5) mod 29.
10. Bio(7): (01,2;,00,10,00,1;1) mod (3, -);

Byo(8): (0,6,7,1,4,3),(1,6,4,2,5,0),
2,7,5,6,3,1),(3,5,4,7,0,2);

Bio(14): (3,9,4,0,1,00) mod 13;
Bio(15): (3,9,4,0,1,8) mod 15;
Bio(28): (0,12,2,13,6,00),(0,4,13,5,2,1) mod 27;
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11.

12.

Bi0(29):

By (7):
B11(14):

By1(15)
By1(28)
Bi1(29)
By1(22)

311(36):

Bya(8):

Bia(15):
By2(29):
Bya(14):

Bya(21):

B12(28):

B2(35)

(0,13,2,14,4,3), (0,9, 2,8,3,1) mod 29.
(0o, 10,00,01,11,2;) mod (3, —);
0,1,7,3,5,00) mod 13;
(0,1,7,3,5,12) mod 15;

(0,12, 2,13,4,00), (0,7, 1,9,3, 8) mod 27;
(0,13,2,14,3,7), (0,8, 1,10,5,11) mod 29;

X=Z11 X Z2,

(04, 00,11, 40,21,31), (91,00, 101, 50, 41, 11),

(30: 00) 31: 103 91) 51) mod (111 _))
X = Zg X Z4,

(41, 001 32’40; 03, 30)) (30, 00, 611 101 ]-l, 80) mod (91 4)a
(02, 00)22> 117 13’31), (033 01,23’ 10: 12, 30) mod (9’ —)'

(0,5,4,1,7,6),(2,7,6,3,0,1),
(4,0,1,5,2,3),(6,2,3,7,5,4);

(0,1,4,2,6,7) mod 15;
(0,21,12,2,13,14),(0,3,1,2,6,7) mod 29;
X = Zy4,

(0,7,10,2,5,6), (0,11,6,1,8,9), (9,13, 8,10,6,11),
(1,7,9,2,0,13),(3,12,13,4,0,1),(2,12,4,5,1,11),
(3,9,5,7,2,6),(4,3,7,8,2,9),(3,10,9,12,8,11),
(5,12,10,13,3,6), (4,7,13,5,8,10), (6,12, 7,11, 4,8),

(0,13,11,1,10,12);

X = (25 x Z4) U{0},

(00, 02, 03, 01, 00, 33), (12, 00, 33, 02, 22, 23),
(0o, 41,13, 19, 31, 20), (0o, 23,03, 1o, 1, 22),
(0o, 13,22, 01, 32,42), (01, 13,03, 11, 21, 12)

X = (29 x Z3) U{oo},

(00, 10, 30, 60, 11, 21) mod (9, 3),

(0o, 22, 62, 00,01, 40), (01,30, 32, 60,41,02),
(00, 12,41,22,31,8;) mod 9,-);

X = (Z17 x Z3) U{oo},
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(40, 20, 21, 11, o0, 00), (00, 30, 80, 20, 151, 161),
(00, 80, 90, 20, 111, 121), (71, 1o, 61,81, 11, 00),
(71,111,31,00,21,4;) mod (17,-).
13. Bys(7): (21, 10,01, 00,00, 11) mod (3, —);
Bs(®): (1,3,7,4,0,6),(2,4,7,5,1, 0),
(5,3,7,6,2,4),(3,4,0,5,6,7);
By3(14): (1,4,11,5,0,00) mod 13;

By3(15): (2,5,7,1,0,6) mod 15;
Bis(28): (3,8,10,4,0,00),(2,11,13,1,0,9) mod 27;
Bi3(29): (4,9,11,3,0,10),(2,12,14,1,0,9) mod 29.

