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Abstract

The two games considered are mixtures of Searching and Cops
and Robber. The cops have partial information, provided first via
selected vertices of a graph, and then via selected edges. This partial
information includes the robber’s position, but not the direction in
which he is moving. The robber has perfect information. In both
cases, we give bounds on the amount of such information required
by a single cop to guarantee the capture of the robber on a copwin

graph.
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1 Introduction

The game of Cops and Robber is a pursuit game played on a reflexive
graph, i.e. a graph with a loop at every vertex. There are two opposing
sides, a set of k > 0 cops and a single robber. The cops begin the game
by each choosing a vertex to occupy, and then the robber chooses a vertex.
The two sides move alternately, where a move is to slide along an edge or
along a loop, i.e. pass. There is perfect information, and the cops win if
any of the cops and the robber occupy the same vertex at the same time.
Graphs on which one cop suffices to win are called copwin graphs and are
characterized in (7, 9.

In this paper, variations of the Cops and Robber game are considered in
which the cops no longer have perfect information, but rather can only
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get partial information about the robber’s movements through the use of
alarms, located first on selected vertices of a graph and then on selected
edges. As in the original game, the robber has perfect information.

Suppose the game is played on a graph G. In the first variation considered
here, the partial information is provided by alarms located on selected
vertices of G. These units alert the cops if the robber moves onto a vertex
equipped with an alarm. The alarms do not indicate the direction in which
the robber is moving when he leaves such a vertex. The minimum number
of alarms required by a single cop to guarantee the capture of the robber
on (a copwin graph) G is the alarm number of G, denoted A(G).

In the second variation considered, the partial information is provided by
alarms located on selected edges of G. These units alert the cops if the
robber moves along an edge equipped with an alarm, but provide no infor-
mation about the direction in which the robber is moving. The minimum
number of alarms required by a single cop to guarantee the capture of the
robber on G is the edge alarm number of G, denoted A*(G).

In general, one can ask for the minimum amount of information needed if
there are k cops.

These variations of the game were first introduced in [3, 4], where bounds
are given for the alarm and edge alarm numbers of trees. In [3, 4, 6], varia-
tions of the game are introduced in which the partial information includes
information about the robber’s direction, in addition to his position. Again,
the information may be provided via selected vertices of a graph or via se-
lected edges. Bounds are given on the amount of such information required
by a single cop to guarantee a win on a tree and, with less tight bounds,
on a copwin graph. The strategies given for trees are generalized for use
on copwin graphs, using the notion of copwin spanning tree (defined at the
end of this section). Unfortunately, in the case of alarms, the strategies
presented in [3, 4] for trees cannot be generalized in this way because of the
lack of a directional signal. Thus, a different approach is needed for other
copwin graphs. In this paper, we bound the alarm and edge alarm numbers
of arbitrary copwin graphs.

‘We now introduce our notation and basic definitions. Recall that, for us, all
graphs will be finite, connected and reflexive. For a graph G, we let V(G)
denote the set of vertices of G and E(G), the set of edges. For e, f € E(G),
we use e — f to indicate that e and f are incident. For a,b € V(G), we use
a ~ b to indicate that a and b are adjacent (a # b), and a ~ bif a is adjacent
or equal to b. For z € V(G), N(z) = {y|y ~ z} is the open neighbourhood
of z and Niz] = N(z) U {z} is the closed neighbourhood. If Y C V(G),
then G -Y is the induced subgraph with vertex set V(G)\Y. If Z C E(G),
then G — Z is the subgraph with vertex set V(G) and edge set E(G) \ Z.
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A mapping f : V(G) — V(H) is a homomorphism if, for z,y € V(G),
f(z) ~ f(y) whenever z ~ y. A subgraph H of a graph G is a retract of G
if there is a homomorphism f : V(G) — V(H) such that f(z) = z, for all
z € V(H). Note that, since G is reflexive, a homomorphism can send two
adjacent vertices to the same vertex.

Sometimes we need to consider the situation where the cops are play-
ing on a retract H, while the robber is playing on the full graph G. If
T is the vertex occupied by the robber and f is a fixed retraction map
of G onto H, then we refer to f(r) as the robber’s image. A vertex
u of a graph G is irreducible if there exists a vertex v in G such that
N[u] C N{v]; also we say that v dominates u.

