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Abstract

For a positive integer n, let G be K, if n is odd and K, less a
one-factor if n is even. In this paper it is shown that, for non-negative
integers p, q and r, there is a decomposition of G into p 4-cycles, ¢
6-cycles and r 8-cycles if 4p + 6¢ + 8r = |E(G)], ¢ = 0 if n < 6,
andr=0ifn <8

1 Introduction

Is it possible to decompose K, (n odd) or K, —I,, (n even, I, is a one-factor
of K,) into ¢ cycles of lengths my,...,m? Obvious necessary conditions
for finding these cycle decompositions are that each cycle length must be
between 3 and n and the sum of the cycle lengths must equal the number
of edges in the graph being decomposed. That these simple conditions are
sufficient was conjectured by Alspach [3] in 1981. To date, only a few special
cases have been solved, mostly where each m; must take one of a restricted
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number of values (1, 2, 6, 8]. In particular, we note that the case where
all the cycles have the same length has recently been completely solved by
Alspach and Gavlas [4] and Sajna [11]. We also note that Rosa [10] has
proved that the conjecture is true for n < 10, and Balister [5] has shown
that the conjecture is true if the cycle lengths are bounded by some linear
function of n and n is sufficiently large.

In this paper, we solve the case where each cycle has length 4, 6 or 8; for
the proof we introduce an innovative extension technique for finding cycle
decompositions of K,(—1I,) from decompositions of Kp,, m < n.

Theorem 1 Let n be a positive integer. Let p, q and r be non-negative
integers. Then Ky (n odd) or K, — I, (n even) can be decomposed into p
4-cycles, q 6-cycles and r 8-cycles if and only if

|E(K2)| ¥ n is odd,

L 4p+6q+8r={ |E(Kn — In)| if n is even, and

2. the cycles all have length at most n.

Our novel extension technique is described in the next section. The
proof of Theorem 1 is in the final section.

Definitions and notation. An edge joining v and v is denoted (u,v). A
path of length k—1 is denoted (v, ..., vx) where v; is adjacent to v;4q, 1 <
1 £ k-1, but a path of length zero—that is, a single vertex—will be denoted
simply vy rather than (v;). A k-cycle is denoted [vy,...,vk], where v; is
adjacent to vi1, 1 <i < k—1, and v, is adjacent to vk. A path-graph is a
collection of vertex-disjoint paths and is described by listing the paths. A
path-graph containing only paths of lengths zero or one is a matching.

2 An extension technique

In this section we introduce a technique that we can use to obtain cy-
cle decompositions of Kn(—I,) from cycle decompositions of Kn(—In)
when m < n.

First we define a different type of decomposition. Let n, s and ¢ be
non-negative integers. An (s,t)-decomposition of K, may be either even
or odd. An odd (s,t)-decomposition contains the following collection of
subgraphs:

e path-graphs P,..., P;, and
e cycles Cs41,...,Cs4e;

with the following properties:
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o their edge-sets partition the edge-set of K, and

e each vertex isin precisely s of the subgraphs Py, ... P;,Cs41,...,Csxtt.

An even (s, t)-decomposition of K, is the same as an odd (s, t)-decomposition
except that it also contains a matching Py which contains every vertex.

Example 1. We display an odd (4, 2)-decomposition of Ko:
pl = (115)2)4)) (3) 7)

P = (1,6,2,7)
P = (3,6,5),2
Py = (4,7,5),6
Cs = [1,3,5,4,6,7]

Ce = [1,2,3,4].

Now we introduce the idea of extending a decomposition of K,, to
a decomposition of K,. Let Py,...P,,Cy41,...,Cs4¢ be an odd (s,t)-
decomposition of K,,. For n > m, n odd, identify the vertices of K,,, with
m of the vertices of K,. If K, has a decompostion into cycles Ci,...,Csi¢
such that, for 1 < i < s, C; is a supergraph of P;, then we call this decom-
position an eztension of the decomposition of K,,. Similarly, for n > m,
n even, an even (s,t)-decompostion of Kp, Po,...Ps,Cst1,...,Csit, can
be extended to a decomposition of K, less a one-factor I, into cycles
C1,...,Csy¢ if we have the additional property that I, is a supergraph
of Po.