14. Byy(7): (00, 01, 11,24, 0p, 10) mod (3, -);
Bia(14): (1,4,11,5,0,00) mod 13;

Bis(15): (2,5,7,1,0,4) mod 15;
Bua(28): (3,8,10,4,0,00),(2,11,13,1,0,7) mod 27;
Bra(29): (4,9,11,3,0,6),(2,12,14,1,0,7) mod 29;

B14(22): X = Zy; X 29,

(11,21,91,01,00,40), (31,61, 81, 41,00, 50),
(51,104, 30, 10,00,71) mod (11,-);

B14(36): X = Zg X Z4,

(32,12, 31, 71,00,21), (01,61, 13,21,62,20) mod (9, 4),
(83,02, 13,11, 00, 22), (72,00, 13,02,81,63)  mod (9, -).
15. Bys(8): (2,1,5,6,0,4),(7,4,0,3,1,5),(7,5,1,3,2,6),(4,2,0,6,3, 7);

Bis(15): (7,1,9,6,0,4) mod 15;

Bis(14): X = 27 x Za, (20,10,21,31,51,30) +%0 0<i<4,
(0o, 40, 30, 10, 20, 50), (21, 11, 10, 40, 20, 60), (30, 11, 61, 31, 0o, 50),
(21,41,31,11,01,51),(10,41,40,21,00,51),(11,61,01,31,41,20),
(30,41, 10, 11, 60, 01), (0o, 60, 61,21, 31, 10);

Bis(21): X = (Z5 x Zs) U{oo},

(10, 30,40, 02, 31, 13) mod (5,4),
(30,00, 00, 13,44, 02), (33,00, 03, 19,42, 0;) mod (5,-);

Bis(22): X = Z11 X 2,
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(30, 10, 11, 31,00,01), (40, 00,01, 61, 101, 39),
(50,00, 11,81,91,79) mod (11, -);

Bis5(28): X = (Zg x Z3) U{o0}, (50, 20,80,42,00,71) mod (9,3),
(10, 00,41, 20,1;,62), (11,01, 02, 61,12, 1p),
(31,00,30,12,00,02) mod (9, -);

Bis5(35): X = (Z17 X Z2) U{oo},

(01,00,31,21, 10,20) mod (17, —),
(80, 50, 30, 140, 00, 51), (20, 00,60, 100, 61, 131) mod (17, 2);

Bis(3): X = Zy3,

(26,19,13,4,14,0),(27,17,18,3,11,0),
(29,10,21,1,8,0) mod 43.
16. Big(14): (1,0,4,6,00,2) mod 13;

Bys(15): (1,0,4,6,2,9) mod 15;

Bis(29): (13,0,7,2,1,11),(12,0,8,9,1,15)  mod 29;

Byg(21): X = (Z5 x Z4) {0},

(02, 00, 13, 00, 22, 23), (41, 00, 10, 21, 00,01),
(42,00, 29, 32, 02,23), (42,01, 13, 29, 03, 1p),
(21,03,13,29,33,00), (09, 03,23,01,2;,33) mod (5,—);

Bi(28): X = (Zg x Z3) U{oo},

(61,00, 49,02, 00, 19}, (10,00, 30,81,20,31) mod (9, 3);

Big(42): X = Zg1 {00},

(20,0,3,19, ,1),(14,0,2,10,3,12),
(18,0,5,11,1,16) mod 41;

Big(43): X = Zys,
(20,0,3,19,1,22),(4,0,2,10,3,12),
(18,0,5,11,1,16) mod 43;

Bis(49): X = (Zog x Z3)U{oo}, 0<i <11,

(234,00, 50, 171, 19, 130) + %0, (111,129,170, 51,01,12;) + o,
(100, 09, 119, 20, 19,204), (104,01, 115,21, 00, 21),