A vertex ordering (z;,%2,...,2,) on G is a domination elimination or-
dering (1, 2] if, for each i € {1,2,...,n — 1}, there is a j; > i such that
Ni(z;) C Ni[z;) in G; = G — {z1,22,...,zi—1}. If, in addition, for each i,
T; ~ xj, then this domination elimination ordering is a copwin ordering (7).
A main result of [7, 9] is that: a finite graph G is copwin if and only if G has
a copwin ordering. Structurally, this means that G is copwin if and only
if it can be reduced to a singleton by a series of retractions and, in each
retraction, there is exactly one vertex that is not fixed and it is irreducible.

Let (zy,%2,...,Z,) be a copwin ordering of G. For j = 1,2,...,n — 1,
define f; : V(G;) — V(Gjz1) to be the retraction map from G; to Gjy;.
If zx. dominates z; in Gj, so that f;(z;) = zx, k > j, we write z; — zj.
Further, if the robber is on vertex r, define F(r) = fi_1 0 fi_g0---0 fi(r),
so that F; is the robber’s image on G;.

The corresponding copwin spanning tree, denoted S, is a spanning tree,
rooted at z,,, with the property that for vertices z,y € V(G), zy € E(S:,)
if and only if f;(z) = y or f;(y) = z, for some j. We say that z = y if
Fi(y) =z, forsomei=2,3,...,n,and z > y if z # y.

In [5], a strategy is presented that can be used by a single cop to win on a
copwin graph. This is known as a copwin strategy. Again, consider a fixed
copwin ordering (z1,z2,...,Zn) of G. The cop begins on vertex z,, since
Fy(z) = zn, for all z € V(G). Having captured the image of the robber on
Gi, 2 £ i < n, the cop is able to move immediately onto the image on G;_.
Essentially, this is because if y > z, y, 2 € V(G), then F;(y) ~ F;,_,(z). The
proofs of the main theorems in this paper make use of the copwin strategy.

2 Alarms on Vertices

The schemes given for the placement of alarms are designed to allow the
cop to gather sufficient information to be able to play the copwin strategy.
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A vertex v of G is controlled if v remains unalarmed, but all neighbours of
v are alarmed. We define ag as the minimum number of vertices having
alarms such that all vertices of G are either alarmed or controlled, and no
alarmed vertex has more than one unalarmed neighbour.

Theorem 1 Let G be a finite, copwin graph. Then A(G) < ag.

Proof. Let (z;,%2,...,Zx) be a copwin ordering of G which realizes ag.
Alarms are placed according to the scheme described in the preamble to the
theorem. The cop begins on vertex z,, and visits each controlled vertex of
G. If no alarms sound, then the robber will be found during this phase of
the cop’s strategy.

So suppose that an alarm sounds. If the cop is on an adjacent vertex, then
he moves immediately onto the alarmed vertex and captures the robber.
(Note that if the cop is ever on a vertex adjacent to the robber’s position,
he moves immediately to that vertex.) Otherwise, the cop returns to zp,
and plays the copwin strategy. To do this, the cop must be able to locate
the robber’s image on G,,_; after the robber’s next move (i.e. the robber’s
first move after the cop reaches z,). If an alarm sounds on this move,
then the cop knows the robber’s position and proceeds to the image of that
vertex on Gp—1, as dictated by the copwin strategy. If no alarm sounds,
the cop considers the position of the last alarm that sounded. Since any
alarmed vertex is adjacent to at most one unalarmed vertex, the alarm that
last sounded is on a vertex adjacent to a single unalarmed vertex v, i.e. the
robber is on v. The cop proceeds to F,,_1(v). Because of the placement of
the alarms, the robber’s position is known to the cop for the remainder of
the game and, thus, the cop wins using the copwin strategy. O

An independent set of a graph G is a set of pairwise, nonadjacent vertices
of G. In general, a set S of vertices of G is k-independent if the distance
between any two vertices of S is at least k + 1. The k-independence num-
ber of G, which will be denoted ax(G), is the maximum cardinality of a
k-independent set of G.

