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Abstract

The maximum possible volume of a simple, non-Steiner (v, 3,2)
trade was determined for all v by Khosrovshahi and Torabi (Ars
Combinatoria 51 (1999), 211-223); except that in the case v = §
(mod 6), v > 23, they were only able to provide an upper bound on
the volume. In this paper we construct trades with volume equal to
that bound for all v = 5 (mod 6), thus completing the problem.
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1 Introduction and Definitions

We begin with some necessary definitions. Using design theory terminology,
a block is defined to be any subset chosen from some given set of size v. We
call this v-set the foundation. A (k,t) trade of volume m and foundation
size v is a pair {T1,T>} of disjoint sets of blocks, with each of T} and T3
containing m blocks of size k, based on a foundation set of size v, such that
every {-set chosen from the foundation occurs equally often in the blocks of
Ty and in the blocks of T5. Every element in the foundation set must occur
in the trade.

Various classes of combinatorial trades (typically the trades with a par-
ticular ¢ and k) have been investigated since the concept was first formally
applied in design theory in the 1960s (see [2]); the underlying idea was also
used earlier than this. The work on combinatorial trades is surveyed in [3]
and [1].
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The case ¢ = 2 has received the greatest attention to date. This case
can be easily represented in terms of graph theory; the foundation is a set
of v vertices, blocks are complete graphs of size k on the foundation set,
and the ¢-sets with ¢ = 2 are edges.

The union of the blocks of T} is then a graph H on v vertices, which is
also equal to the union of the blocks of T>. Hence a (k, 2) trade of volume m
and foundation size v is equivalent to two disjoint decompositions of some
graph H on v vertices into m copies of K.

A trade is simple if the sets Ty and T, have no repeated blocks (that is,
they are true sets rather than multisets). A Steiner trade has the further
condition that each ¢-set may occur in at most one block of T; and at most
one block of T,. For a graphical trade (with ¢ = 2) this is equivalent to
saying that the graph H must be simple. If the trade is not Steiner then
H will be a multigraph (with no loops).

In this paper we are concerned with simple non-Steiner (3, 2) trades (K33
or triangle trades in graphical terms), which we shall henceforth refer to as
merely trades, denoted {T},T>}.

A simple non-Steiner (3, 2) trade of foundation size v may be viewed as
a partition of the (3) triples on a v-set into three sets T, T3, T, such that
every pair occurs the same number of times in triples of T} as in triples of
T,. We have |T1| = |T2|; this quantity is the volume of the trade. The set
T is the leave, containing the ‘unused’ triples.

A trade of maximal volume on v vertices is a trade with volume greater
than or equal to the volume of every other trade on v vertices. The size of
T° is thus minimised.

The volume of a trade of maximal volume on v vertices is denoted by
vol(Tar(v)). In [4], this quantity is fully determined for all v except when v
is congruent to 5 modulo 6, where only partial results were obtained. The
results of that paper are summarised in the following theorem (we take N
to be the set of positive integers, so zero is not included).

Theorem 1.1 (f4], Theorems 1,3,2) The mazimal possible volume of a
simple, non-Steiner (3,2) trade of foundation size v, or in some cases an
upper bound for this volume, is given below for allv € N:
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Foundation size (v) | Mazimal trade volume
v<5 vol (Tp(v)) =0
v=0 (mod 4) vol (Tpr (v)) = v(v + 1) (v — 4)/12
v=2 (mod 4) vol (Tpr(v)) = v(v — 1) (v — 2)/12
v=7 vol (T (v)) = 12
v=1,3 (mod6),v> 7| vol(Tar(v)) = v(v —1)(v - 3)/12
v e {11,17} vol (Tag (v)) = (v(v — 1)(v — 3) — 16) /12
v=35 (mod6), v>17 | vol(Ty(v)) < (v(v—1)(v—3) —16) /12

For the rest of this paper, we let v =6m + 5, for m € N.