Theorem 2 Let m, n, s and t be non-negalive integers with m < n and
s = |(n—-1)/2). Let D = (Po,)P1,...Ps,Cs41,...,Csqe be an (s,t)-
decomposition of K,, that is even or odd as the parity of n.

Then D can be extended to a decomposition of K, (less a one-factor I,
if n is even) into cycles Cy,...,Csy: if and only if, '

for1<i<s, n—-m 2 |V(B)|-|E(P)|, and, (1)
ifn is even, |E(R)| =2 m-nf2. (2)

Notice that since each vertex of V(K \ Km) must be in s of the cycles, it
must be in each C;, 1 < i < s, since the other cycles are subgraphs of K.
Therefore C;, 1 < i < s, has length [V(P)| +n - m.

Before we prove Theorem 2, let us see how it can be used. We consider
four examples.
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Example 2. Let D be the (4, 2)-decomposition of K7 shown in Example 1.
Apply Theorem 2 with n = 9, m = 7, s = 4 and ¢t = 2. Checking that
(1) is satisfied is easy if we notice that |V(P;)| — |E(P;)| is equal to the
number of paths in P; (remember that we count an isolated vertex as a
path). By Theorem 2, there exists a cycle decomposition Cj, ..., Cs of Ko
where C;, 1 < i <4 is a supergraph of P;. As C; has length |V(P;)| +n -
m, C) will be an 8-cycle and Cy, C3 and C; will be 6-cycles. We display
an example of a cycle decomposition obtained by extending D.

¢ = [1,5,2,4,9,7,3,8]

C: = [1,6,2,7,8,9)
Cs = [2,9,3,6,5,8
Ci = [4,7,5,9,6,8)
Cs = [1,3,5,4,6,7)

Ce = [1,2,3,4]

In the following three examples, we begin with a cycle decomposition
of Kim(—I,). By making slight changes to this decomposition—we take
the edges from one of the cycles, or from the one-factor I, and use them
to create path-graphs—we obtain an (s, t)-decomposition of K,,. Then we
apply Theorem 2 to obtain a cycle decomposition of K,, for some n > m.
This method of obtaining a cycle decomposition of a complete graph from
a cycle decomposition of a smaller complete graph will help us to give an
inductive proof of Theorem 1 in the final section.

Example 3. Let A be a decomposition of Ko into p 4-cycles, g 6-cycles
and r 8-cycles and a one-factor I;9 where the vertices are labelled so that

Lo = (1’ 2), (3’ 4)' (5: 6),(7,8), (9, 10).
Label the cycles C7...,Cgiptq+r and let

P = (1:2))(3’4))5

P = (56),7
P = (7,8),9
Py = (9,10),1
P = 2,34
P = 6,8,10.
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Let D= P,,...,PsCy,...,Cpiq+r and notice that it is a decomposition
of Kyo. As the cycles Cy,...,Cgiptq+r form a decomposition of Ky — I1o,
each vertex v € V(Kp) will be in four of them (consider degrees). Each
vertex is also in two of the path-graphs displayed above. Thus each vertex
is in 6 of the graphs of D, and D is an odd (6,p + q + r)-decomposition
of K10. Apply Theorem 2 withn =13, m=10,s=6andt=p+g+r (it
is easy to check that (1) is satisfied). The decomposition of K3 obtained
contains all the cycles of D and also cycles Cy, ..., Cg that are supergraphs
of the path-graphs Py, ..., Ps. Thus C} has length 8 and C;, 2 < i < 6, has
length 6, and the decomposition of K3 contains p 4-cycles, g + 5 6-cycles
and r + 1 8-cycles.

Hence, if we require a decomposition of K3 into p’ 4-cycles, ¢’ 6-cycles
and ' 8-cycles, we can obtain it from a decomposition of Ko into p = p’
4-cycles, g = ¢’ — 5 6-cycles and r = ' — 1 8-cycles. Of course, we require
that ¢’ > 5 and 7 > 1 so that p, ¢ and r are non-negative.

