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Abstract. For a given triangle T, consider the problem of
finding a finite set S in the plane such that every two-coloring
of S results in a monochromatic set congruent to the vertices of
T. We show that such a set S must have at least seven points.
Furthermore we show by an example that the minimum of seven
is achieved.

1. Introduction

The fundamental problem in Euclidean Ramsey theory is the following:
Given a configuration C of points in R™ and an arbitrary k-coloring of R™,
does there exist a monochromatic set of points in R™ congruent to C? In
this paper we focus on the case where k = n = 2 and C is the vertex set of
a triangle. We will say that a triangle T is 2-Ramsey if every 2-coloring of
R? gives a monochromatic set congruent to the vertex set of T

The foundations of Euclidean Ramsey theory were laid in a sequence
of three seminal papers [2], [3], and [4]. Among the many results of these
papers, the authors make the following conjecture: :

Conjecture: All non-equilateral triangles are 2-Ramsey.

A simple 2-coloring scheme by alternating strips shows that equilateral
triangles are not 2-Ramsey, and it is known that several classes of triangles,
including all right triangles, are 2-Ramsey (see [4] and [8]). The conjecture
above, however, remains open to the present. See [5] and section 6.3 of [1]
for current surveys of the subject.

By an application of the compactness principle, if a triangle T is 2-
Ramsey, then there must exist a finite set S C R? such that every 2-coloring
of S results in a monochromatic set congruent to the vertex set of T. For
convenience in terminology we introduce the following notion.

Definition. Let T be a triangle, let S C R? be a finite set, and let 7 be a
collection of three-point subsets of S. Suppose further that each member of
T forms the vertex set of a triangle congruent to T. Then we say that the
pair (S, T) is T-forcing if every 2-coloring of S results in a monochromatic
member of 7.

Note that a T-forcing pair is combinatorially a 3-uniform hypergraph with
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chromatic number greater than two.

If follows (from our observation above concerning the compactness prin-
ciple) that T is a 2-Ramsey triangle if and only if there is a T-forcing pair
(8,T). For this paper we investigate “minimizing” the pair (5,7). In
particular, consider the following natural questions.

Question 1. If T is a 2-Ramsey triangle, what is the value of
p(T') = min{k : there exists a T-forcing (S, 7T) with |S|=k}?

Question 2. If T is a 2-Ramsey triangle, what is the value of
m(T) = min{k : there exists a T-forcing (S,7) with |T|=k}?

Question 3. What is the minimum of p(T") over all 2-Ramsey triangles?
Question 4. What is the minimum of m(T) over all 2-Ramsey triangles?

In this paper we answer question 3 by showing that the minimum
is achieved by the triangle T* with angles #/7, 2r/7, and 4n/7, with
p(T*) = 7. It is well-known (see p. 104 of [6]) that no 3-uniform hy-
pergraph with fewer than seven hyperedges has chromatic number greater
than two; in fact, our construction for T*, taken as a hypergraph, yields the
known minimal example. Thus, the answer to question 4 is seven as well,
minimized by m(T™*). It is interesting to note in this context that seven
appears as an answer to at least one other related question in Euclidean
Ramsey theory: there is a configuration of seven points in the plane such
that every 3-coloring of that set results in two points of the same color at
unit distance, but that no set of six points has this property (7).

Our main result is given in the next section. In section 3 we give the
construction for 7" and conclude with some bounds for the case of the
triangle with angles #/6, 7 /3, and /2.

2. The main result

For convenience we adopt the following terminology: if T is a triangle
and S is a set of points in the plane then we will refer to a three-point subset

of S as a copy of T in S if it forms the vertex set of a triangle congruent
toT.

Theorem. There is no triangle T with p(T') < 6.

Proof: Assume (to reach a contradiction) that T is a triangle, that (S,7)
is T-forcing, and that S = {A,B,C,D,E,F}. We may assume that 7
contains all copies of T in S. Let k be the maximum integer so that 7
contains k¥ members sharing two points in common. Clearly we have 1 <
k<4,
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The case k = 1 is easily eliminated: if no segment determined by S
belongs to more than one copy of T then S is easily two-colored so as to

avoid monochromatic copies of T'. Indeed, of the ( g )/2 = 10 ways to
partition S into two color sets of three points each, at most ( g ) /3=5
may feature a monochromatic copy of T'.

The case k£ = 4 is also easily eliminated. For if AB belongs to four
distinct copies of T then the set S must be arranged as in Figure 1, and the
coloring shown in that figure avoids monochromatic copies of T'. (It’s easy
to see that the monochromatic isosceles triangles in this coloring cannot be
congruent to T'.)

Figure 1.

For the case k = 3 assume that AB belongs to three copies of T in S,
say ABC, ABD, and ABE. We may choose a coordinate system for R?
so that A = (-1,0), B = (1,0), C = (u,v), D = (u,-v), and E = (—u,v)
(with »,v > 0). Now by assumption we know that ABF is not congruent
to T. Since S is a forcing set for ', CDE must be congruent to T. Thus
we have

{ICD|,|DE|,|CEl} {IAB|,|BC|,|AC}
{26, 20,2V2 +0?} = {2,V(u-12+0%V(u+1)? + 0%}

Neither of the possibilities u = 1 or v = 1 lead to solutions with positive
values of u and v. The remaining possibility (u? + v = 1) has only one
feasible solution, namely v = 1/2 and v = v/3/2. But this, of course,
means that S consists of five vertices of a regular hexagon together with
an additional sixth point. It is clear that the triangle T would have to be
determined by three points of the hexagon, and it is easy to verify that this
set is not a forcing set for any such triangle.