The upper bound on vol (T's(v)), given in Theorem 1.1, can be written:

vol(Th(v)) < 18m® +33m? + 19m + 2, 1

with equality in the cases m = 1 and m = 2. We give trades, for every
other positive integer m, with volume equal to the bound (1), thus showing
equality in general. This completes the determination of vol(Ths(v)), v € N.

The construction will require the following additional definitions:

A Steiner Triple System (STS) of order m consists of a set of triples on
a given m-set such that each pair of elements in the m-set occurs together
in exactly one triple.

Let m be an integer and K be a set of integers. A pairwise balanced
design PBD(m; K; 1) consists of a family of blocks (subsets) on a given m-
set such that the size of each block is contained in K, with the property
that each pair of elements from the m-set is contained in exactly one block.
An integer in the set K may be marked with an asterix to indicate that
there is exactly one block of that size in the design.

A group divisible design (GDD) consists of a triple (V, G, B), where V is
a set, G is a partition of V into groups, and B is a family of blocks (subsets)
of V with the following property: every pair of elements from V occurs in
exactly one block or one group, but not both. A k-GDD of type si’ s¥.str
is a group divisible design with exactly ¢; groups of size s;, 1 <i < r, and
with all blocks of size k. Necessarily |V| = 31, s:t;.

A 1-factor is a graph consisting of v isolated edges on 2v vertices, for
some v € N. It is well known that for all v € N, K>, may be decomposed
into 2v — 1 1-factors (this decomposition is known as a 1-factorisation).
A 1-factor can also be considered as a set of v disjoint pairs on a 2v-set,
with each element of the 2v-set occurring in exactly one of the pairs. A

1-factorisation is then a partition of the (%) pairs on the 2v-set into 2v—1
of these 1-factors.
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1.1 Notation

We partition the v-set, where v = 6m + 5, into one subset of size 5, labelled
F, and m subsets of size 6, labelled Gz, 1 <z < m.

We partition the (3) triples on the v-set according to the subsets to
which the three points of the triple belong. For example, F'G} is the set
of triples with one point in F' and two points in G3.

We partition the (3) pairs on the v-set in a similar way, so for example
G? is the set of pairs containing two points in Gy. In terms of this notation,
we assume that point sets written separately are distinct; for instance in
the triple set F!GLG}, it is assumed that z # y. We will call these basic
edge and triple sets.

All pairs are contained in the basic sets
F?, F'GL, G2, GLG,
forl<z<morl<z<y<m; while all triples are contained in the sets
FS, F*GL, FIG2, FIGIG), G2, GG, GIGLG,

forl1<z<myorl<z<y<morl<z<y<z<m.

1.2 Outline of construction

Our constructions are based on partitioning the (3) triples on the v-set into
subsets of standard sizes and structures. These subsets are equal to either
one of the basic triple sets (for example F1G3%), or to the union of several
of them (for example F3 U F2G} U F1G? UG3).

We give subtrades of maximal volume based on each of these triple sets;
these subtrades are trades which may use only the specified set of triples,
rather than all triples on a given foundation set. It is not necessary to
prove that these subtrades are of maximal volume, only that their combined
volume is equal to the bound (1). This is achieved by choosing the subsets
into which the triples are partitioned so that we can construct ‘efficient’
subtrades on them, with the fewest possible triples discarded in total (so
we are minimising the size of T°¢).

The constructions rely on the following well-known result:

Lemma 1.1 Let m € N. Depending on the congruency class of m modulo
6, the following designs can be constructed on an m-set:
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(i) If m = 1,3 (mod 6) then there ezists a Steiner triple system (STS) of
order m.

(i) Ifm =5 (mod 6) then there exists a PBD(m;{3,5*};1).
(iii) If m = 0,2 (mod 6) then there exists a 3-GDD of type 2™/2,
(iv) If m =4 (mod 6) then there ezists a 3-GDD of type 2™/2-241,

Proof.

(i) See for example the Skolem and Bose constructions, Sections 1.3 and
1.2 of [6]). This was originally proved in [5).