Let G be a copwin graph, and let S be a 2-independent set of G. Clearly, if
all vertices in G — S are alarmed, then all vertices of G are either alarmed or
controlled, and no alarmed vertex has more than one unalarmed neighbour.
Thus, this placement of alarms satisfies the conditions given in the preamble
to Theorem 1. We have proven Theorem 2.

Theorem 2 Let G be a finite, copwin graph. Then A(G) < |V(G)|—a2(G).

Example. Consider the copwin graph G shown in Figure 1. The unalarmed
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vertices are circled. Theorem 1 gives A(G) < 4. Note that the unalarmed
vertices form a 2-independent set of G.

—e

Figure 1: A graph G with A(G) < 4.

We can improve upon the bounds given by Theorems 1 and 2.

Consider a copwin graph G with copwin ordering (z;,z2,...,%5). A
path z;,2i,,...,2;, of G, m > 2, is collapsible if fi (zi,) = zi,
Jir(Zi3) = Tigy ..o, firn_y (@ia,) = ... Note that a collapsible path P
in G is a path in S, and, if z, € V(P), then z, is an endpoint of P.
Clearly, 1 < 4; < i3 < +++ < iy, £ n. Also notice that for k > im,_y,
Fi(zi;) = Fy(zi,), for 1 <j<m-1.

For a fixed copwin ordering (zi,z2,...,z») of G, define a(S;,) as the
minimum number of vertices having alarms such that all vertices of G are
either alarmed or controlled, and if an alarmed vertex z has more than
one unalarmed neighbour, then either z is adjacent to a finite number of
unalarmed leaves, or else z lies on a collapsible path with exactly two
controlled vertices.

Define ag = ming, {0(S,)|Sy is a copwin spanning tree of G}.
Theorem 3 Let G be a finite, copwin graph. Then A(G) < ag.

Proof. Let (zi,z2,...,7,) be a copwin ordering of G which realizes ag.
Alarms are placed according to the scheme described in the preamble to
the theorem. The cop begins on vertex z,. If no alarm sounds on the
robber’s first move, then the cop proceeds to visit all unalarmed vertices
of the graph. If no alarm goes off during this search, the robber will be
captured during this phase of the cop’s strategy.

So suppose that an alarm sounds during the cop’s search. Unless the cop is
adjacent to the vertex on which the alarm sounds (in which case he catches
the robber on his next move), the cop returns to z,,, thereby capturing the
robber’s image on G,,.

Now suppose that the cop has captured the image of the robber on Gg. If
an alarm sounds on the robber’s next move, then the cop knows on which
vertex the robber is located and moves to the image of that vertex on Gi_;.
If no alarm sounds, then there are several cases to consider.
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Suppose the vertex, z; say, on which an alarm last sounded is adjacent to
exactly one controlled vertex, v say. The cop moves to Fj_,(v).

Suppose z; is adjacent to the unalarmed leaves z;, , z,, . .., Z;,, . If k=1 > 1,
then the cop moves to Fi_i(z;). If & — 1 = %, then the cop moves to z;
(= Fe—1(z4,),1 £ 1 <m). If k— 1 < %, then F(z;) = z;, and the robber is
apprehended! '

Otherwise, z; is adjacent to the controlled vertices =} and z!, and =}, z;, z}

is a collapsible path, with =} — z; and z; — z. If kK — 1 > %, then the cop
moves to Fx_;(z{). If k — 1 < i, then the cop is on z} if k — 1 =4, and on
z; if k — 1 < i. In both cases, the cop moves to Fi_;(z}).

In all cases, the cop captures the image of the robber on Gi—_;. Thus, the
cop wins using the copwin strategy. a

Example. Consider the copwin graph G shown in Figure 2. A copwin
spanning tree of G is shown in bold. The unalarmed vertices are circled.
Notice that vertices b and d both have two non-leaf, unalarmed neighbours,
but a, b, ¢ and e, d, ¢ are collapsible paths.

Figure 2: An arrangement of alarms that illustrates how an alarmed vertex
can be adjacent to two non-leaf, unalarmed vertices.