Example 4. Let m = 1 mod 4, m > 9. Suppose that we have a decompo-
sition A of K,, into p 4-cycles, g 6-cycles and r 8-cycles, where ¢ > 1. We
are going to use this to find a decomposition of K, 4 so let n = m+4 and
s =(n~1)/2. Let D be a decomposition of K,, that contains all the cycles
of A except one of the 6-cycles which we may assume is C = [1, 2, 3,4, 5, 6].
Label the other cycles Csy1, . .., Cs4p+q+r—1. D also contains s path-graphs
that contain the edges of C and also isolated vertices. If m = 9, then s =6
and the path-graphs are

P = (1)2)36‘7

P = (23),1,7
P = (3,4),2,8
P, = (4,5),3,8
P = (56),4,9

P = (1,6),5,9.
If m = 13, then there are two further path-graphs

P = 10,11,12,13
Ps = 10,11,12,13.

For m > 17, there are further path-graphs P, ..., P;, where, for 1 < i <
(S - 8)/ 2)

Prioi = Pgyo; =41+ 10,47+ 11,414 12,4i + 13.
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As the cycles of D form a decomposition of K, — C, v € V(Ky,) \ C will
be in s — 2 of them; v is also in 2 of the path-graphs. If v € C, then
it is in only s — 3 of the cycles of D, but is in 3 of the path-graphs. As
every vertex is in s of the graphs of D, it is an odd (s,p+ ¢+ r — 1)-
decomposition of K,,. Use D to apply Theorem 2 with n, m and s as
defined and ¢t = p+ g+ 7 — 1. The decomposition of K, obtained contains
all the cycles of D and also cycles C}, ..., C; that are supergraphs of the
path-graphs P,..., P,, and C;, 1 < i < s, has length |V(P)|+n—-m = 8.
The decomposition of K, that is obtained contains p 4-cycles, ¢ — 1 6-
cycles and r + s 8-cycles. Thus we can obtain a decomposition of K, n =
1mod 4, n > 13, into p’ 4-cycles, ¢’ 6-cycles and r’ 8-cycles from a cycle
decomposition of K,,_4 whenever ' > s.

Example 5. An example for complete graphs of even order. Let A be a
decomposition of K,, — I,,, m > 8 even, into p 4-cycles, g 6-cycles and r
8-cycles, where p > 1. We are going to find a decomposition of K44 so
let n =m+4, s=(n-2)/2and t = p+q+r—1. Let one of the 4-cycles be

C =1,2,3,4]. Let D be a decomposition of K, that contains the cycles
of A —C (labelled Ciy,...,Cs4t), & matching Py = I, and s path-graphs
that contain the edges of C. If m = 8, the path-graphs are

P = (1,2),5,6

P, = (2,3),5,6

P = (3,4),7,8

P = (1,4),7,8

P = 1,23,4.
If m = 10, then P,,..., P5 are as above and

P = (1,2),9,10
Pg = 5,6,9,10.
Form > 12,1let P, =(1,2),m —1,m, P,,..., Ps be as above and
Ps = 5,6,9,10
Py 9,10,11,12
Ps = 11,12,13,14

P, = m-3m-2,m-1,m.
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Notice that D is an even (s, t)-decomposition of K, (it is easy to check that
every vertex is in Py and s of the other graphs in D). Thus from D, a cycle
decomposition of K, — I,, is obtained by applying Theorem 2 with n, m, s
and ¢ as defined. The decomposition of K, — I, obtained contains cy-
cles Cy,...,C, of length, for 1 < i < s, [V(P)| +n — m = 8. Therefore it
contains p—1 4-cycles, g 6-cycles and r+s 8-cycles, and we note that we can
obtain a decomposition of K, — I,, n > 12 even, into p’ 4-cycles, ¢’ 6-cycles
and ' 8-cycles from a cycle decomposition of K,,_4 — I, _4 whenever r > s.

Proof of Theorem 2: Necessity: for 1 < i < s, C; contains the edges
of P; plus at most 2(n — m) edges from E(K,) \ E(K,,). As it has length
[V(P:)| + n — m, we have

|E(P)| +2(n —m) 2 [V(B)| +n —m.