(ii) See for example Section 1.4 of [6]. This was first proved in [8].

(iii) We can construct a 3-GDD of type 2™/2 by removing one element
from a STS of order m + 1 (which exists by (i)). Each block which
contained the removed element is converted into a group.

(iv) We can construct a 3-GDD of type 2™/2-24! by removing one of the
elements which occurs in the block of size 5 in a PBD(m+1; {3,5*};1)
(which exists by (ii)). Each block which contained the removed ele-
ment is converted into a group.

1]

For any m € N, one of the four cases of Lemma, 1.1 holds.

The constructions, corresponding to the four cases of Lemma 1.1, are
given in the next section. Section 3 lists (or references) the subtrades used
in these constructions, numbered from (1) to (10).

2 Constructions

Theorem 2.1 For any m € N with m = 1,3 (mod 6), there is a trade of
volume 18m3 + 33m? + 19m + 2 and foundation size v, where v = 6m + 5.

Proof. Take a STS of order m on the set {g; | 1 < i < m}. Now
‘blow up’ each element by six, so each point g; is replaced by the set G; =
{ilsi2:i3ai4:i5’i6}t 1< <m. We add an extra set F = {f11f2z f3: f47 f5})
to give a foundation set of size v = 6m + 5.

We place a subtrade of type (1) (see Section 3; this has volume 72) on
F3UF?GIUF'G?UGS.
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We place subtrades of types (2), (3), and (4) (volumes 30, 10, and 30)
on F2G}, G}, and F'G? respectively, for 2 < i < m.

For each triple g;g; gx in the STS, we place a subtrade of type (5) (volume
630) on (U (ealetigthacy FIGEGY UGEG) UGLGE) UGHG]G] (there are
m(m — 1)/6 of these blocks). By definition each pair g;g; occurs in exactly

one block of the STS, and hence each triple set F'G}G}, GG}, and G}G?
will be used in exactly one subtrade.

For each triple g;g;gx which is not a block of the STS, we place a sub-
trade of type (7) (volume 108) on G}G}G}. There are m(m—1)(m—2)/6—
m(m — 1)/6 = m(m — 1)(m — 3)/6 such triples.

This gives a trade of volume 72 + (30 + 10 + 30)(m — 1) + 630(m(m —
1)/6) +108(m(m — 1)(m — 3)/6) = 18m3 + 33m? + 19m + 2, as required. 0O

Theorem 2.2 For any m € N with m = 5 (mod 6), there is a trade of
volume 18m3 + 33m?2 + 19m + 2 and foundation size v, where v = 6m + 5.

Proof. Take a PBD(m;{3,5%};1) on the set {g; | 1 < ¢ < m}. Assume
without loss of generality that the block of size five is g19293949s. Now
‘blow up’ each element by six, so each point g; is replaced by the set G; =
{i1,42, 13,14, 15,36}, 1 < i <m.

We add an extra set F' = {f1, fa, f3, f4, [5}, to give a foundation set of
size v = 6m + 5.

We place a subtrade of type (1) (volume 72) on F3UF2GIUF!G3UG3S.

We place subtrades of types (2), (3), and (4) (volumes 30, 10, and 30)
on F2G}, G2, and F1G? respectively, for 2 < i < m.

For each block gig;g: of size three in the PBD(m; {3,5*};1), we place
a subtrade of type (5) (volume 630) on

( F'GLG} ucga;uc;cg) UGIGIG)
{z.y}e{i.j.k}.z<y

(there are (m(m —1)/2 — 10)/3 = (m? — m — 20)/6 of these blocks). For
the block of size five, 9192939495, we place a subtrade of type (6) (volume
2820) on

( U FIG’,-G;uc;iG;uG;G,?,) u( U G;G;G:).