Given some arrangement of alarms on the vertices of G, a path P of G is a
freepath if all vertices of P are unalarmed. A freepath P’ of G is isolated if
all vertices of P’ are at distance at least three from any unalarmed vertex
not in P'. A collapsible freepath P”, with vertices z;,,zi,,...,%i,, is
almost isolated if P" is isolated in G — L(z;,), where L(z;,) denotes the
set of leaves adjacent to z;,. (Note that in {3, 4], a set of such freepaths is
termed a packing of freepaths. We return to this terminology at the end
of the section.) Assuming P” is an induced subgraph of G, we refer to the
subgraph induced by V(P") U L(z;,) as a free area.

For a fixed copwin ordering (z1,%2,...,Zn) of G, define R(S;,) as the
minimum number of vertices having alarms such that

1. free vertices are either controlled or form collapsible freepaths (or free
areas),
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2. freepaths are induced subgraphs of G,
3. freepaths are (either isolated or) almost isolated, and

4. if an alarmed vertex z; has more than one unalarmed neighbour, then
either

(a) z; is adjacent to a finite number of unalarmed leaves,
(b) z; lies on a collapsible path with exactly two controlled vertices,

(c) the unalarmed neighbours of z; lie on the same freepath P =
Tiy 1 Tigy - - -3 Lipys and ¢ > im, OF

(d) z; has exactly two unalarmed neighbours that lie on the same
freepath P.

Define Rg = ming, {R(S,)|Sy is a copwin spanning tree of G}.
Theorem 4 Let G be a finite, copwin graph. Then A(G) < Rg.

Proof. Let (z;,z2,...,2,) be a copwin ordering of G which realizes Rg.
Alarms are placed according to the scheme described in the preamble to
the theorem. The cop begins on vertex z,. If no alarm sounds on the
robber’s first move, then the cop proceeds to visit all unalarmed vertices of
the graph, being sure to search the vertices of any free area consecutively.
This ensures that the robber cannot move onto previously searched vertices
of a freepath undetected, as all freepaths are induced subgraphs of G. If no
alarm goes off during this search, the robber will be captured during this
phase of the cop’s strategy.

So suppose that an alarm sounds during the cop’s search. Unless the cop is
adjacent to the vertex on which the alarm sounds (in which case he catches
the robber on his next move), the cop returns to z,, thereby capturing the
robber’s image on G,,.

Now suppose that the cop has captured the image of the robber on G. If
an alarm sounds on the robber’s next move, then the cop knows on which
vertex the robber is located and moves to the image of that vertex on Gj—_;.

If no alarm sounds, then there are several cases to consider. Let z; be the
vertex on which an alarm last sounded. If z; is adjacent to only one con-
trolled vertex, a finite number of unalarmed leaves, or lies on a collapsible
path with exactly two controlled vertices, then the cop proceeds as in the
proof of Theorem 3, and captures the robber’s image on Gy._;.

So suppose z; is adjacent to vertices in a freepath P = z;,,%,,..., i,
m > 2. Further, suppose ¢ > i,,. If ¢ > k, then Fi(z;) = z;, and the robber
is apprehended! Otherwise, ¢ < k& and the robber moves from z; onto P.
The cop is on Fy(z;) and moves to Fx_1(z;,) (= Fy_1(zi;), 2 < j <m),

289



and stays with the robber’s image. Note that if the cop is on Fj(z;,),
Jj=2,3,...,k—1, and the robber does not move off of P and sound an
alarm, then the cop moves to F;_;(z;,) and stays with the robber’s image.

Otherwise, ¢ < i, and z; is adjacent to exactly two vertices of P, zi,
and z;,,, say, with x;, — z;,,,. Suppose z; is retracted onto a ver-
tex of P, i.e. z; is mapped onto a vertex of P via the retraction map
fi : V(Gi) = V(Git1)- Then z; — z;, or z; — z;,,,. Suppose z; — =; .
The other case is similar. If ¢, < k — 1, then the cop is on Fi(z;) =
Fi(zi,,,) (unless Fi(x;) = z;, in which case the robber has already been
captured), and moves to Fy_;(z;,,,). (Note that if the cop is on Fj(x:,),
J=23,...,k-1,¢=2,3,...,p+ 1, and the robber does not move off of
P and sound an alarm, then the cop moves to Fj_;(z;,_,) and stays with
the robber’s image.) If i, > k — 1, then both x;, and z;,,, are vertices of
Gk-1. The cop is on Fi(z;) = x;,,, (unless, once again, Fi(z;) = z;, in
which case the robber has already been captured). If the robber moves to
Zi,,,, he is immediately captured. Otherwise, the robber moves to z;,, and
is captured on the cop’s next move.