Rearranging, (1) is obtained. Similarly, I,, contains the edges of P, plus at
most n — m edges from E(K,)\ E(Km). As I, has n/2 edges,

|E(Po)|+n —m > n/2.

Rearranging, (2) is obtained.

Sufficiency: to simplify the presentation we will prove only the (slightly
trickier) case where n is even. Thus s = (n — 2)/2. Let the vertices of K,
be vy, ..., 9.

First consider the case m = n — 1. Trom (1) and (2) we find that,
for1<i<s,

|E(P)] = |V(P)| -1, and
|E(P)] = n/2-1.

In fact, we must have equality in each case since Py is a matchingonn —1
vertices and, for 1 < i < s, P; is acyclic. Thus each P;, 1 <t < s, must be
a single path and P, contains n/2 — 1 independent edges and an isolated
vertex. Each vertex has degree n — 2 in K,,_;, is in s = (n — 2)/2 of
the subgraphs P, ..., P;,Cs+1,...,Cs+t, and has degree at most 2 in each
of these subgraphs. Thus the vertex that has degree 0 in Py must have
degree 2 in each of the other subgraphs that contain it, and each vertex
of degree 1 in Pp, must have degree 1 in one of the other subgraphs that
contain it and degree 2 in the rest; that is, it must be the endvertex of
precisely one of the paths P;,, 1 < i < s. Therefore we obtain the cycle
decomposition of K, from D, the (s,t)-decomposition of K,,_;, by adding
edges (vj,7n), 1 < j < n—1, to the subgraphs in the following way. If v; is
an endvertex in P;, then the new edge (v;, vn) is placed in the subgraph P;.
Hence P; becomes a cycle of length [V(P:)| +1. Finally, if v; is the isolated
vertex in Py, then (vj;,v,) is the additional edge required to form the one-
factor I,.
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We construct two laminar sets F and G which contain subsets of E(B).
Let F contain sets Pg,..., Py, where P, 0 < i < s, contains the set of all
edges incident with P/ in B. Also if v;, and vj, are endvertices of a path in
Py, then let {(P/,v},),(P/,v},)} be a set in F (call these endvertex-sets).
Let G contain sets v}, ...,%},, where v}, 1 < j < m, contains the set of all

1 Ym
edges incident with v;. in B. !

Apply Lemma 3 with M = E(B) and h = n — m to obtain a set of
edges L that, by (3), (4) and (5), contains exactly one edge incident with
v}, 1 £ j < m, at most two edges incident with P/, 1 <i < s, and at most
one edge incident with Pp. Also L contains at most one edge from each
endvertex-set.

Now we extend D to D'. For1 < j < n, if (P{,vj) is in L, then
(Ym+1,v5) is placed in P;. Then vy is added as an isolated vertex to
any P; to which no new edges have been added. Since L contains exactly
one edge incident with each v;, each new edge is placed in exactly one
subgraph. There is only an edge (P;,7;), 1<i<s5,1<j<m,in Bifv;
has degree less than 2, so after the new edges are added v; has degree at
most 2 in P;. Since L contains at most two edges incident with P;, 1 <1 < s,
Um+1 has degree at most 2 in each P;, 1 <7 < 5. As L contains at most
one edge from each endvertex-set, vpm4+1 cannot have been joined to both
ends of a path in P; (thus creating a cycle). Therefore P;, 1 < i < s, is still
a path-graph. By a similar argument, P, is still a matching.

We must check that (1) and (2) remain satisfied with m replaced by m+
1. First (1): note that |V(P;)| increases by one (as the new vertex is
adjoined to every path-graph) and E(P;) incrcases by at most two. If
initially we have

n-m=-22|V(P)| - |E(R),

then clearly (1) remains satisfied. If
n—m—1=|V(P)| - |E(P)), |
then, arguing as for (4), da(P}) = 2(V(P)| - |E(R)|) = 2n —m) — 2 >
n—m (since n —m > 2). So L contains at least one edge incident with P/
and at least one edge is added to P; and (1) remains satisfied. If
n—m=[V(R)| - E(P)|,

then dp(P/) = 2(n —m), and L contains two edges incident with P/ and
hence two edges are added to P; and (1) remains satisfied.
Finally, if initially we have

|E(Po)| —12m —n/2,
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then (2) remains satisfied. If
|E(Po)| = m - n/2,

then dg(P§) = n — m, and L contains an edge incident with Fj and hence
an edge is added to Pp and (2) remains satisfied. o

3 Proof of Theorerh 1

The necessity of the conditions is clear.