1<z<y<s 1<z<y<z<5
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For each triple g;g;jgr which is not a block of the PBD(m; {3,5*}; 1),
and is not a subset of the block of size five (so {i,j,%} € {1,2,3,4,5}), we
place a subtrade of type (7) (volume 108) on G}G}G}. There are m(m —
1)(m —2)/6 — (m? —m —20)/6 — 10 = (m® — 4m? + 3m — 40) /6 such triples.

This gives a trade of volume 72 + (30 + 10+ 30)(m — 1) +630((m? —m —
20)/6) + 2820 + 108((m3 — 4m? + 3m — 40)/6) = 18m?® + 33m? + 19m + 2,
as required. o

Theorem 2.3 For any m € N with m = 0,2 (mod 6), there is a trade of
volume 18m3 + 33m? + 19m + 2 and foundation size v, where v = 6m + 5.

Proof. Take a 3-GDD of type 2™/2 on the set {g; | 1 < i < m}, with
groups {91792}: {93194}3'-'a{9m—1’9m}-

Now ‘blow up’ each element by six, so each point g; is replaced by the
set Gi = {ilsi2:iayi4si5’i6}’ 1 < i <m.

We add an extra set F' = {fi, f2, f3, f4, fs}, to give a foundation set of
size v =6m + 5.

We place a subtrade of type (8) (volume 316) on (F UG, UG,)? =
FRUF?GlUF?GLUF'G}UF'G3UF'GIGL UGG UGIGZ UG} UGS.

We place a subtrade of type (2) (volume 30) on F2G}, for 3 <i < m.

We place a subtrade of type (9) (volume 254) on F(G2;—; U G2;)? U
(G2i-1UG%)® = F1G3;_ UF'G}, UF'G};_, G}, UG3;_, G}, UG);_,G3, U
G2i-113 UGS;, for 2 < i < m/2.

The construction is now completed in the same way as the construction
for the case m congruent to 1 or 3 (mod 6).

For each block gig;gx in the GDD, we place a subtrade of type (5)
(volume 630) on (U, ypegssi1.0<y F'GAGE U GZGE UGLGE) U GIGIG)
(there are m(m — 2)/6 of these blocks). By definition each pair g;g; occurs
in either one group or one block of the GDD, hence each triple set F1G}G},

G?G}, and G}G? will be used in exactly one subtrade.

For each triple gig;gx which is not a block of the GDD, we place a
subtrade of type (7) (volume 108) on G}G}G}. There are m(m — 1)(m —
2)/6 — m(m — 2)/6 = m(m — 2)?/6 such triples.

This gives a trade of volume 316 +30(m ~2)+254(m—2) /2 +630(m(m—
2)/6) + 108(m(m — 2)2/6) = 18m® + 33m? + 19m + 2, as required. 1]
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Theorem 2.4 For any m € N with m = 4 (mod 6), there is a trade of
volume 18m3 + 33m? 4 19m + 2 and foundation size v, where v =6m + 5.

Proof. Take a 3-GDD of type 2™/2-24! on the set {g; | 1 < i < m},
with groups {glag2’93:g4}: {95196}) {97198}r"){gm—1agm}- Now ‘blow
up’ each element by six, so each point g; is replaced by the set G; =
{il,iz,is,i4,i5,ie}, 1<i1<m.

We add an extra set F' = {f1, fa, f3, f4, f5}, to give a foundation set of
size v = 6m + 5.

We place a subtrade of type (10) (volume 1758) on (FUG; UG2UG3 U
Ga)® = FPUU; ¢, s (FPGLU F'GZ U GE) UU o ¢y (F'G2G, UGG U
GLG2) UV <crcy<:<a GGG

We place a subtrade of type (2) (volume 30) on F2G}, for 5 <i < m.

We place a subtrade of type (9) (volume 254) on F!(Gai—1 U G2)? U
(G2i-1UG%)® = F'G};_, UF'G};UF'G;_, G}; UGS;_,G); UG); .G U
G3;_1UG3;, for 3 <i<m/2.

The construction is now completed in the same way as the construction
for the case m congruent to 1 or 3 (mod 6).