Suppose now ; is retracted onto a vertex of G — P. If i, < k — 1, then the
cop is on Fi(z;), and moves to Fx_1(zi,,,). (Note again that if the cop is on
Fi(z:),5=2,3,...,k—1,¢=2,3,...,p+1, and the robber does not move
off of P and sound an alarm, then the cop moves to Fj_1(zi,_,) and stays
with the robber’s image.) If i, > k — 1 then, again, both z;, and z;,,, are
in Gk—1. The cop is on Fi(z;) and moves to z;,,, (= Fx_1(zi,,,)). Either
the robber is immediately captured, or else the cop has lost the robber’s
image on Gi—;. In the latter case, the cop has a modified strategy. If silence
follows the robber’s moves, the cop moves down P toward the robber. Since
P is an induced subgraph of G, the robber will be captured if he does not
move off of P and sound an alarm. So suppose the robber moves from
zi;,! < p, to a vertex y ¢ V(P). The cop is on x;,,,. Since z;, — zy,,,
N(z;) € N(z;,,), i.e. y € N|zi,,]. So the cop captures the robber on his
next move.

Note that if the cop’s strategy takes him to vertex z;, of P, no further
alarms have sounded, and the robber has not been captured, then the cop
moves to z;, and wins by searching the adjacent, unalarmed leaves.

In all cases, the cop captures the image of the robber on Gi_1, or captures
the actual robber. Thus, the cop wins using (a perhaps modified version
of) the copwin strategy. a
Note that for any finite, copwin graph G, ®¢ < a¢ < ag.

Example. Consider the copwin graph G, shown in Figure 3, with cop-
win ordering (zi,z2,...,%19). The corresponding copwin spanning tree
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is shown in bold. The unalarmed vertices are circled. Theorem 4 gives
A(G) <14.

X *n Xs

%2 xg *3
Figure 3: A graph G with A(G) < 14.

A set of freepaths {P;}7].., of a graph G is a packing of freepaths if, for all
a,b,c € V(G) witha ~ b~ ¢, a € V(P) and b,c ¢ V(P;), then b and ¢
are alarmed. In [3, 4], it is shown that the alarm number of a tree T is at
most |V(G)| less the cardinality of a packing of freepaths on T'. The graph
G, shown in Figure 4, is used in (3, 4] to show that this result cannot be
generalized to copwin graphs. However, a similar result, Theorem 5, follows
easily from Theorem 4.

For a fixed copwin ordering (1, z2, . ..,Zs) of G, define p2(S;, ) as the max-
imum cardinality of a packing of collapsible freepaths of length at most 1 on
G. Define pa(G) = maxg, {p2(Sy)|Sy is a copwin spanning tree of G}. The
corresponding placement of alarms satisfies the conditions in the preamble
to Theorem 4. We have proven Theorem 5.

Theorem 5 Let G be a finite, copwin graph. Then A(G) < |V(G)|—p2(G).

Example. Consider the copwin graph G shown in Figure 4. A copwin
spanning tree is shown in bold. The diagonal lines between two branches
indicate that every vertex of one branch is adjacent to each of the vertices of
the other. The first and last branches (1 and 6) are connected in the same
way as branches 2 and 3, 3 and 4, and 5 and 6. The unalarmed vertices are
circled, and form a packing of collapsible freepaths of length at most 1.

3 Alarms on Edges

An edge e of G is controlied if e remains unalarmed, but all edges incident
with e in G are alarmed. Define L = {e € E(G)|e is a loop of G}. Let
G'=G-L.
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Figure 4: A packing of freepaths of length at most 1 on a copwin graph G.

For a fixed copwin ordering (z),z2,...,z,) of G, define a*(S;,) as the
minimum number of edges of G having alarms such that all loops e € L
remain unalarmed, all edges in G’ are either alarmed or controlled in G’
and, for each pair of endpoints z;,z;, i < j, of an unalarmed edge in G,
f,-(a:,-) =T; (i.e. LT € E(Sx"))

Define af; = ming, {a*(S5,)|S, is a copwin spanning tree of G}.
Theorem 6 Let G be a finite, copwin graph. Then A*(G) < af,.