This leaves only the case & = 2. Now the six points of S determine
20 triangles, and since S is assumed to be a forcing set for T', if a three-
point subset of S is not a copy of T', then its complement is. So, S must
determine at least 10 copies of T'. Thus the 15 segments determined by S
must account for at least 30 sides of copies of T'. Since k = 2 this means
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that each segment determined by S must appear as a side of exactly two
copies of T', and that S determines exactly 10 copies of T.

Now T must have only one longest side (for otherwise the six point set
S would have to determine 10 segments of maximum length — an impossi-
bility). Let the side lengths of T be @ < 8 < 4. Then S determines exactly
five segments of length . This requires at least five of the points of S to be
on the boundary of the.convex hull of S. Observe that no segment of length
v may appear on the boundary of the convex hull of S. For if AB is on
the boundary of the convex hull with |[AB| = v, and if ABC and ABD are
copies of T', then the remaining two points of S must appear on the dashed
arcs in Figure 2. But such placement does not allow for five segments of
length ~.

Figure 2.

We can now note that T must in fact be determined by three consecutive
points on the boundary of the convex hull of S. For let A, B, and C be
consecutive on this boundary and suppose ABC#T. Then by coloring
and {A, B,C} black and {D, E, F} white we see DEF = T, so we may
assume that |DF| = . Then D and F lie on the convex hull’s boundary,
but cannot be consecutive by our previous observation. This must mean
that D, E, and F are consecutive on the hull’s boundary.

As we have noted, the convex hull of S must be a pentagon or a hexagon.
First, consider the pentagonal case. If the convex hull of S is the pentagon
ABCDE then all five diagonals of this pentagon must have length 7. Since
T has only one side of length v, the two copies of T' to which segment
AB belongs must be ABC and ABE. This means that |[BC| = |AE]|, and
repeating the argument leads to the conclusion that ABCDEF is a regular
pentagon. But S determines only three distinct segment lengths, so the
sixth point F must be the center of this pentagon. But it is easy to see
that this configuration is not T-forcing for the triangle T = ABC.

It remains only to consider the case that all six points of S are on its
convex hull. So suppose the convex hull of S is the hexagon ABCDEF.
Now if BDF # T then (since S is a forcing set for T') we must have ACE =
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T. We may assume that [CE| = a so that ZCAEFE is a smallest angle in
T. Then we must have both CADZT and EAD# T. From this it follows
that BCF = T and BEF 2 T which accounts for both copies of T sharing
side BF. This means BFAZT so that DCE = T. But since |CE| = a
this means that either CD or DE has length v, contradicting our previous
note that no segment on the boundary of the convex hull may have length

Y-
All cases have now been accounted for, so the proof is complete.

O

3. Examples

We conclude with two examples related to the questions in the intro-
duction. The first example shows the minimum of p(T') = 7 in the above
theorem is achieved.

Example 1. Let S be the set of vertices of a regular 7-gon labeled in order
0,1,...6 and let 7* = {{i,i+1,¢4+ 3} : 0 < i < 6}, taking all integers
modulo 7. (The reader may note that (S,7*) constitutes a representation
of the well-known Fano plane.) Let T* be the triangle with vertex set
{0,1,3}. We claim that (S,7*) is T*-forcing. To see this, first note that
we may assume 0 and 1 are both colored black. There are now two cases,
depending on the color given to point 2.

Figure 3.

e Suppose first that point 2 is also colored black and refer to the left
half of Figure 3 above. Considering the sets {0, 1,3} and {1,2,4} we
see that we must color points 3 and 4 white to avoid a monochro-
matic member of 7. Likewise, then, taking {3,4,6} into considera-
tion forces point 6 to be colored black, leading to the monochromatic
{6,0,2} € 7*.
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e Now suppose point 2 is colored white and refer to the right half of
Figure 3. The triple {0,1,3} still forces 3 to be white, and then in
turn {2,3,5} forces 5 to be black. Then {4,5,0} forces 4 to be white,
and {3,4,6} forces 6 to be black. This leads to the monochromatic
set {5,6,1} € T*.

O

The next example demonstrates bounds on p(T”) and m(T”) for a spe-
cific right triangle T7'. We are indebted to our colleague C.O. Christenson
for motivating this example.

Example 2. Let S be the nine point subset of the lattice of equilateral
triangles shown in Figure 3, and let T” be the triangle AY B with angles 7/6,
7/3, and /2. Clearly any two-coloring of S must result in one of {A, B},
{B,C}, or {A,C} being monochromatic. But note that if {4, B, X,Y, Z}
(the points connected by bold segments in the figure) are two-colored so
that A and B receive the same color, then one of the triangles ABX,
ABY, ABZ, or XY Z will be monochromatic. Similarly, if B and C [4
and C] receive the same color, then one of four triangles with vertices
among the points joined by dashed [wavy] segments will be monochromatic.
Thus, every two-coloring of S results in one of twelve copies of T' being
monochromatic, so p(T') < 9 and m(T") < 12. a
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