For each block g;g;gsx in the GDD, we place a subtrade of type (5)
(volume 630) o (Ue,ype(iimp o<y F'GAG} UGEGS UGLGE) U GIG)G
(there are (m(m — 1)/2 — 6 — (m — 4)/2)/3 = (m? — 2m — 8)/6 of these
blocks). By definition each pair g;g; occurs in either one group or one block
of the GDD, and hence each triple set F'G}G}, G?G}, and G}G? will be
used in exactly one subtrade.

For each triple g;g;jgx which is not a block of the GDD, nor contained
in the group of size four ({91, 92, 93, 94}), we place a subtrade of type (7)
(volume 108) on G}G}G}. There are m(m — 1)(m — 2)/6 — (m? — 2m —
8)/6 — 4 = (m® — 4m? + 4m — 16)/6 such triples.

This gives a trade of volume 1758 +30(m —4) +254(m — 4) /2 +630(m?—
2m — 8)/6 + 108(m? — 4m? + 4m — 16)/6 = 18m® + 33m? + 19m + 2, as
required. o

3 Subtrades

For m,n €N, let [m,n] betheset {k|k€ N, m <k <n}.
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3.1 Subtrade type (1): volume 72, with 21 triples in T

A (maximal volume) trade of foundation 11 and volume 72 is given in [4].

Given a set F of size five and a set G of size six, we use this known trade
as a subtrade of volume 72 on the triples (FUG)® = F3UF2GIUF'G?UGS.

3.2 Subtrade type (2): volume 30, with no triples in 7

Givenaset F = {f1, fa, f3, fa, f5} of five points and aset G = {1,2,3,4,5, 6}
of six points, the following is a trade on the triples F2G":

{fisz I i—-j=1 (mod 5), T € [1,3]} ch
{fifizx|i—-j=2(mod 5),z€ [4,6)C T,

{fifiz|i—j=2(mod 5),z€[1,3] C T,
{fifiz|i—j=1(mod 5),z € [4,6]CT;

3.3 Subtrade type (3): volume 10, with no triples in T
Let G = {1,2,3,4,5,6} be a set of six points.
The following is a trade on the triples G3:
{123,124, 345, 346, 561, 562, 135, 146, 236, 245} C T,
{125,126, 341, 342, 563, 564, 136, 145, 235,246} C T5.

This trade of volume ten is the union of two familiar trades of volumes six
and four (the Pasch trade), on blocks of size three.

3.4 Subtrade type (4): volume 30, with 15 triples in 7T
Let F = {f1, f2, fa, f1, fs} be a set of five points and G = {1,2,3,4,5, 6}

be a set of six points. Partition the (§) pairs in G? into five one-factors
01,02, 03, 04, O, each of which contains three pairs.
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The following is a trade on the triples F1G?:

{fizy | zy € Oj, i — j = %1 (mod 5), 1,5 € [1,5]} € T,

{fizy | zy € O0;, i — j = £2 (mod 5), 4,5 € [1,5]} C T,

{fizy | 2y € Oy, i€ [1,5]} C T°.

3.5 Subtrade type (5):
volume 630, with 36 triples in T°

The following is a trade on the triples

Let F = {f1, fa2, f3, 4, fs} be a set of five points and G1, G2, and G3, where
Gz = {21, 22, %3,Z4, Ts5, Te }, be three sets of six points.

( U FGiGLuGiGiu G;Gf,) UGLGIG) :

1<z<y<3

Taking subscripts modulo 6, let

{fi1;2k, £i133k, £i2;3e | 3,k € [1,6],
i+kodd i€ {1,2,3})C T,

{£i1;2&, £i1;3k, £i233% | 4,k € [1,6),
j+keven, i€ {4,5}}CT,

{1:2;354541 | 4,5 € [1,6]} C Ty,

{1:2;3i4542 | 1,5 € [1,6]} C T,

{1:2;3i1543 | 4,5 €[1,6), i and j odd} C T3,

{1:2;3i4544 | 4,5 €[1,6], i and j even} C Ty,

G}G},G3G}, GG € Th,

{fil;2k, £i1;3k, £i2;3x | 4,k € [1,6],
j+kodd, i€ {4,5)}C T,

{£i152¢, fil;3k, £i2;3 | 4,k € [1,6),
Jj+keven, i€ {1,2,3}} C Ty,

{1:2;3i4543 | 1,5 €[1,6], iorj even} C T3,
{1i2.‘i3i+j+4 | i,j € [1»6]$ ior j odd} C T3,