Proof. Let (x1,z2,...,2,) be a copwin ordering of G which realizes af;.
Alarms are placed on the edges of G according to the scheme described in
the preamble to the theorem. The cop begins on vertex z,,. The strategy
is broken into two phases. During the first phase, the cop forces the robber
to sound an alarm to avoid capture. During the second, the cop plays the
copwin strategy.

Phase 1. The cop visits all vertices of G, making sure to visit the two
endpoints of any unalarmed edge in succession, so that the robber cannot
move between these two vertices undetected. It is necessary to search all
vertices of G since no vertices are alarmed, and thus the robber may be
hiding undetected on any vertex. If no alarm sounds, then the cop will
capture the robber during this search. If an alarm sounds during the search,
then the cop moves toward the edge e on which the alarm is located.

Case 1. Suppose an alarm sounds on an edge d before the cop reaches e.
There are two potentially troublesome cases:

(a) d « e and, for some controlled edge ¢, d < ¢ « e, so that ¢,d and e
form a triangle, and the alarms on d and e did not sound consecutively, and

(b) d and e are each incident with two controlled edges ¢ and ¢/, so that d
and e form a 4-cycle with these edges, where opposite sides of the 4-cycle
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are unalarmed.

If neither of (a) and (b) holds, then the cop knows the robber’s location,
and proceeds to z, to begin Phase 2. Otherwise, in order to determine the
robber’s position, the cop must force the robber to move again. Consider
case (a). Let the vertices of the triangle be v;,v2 and v3, where e = v;vy,
d = vyu3 and ¢ = v v3. Note that there may exist an unalarmed edge vovy.
The cop searches v; and then v;. If no alarm sounds, the cop searches v,
and, if applicable, v4. This forces the robber to move to avoid capture,
thereby sounding an alarm. Since the cop now knows the robber’s position,
he proceeds to z,. Consider case (b). The cop first searches one of the
unalarmed edges, beginning at an endpoint of e. If no alarm sounds, then
the cop moves along edge d. If no alarm sounds and the cop does not catch
the robber on this move, then the robber is on the remaining unsearched
endpoint of e. The cop proceeds to z.

Case 2. If no further alarms sound before the cop reaches e, then we
consider two cases. If all non-loop edges incident with e are alarmed, then
the cop visits the two endpoints of e, thereby forcing the robber to sound
another alarm in an attempt to avoid capture. The cop does this, and then
proceeds to z,,. If e is incident with controlled edges (there can be at most
two, one incident with each endpoint of e), then the cop searches the path
consisting of e and these unalarmed edges, thereby forcing the robber to
sound a second alarm. If this second alarm satisfies either of properties
(a) and (b) above, then the cop proceeds as in Case 1. Otherwise, the cop
knows the robber’s position and proceeds to zy,.

Phase 2. The cop is on z,, and has captured the robber’s image on Gj,.
The cop is now able to determine the robber’s direction when an alarm
sounds.

Suppose that the robber is on vertex v, and the cop is on Fi(v). If an alarm
sounds on an edge vv’ during the robber’s next move, then the cop moves
to Fy_y(v'). Otherwise, the cop must consider the last known position of
the robber. This vertex, z; say, must be an endpoint of the edge where
an alarm last sounded. If z; is not incident with an unalarmed, non-loop
edge, then the robber must still be on z; and the cop moves to F_1(z;).
Otherwise, z; is an endpoint of a controlled edge. Let z; be the second
endpoint of this edge, i < j. (The case when ¢ > j is similar.) The robber
is either on z; or z;, and fi(z;) = zj. If k — 1 < 4, then the robber is
apprehended! If k — 1 = ¢, then the cop is on z;. If the robber is on z;, he
is caught. Otherwise, he is on z; and is caught on the cop’s next move. If
k—1> i, then Fy—1(z;) = Fi—1(z;), and the cop moves to Fi_;(z;) and
stays with the image of the robber.