Sufficiency: as we remarked in the Introduction, all possible cycle de-
compositions of Ky, have been found for » < 10 [10]. For n > 10, we
assume that cycle decompositions for K/, n’ < n, are known. Then we use
two techniques to find decompositions of K,. Some cases are found using
Theorem 2 to extend a decomposition of Ky, n' < n. The second method
is to consider K, as the union of several edge-disjoint subgraphs. Each
cycle required in the decomposition of K, is assigned to one of the sub-
graphs in such a way that the total number of edges in the cycles assigned
to a subgraph is equal to the number of edges in that subgraph. Thus
the problem of decomposing K, becomes the problem of decomposing its
subgraphs. If a subgraph is a smaller complete graph, then we can assume
the decomposition exists, and if it is a complete bipartite graph, we can use
the following result of Chou, Fu and Huang.

Theorem 4 [7] The complete bipartite graph Km » can be decomposed into p
4-cycles, q 6-cycles and v 8-cycles if and only if

1. m and n are even,

2. no cycle has length greater than 2min{m,n},
3. mn=4p+6q+ 8r, and

4. fm=n=A4, thent # 1.

First suppose that n is odd. Note that if n = 3 mod 4, K, has an odd
number of edges and cannot have a decompisition into cycles of even length.

Case 1. n = 13. We require a decomposition of K3 into p 4-cycles, ¢
6-cycles and r 8-cycles. Note that

4p + 6q + 8r = |E(K13| = 78.
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Thus ¢ is odd since 78 # 0 mod 4. In Section 2, we saw that we could
find a decomposition of K3 by extending a decomposition of Ko if r > 6
(Example 4) or by extending a decomposition of Ky if ¢ > 5 (Example 3).
We may now assume that ¢ € {1,3} and r < 5, which implies that 4p >
78 — (3 x 6) — (5 x 8) = 20, that is, p > 5.

Consider K3 as the union of K5, Ko and K3z 4 where Ks is defined on
the vertex set {1,...,5}, Ko on the vertex set {5,...,13}, and K4zg on the
vertex sets {1,...,4} and {6,...,13}. Let C =[1,6,2,7]. Let H; = KsUC
and Hy = Kg4 — C. Note that H; is the union of two 4-cycles and a
6-cycle. K3 is the union of K9, H; and Hs. For the remaining cases,
we assign the cycles required in the decomposition of K13 to these three
subgraphs. (A decomposition of Hs is found by finding a decomposition
of K3 4 that contains, as well as the required cycles, a further 4-cycle which
can be labelled [1, 6,2, 7] and discarded.) Two 4-cycles and a 6-cycle are
assigned to H,. There are at most two further 6-cycles which are assigned
to Kg. Up to three 8-cycles are assigned to Hs; any remaining 8-cycles
(there are at most two more) are assigned to Kg. This only leaves some
4-cycles to be assigned, and clearly the number of edges not accounted for
in He and Ky is, in both cases, positive and equal to 0 mod 4.

Case 2. n = 17. We require a decomposition of K;7 into p 4-cycles, g
6-cycles and r 8-cycles. Note that

4p + 6q + 8r = |E(K12)| = 136.

If r > (n—1)/2 = 8, then, as seen in Example 4, we can apply Theorem 2
to obtain the decomposition of K17 from a decomposition of K3.

For the remaining cases, let K17 = KoqU Ko U Kgg. We will assign the
required cycles to these three subgraphs. Suppose that 4p + 87 > 64. Then
we can assign all of the 8-cycles (since r < 8) and some 4-cycles to Kgg
so that the assigned cycles have precisely 64 edges. There remain to be
assigned some 4-cycles and 6-cycles which have a total of 72 edges. Thus
either 4p > 36 or 64 > 36 and we can assign cycles all of the same length
to a Kg. We assign the remaining cycles to the other Ky.