(204, 09, 60, 151, 10,91), (71, 00, 70,111, 19, 173),

(61,00, 30,134, 00, 19), (21, 0o, 40, 51, 00,01 ) mod (24,-).
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17. Lastly, construct all Gx-ID(v,w) for k = 6,7,11,12, 14,15, 16.
Ge-ID(21,7) : (27 x Z3) U{=0, - - - z6},
(zi,40,11,60,01,2;) + o, (zi, 11, 00, 10, 31,41) + %0,
(zi,20,11,50,00,30) +%0, 0L 1< 5;
(11,51, 2:,61,30,26) + jo, 0<j <3
(z6, 10,01,40, 20, 51), (01, z6, 30, 50, 41, 51), (51, 21, Z4, 31, 00, 41),
(01,60,9}6,00,30,20),(61,31,.’1)5,41, 10,1:6).
G7-I.D(21, 7) . (Z7 X Z2) U{xo, v a‘.s},
(2, 20, 11,50, 00, Zi+6) +i0, (Zi,11,00,10,30,51)+%0 0<% <6;
(i, 40,11,60,41,Ti45) +30 0<i<2;
(%i+3,00,41,20,31,Zi41) + % 1=0,1.
Gn1-ID(22,8) : (Z7 x Zz)U{z1,- -, 28},
(40,51, 2,00, 21,01), (21,41, 24,09, 23, 1p),
(61, 31,.’1:6, 00,1:5, 10) mod (7, —).
(0o, z7, 61,01, z8, 50), (50, z7, 41, 51, 60, 40),
(20, 27, 11,21, 10, 30), (50, 30, Z7, 40, 0o, 60),
(10, 2s,01,11, 27, 60), (60, z8, 51, 61, 10, 0p),
(30, 28,21, 31,20, 00), (41, 8, 20, 40, 31, z7).
G12-I1D(21,7) : (Z7 x Zo)U{z1,- -, 27},
(04, 23, 30, 0o, Z1, Z2), (0o, 41, 30, 61, 4, 51),
(61,25, 50,01,21,00) mod (7,-);
(w6, 10, 20, 7,01, 11), (%6, 20, 40, %7, 21, 31),
(zs, 40, 60, 7,41, 51), (x6, 60, 1o, Z7, 61, 50),
(0o, 50, 40, 30, s, Z7), (0o, 60, 50, 30, 10, 20)-
G14-ID(22, 8) : (Z7 X Zz) U{ml, cee ,:L's},
(0o, z1, z2, 10, 61,31), (31, 73, T4, 41, 00, 10),
(0o, x5, z6, 10, 11,31) mod (7,-);
(11, 27,28, 50, 01,61), (0o, 27, 28,11, 21, 31),
(31,27, 8, 20,41, 51), (20, Z7, T8, 40, 60, 11),
(51,7, 60, 10, 30, z8), (61, 27, 09, 20, 40, 1o),
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(1o, z7, 0o, 30, 50, 20), (51, 61, 1o, 31, xs, 0p).
Gi5-I1D(21,7) : (Z7 x Z3) U{z1," - z7},
(61,1, %2,01,00, 30), (20, z3, 4,09, 01,31) mod (7, -);
(31,41, 60,01, 25,61), (Oo, 21, 20, Lo, z5, 30), (60, 11, 40, 30, =5, 50),
(51,01, 11,00, 5, 19), (41, 30, T5, 20, 6, 40), (60, 10, 41, 20, T, 21),
(31,20, 00, 60, Zs, 50), (01, 0o, 61, 50, Zs, 51), (61, 41, 31, 21, 27, 1o),
(50,01, 51,31, 27, 30), (00, 20, 11,01, 27,2;), (11, 31, 41, 40, Z7,51),
(11, z6, z7,60,61,40).
Gm-ID(21,7) : (Z7 X Zg) U{:l:l,' . ,27},
(20, 1o, 51, 00, 20, 31), (0, 40, 41, 20, 71, 60),
(%0, 60,21,30,21,01) mod (7,-);
(zo, 11, 31,01, 6, 21), (z1,21, 41, 11, Z6,,61),
(z2,31,51,21,01,61), (r3,41,61,31,01,2;),
(x4, 51,01,41,21,61), (5,61, 11,51, 76,01).
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