Thus, the robber is apprehended using the copwin strategy. 0
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Example. Consider the copwin graph G shown in Figure 5. One copwin
spanning tree is shown in bold. The unalarmed edges are indicated by
dashed lines. Theorem 6 gives A*(G) < 5. Recall that |E(G)| = 14 since
G is reflexive.

Figure 5: A graph G with A*(G) < 5.

Given some arrangement of alarms on the edges of G, a path P of G is
now a freepath if all edges of P are unalarmed. A freepath P’ of G is now
isolated if all vertices of P’ are at distance at least two from the endpoints
of any unalarmed edge not in P’. Again, a collapsible freepath P”, with
vertices Tj, , Tig, .. ., Ti,,, 18 almost isolated if P” is isolated in G — L(z;,).
Assuming P” is an induced subgraph of G, we continue to refer to the
subgraph induced by V(P") U L(z;,) as a free area. A set of freepaths
{P:}., is now a packing of freepaths if, for all 4, P; is induced, collapsible,
and (isolated or) almost isolated.

For a fixed copwin ordering (z1,22,...,2,) of G, define o*(Sz,) as the
maximum cardinality of a packing of freepaths on G.

Define af; = maxs, {a*(S,)|Sy is a copwin spanning tree of G}.

Theorem 7 Let G be a finite, copwin graph. Then A*(G) < |E(G)| -
V(G)| - eg.

Proof. Let (z1,73,...,2,) be a copwin ordering of G which realizes af,.
Alarms are placed according to the scheme described in the preamble to
the theorem. All loops remain unalarmed! The cop begins on vertex z,,. If
no alarm sounds on the robber’s first move, then the cop proceeds to visit
all vertices of the graph, being sure to search the vertices of any free area
consecutively. If no alarm goes off during this search, the robber will be
captured during this phase of the cop’s strategy.

If two distinct alarms sound consecutively, then the robber’s position is
known to the cop. If two distinct alarms sound, say on edge e and then
on edge d, but not consecutively, then there is one potentially troublesome
case. (Otherwise, the robber’s position is known to the cop.) Suppose
d © e, d = v1v3, e = vpv3, and there is a (portion of a) freepath P between
v; and v3. The cop visits v and then v;. If the robber is not captured and
has not sounded an alarm, giving away his position, then the cop knows
that the robber is on (the free area containing) P.
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Otherwise, a single alarm sounds, say on edge f = vqvs. The cop moves
toward f. If another alarm sounds, we return to the previous case. Oth-
erwise, the cop visits v4 and vs, and either captures the robber or else is
able to deduce that the robber is on a freepath P’, with v4 € V(P’) or
vs € V(P').

The cop moves to z, to begin playing the copwin strategy, thereby cap-
turing the robber’s image on G,. Case 1. Suppose first that the robber is
known to be on a freepath P” = z;,,%i,,...,Z;,,, but his position on P” is
unknown. The cop moves to Fy,_1(z;, ), and stays with the image of the rob-
ber. In general, if the robber does not move off of P” and sound an alarm,
then the cop is on Fi(z;,) and moves to Fix_i(z;,), k = 2,3,...,n - 1.
Once the robber moves off of P”, the cop proceeds as in Case 2.

Case 2. Now suppose the robber is known to be on v and the cop is
on Fi(v). If an alarm goes off on h = v/, the cop moves to Fi_;(v').
Otherwise, the robber is on a freepath P" = z;,,z;,,...,%;,,, i.e. v =z;,,
p€{1,2,...,m}. The cop is on Fi(z;,), and moves to Fy_;(zi,_,)-

Note that if the cop’s strategy takes him to vertex z;, of P”, no further
alarms have sounded, and the robber has not been captured, then the cop
moves to z;, and wins by searching the adjacent, unalarmed leaves.

Thus, the robber is apprehended using the copwin strategy. O

Example. Consider the copwin graphs G and H, shown in Figure 6, which
will be used to illustrate the placement of alarms suggested by Theorem 7.
The copwin spanning tree of G used in this example is shown in Figure 4.
The copwin spanning tree of H used here is shown in bold. The freepaths
are indicated by dashed lines.

M.,
AMhnmn,,e,ee:s

Figure 6: Graphs G and H which illustrate the placement of alarms sug-
gested by Theorem 7.
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