If 4p + 8r < 64, then 6g > 136 — 64 = 72. We can assign six 6-cycles to
each Ko and the remaining cycles to Kgg.

Case 3. n > 21 odd. We require a decomposition of K,, into p 4-cycles, g
6-cycles and r 8-cycles. If r > (n—1)/2, then, as seen in Example 4, we can
apply Theorem 2 to obtain the decomposition of K, from a decomposition
of Ky,—4. Otherwise r < (n- 1)/2. Let Kn=K,_12UKj3UK, —13,12. We
assign the required cycles to these subgraphs.
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Suppose that 4p + 87 > |F5(Kn—-13,12)]- Then we can assign all of the
8-cycles and some 4-cycles to K,—13,12 (since 8r < 4(n — 1) < 12(n — 13)
for n > 21). We are left with 4-cycles and 6-cycles to assign to K,—i2
and K3. We can assign cycles all of the same length to the smaller of these
graphs (which is either Kg or K13—both have a number of edges equal
to 0 mod 4 and 0 mod 6) and the remaining cycles to the other.

If4p+8r < |E(Kn—13,12), then 6q > |E(Kn-12)|+|E(K\13)|. We cannot
simply assign 6-cycles to K,_12 and K3 however, since |E(Kn-12)| is not
equal to O mod 6 for all n = 1 mod 4. If 6g > |E(Kn_13,12)| + |E(K13)|,
then we can assign 6-cycles to K,_13,12 and K3 and any remaining cycles
to Kn—12. If6g < lE(K _13.12)|+|E(K13)l, then 4p+8r > IE(K _12)| > 16
(as n > 21). One of the following must be true.

|E(Kn-12)] = 0Omod6

|E(Kn-12)| +8 0 mod 6
|E(Kn-12){+16 = Omod6

We assign 6-cycles to K3 and to K,_12, except that to Kn.12 we also
assign 4-cycles and 8-cycles with a total of 8 or 16 edges if the number of
edges in K,_12 is 2 mod 6 or 4 mod 6, respectively. The remaining edges
are assigned to Kn_13,12.

Case 4. n = 12. We require a decomposition of K3 — I2 into p 4-cycles, ¢
6-cycles and r 8-cycles. Then

4p + 69 + 8r = |E(K 2 — I12)| = 60,

and so q is even. In Example 5, we saw that if r > (n—2)/2 = 5, we can use
Theorem 2 to extend a decomposition of K3 to obtain the required cycle
decomposition of Ky — ;5. Otherwise let Ko — 112 = (K¢ — Is) U (K¢ —
Ig) U Kg 6. We will assign the required cycles to these subgraphs.

Note that 4p + 6 > 60 — 32 = 28 (since r < 4). If g =0,thenp > 7
and we can assign 4-cycles to each Kg. If ¢ = 2, we assign the two 6-cycles
to one K¢ and 4-cycles to the other Kg. If ¢ > 4, we assign 6-cycles to
each Kg. In each case the remaining cycles are assigned to Kgs.

Case 5. n > 14 even. We require 2 decomposition of K,, — I, into p
4-cycles, g 6-cycles and r 8-cycles. In Example 5, we saw that if r >
(n — 2)/2, we can use Theorem 2 to extend a decomposition of K,_4 to
find the required cycle decomposition of K,, — I,. Otherwise let K,, — I,, =
(K¢ — Ig) U (Kpn—s — In—6) U Kg n—g. We will assign the required cycles to
these subgraphs.
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We have

|E(Kn — In)| — 8r
n(n —2)/2 - 4(n - 4)
(n? — 10n + 32)/2
44,

4p + 6q

v

v

as n > 14. Therefore 4p > 22 or 6 > 22 and we can assign cycles all
of length 4 or all of length 6 to K¢ — Is. Note that the number of edges
in Ken—¢ is 0mod 12. If ¢ > n — 6, we assign only 6-cycles to Kgn—s.
Otherwise we assign all the 6-cycles to K¢ ¢ if q is even, or all but one
of them if g is odd. Then the number of remaining edges is also 0 mod 12
so we can assign as many 4-cycles as necessary. All remaining cycles are
assigned to K, —s. ]
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