{1:2;3:4545 | 4,7 € [1,6]} C T3,

<9%(;§J9§(;fd3§(;552 Ty,

{1:2;3i45 | 4,7 €[1,6]} S Te.
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3.6 Subtrade type (6):
volume 2820, with 120 triples in 7°

Let F = {f1, f2, f3, f1, fs} be a set of five points and G,, G2, Gs, G4, and
Gs, where G, = {1, %2, %3, 24,25, %6}, be five sets of six points.

We give a trade on the triples

U F'GLGluGiGluGia? ju U ¢ieiat).
1<z<y<z<b

1<z<y<b
To begin with we give three disjoint subsets of the triple set
Ui<z<y<z<5 G2GYG?, each of which forms a decomposition of the pair
set U, co<y<s G265
Taking sums modulo 5,

D, = A{aj(a+1)i(a+2)x,ai(a+2)j(a+3)i|a€l,5],
i,k €[1,6], j=k=i+1 (mod 3), i +j +k odd},

D, = {a,-(a+ 1)i(a + 2)x, ai(a + 2);,'(0. +3)]ac [1,5],
,5,k€[1,6], j=k=1i+1 (mod 3), i +j + k even},

Ds = {aj(a+1)i(a+2k,a:(a+2)i(a+3) |a€1,5],

i,j,k€[1,6], j=k=i—1 (mod 3), i +j +k odd}.

Taking subscripts modulo 6, let
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{fixjyk I 1 S r<y S 5’ J:k € [116]:
j+kodd, i€ {1,2,3}} c,

{fixjyk | 1<z<y<sH, hEkE [1!6]a
j+keven, i€ {4,5}}CT,

{xiyjzk €Dy I i,5,k € {113a5}} ch,

{xiyjzk € D2 | icjsk € {21 4’6}} g Tls

{ziyjzk l 1 S r<y<z S 5) i'j;ke [1$6]’
i+j+keven}\D; CTh,

{zizsyx | =,y €[1,5), y—z=1,2 (mod 5),
i’j‘)k € [176]3 i< j} g Tl:

{fizjyk I 1<z<y< 5, J»k € [1)6])
i+kodd, i€ {4,5)} C T,

{fimjyk I 1<z<y< 5? Jsk € [1a6]y
j+keven, i€ {1,2,3}} C T3,

{ziyjzx € Dy | 1,3,k not all odd} C T3,

{ziyjzx € D2 | 1,3,k not all even} C T3,

{ziyjzk |1<z<y<z<5, i,j,k € [1,6],
i+j+k0dd}\{D1UD3} CT,,

{ziziye | z,y€ (1,5, y—z=3,4 (mod 5),
i:j,k € [1,6]$ i <.7} c TZ,

D; CTC.

3.7 Subtrade type (7):
volume 108, with no triples in T*

Let Gz = {z1,%2,23,24,%5,%6}, 1 <z < 3 be three sets of six points.

(540 triples)
(360 triples)
(30 triples)
(30 triples)
(960 triples)

(900 triples)

(360 triples)
(540 triples)
(90 triples)
(90 triples)
(840 triples)
(900 triples)

(120 triples)

The following is a subtrade on the triples G}G}G}:

{1:2;3k | 4,5,k € [1,6],i +j+keven } CTh,
{1:2;3x | 4,5,k € [1,6),i +j + kodd } C T>.

336



3.8 Subtrade type (8):
volume 316, with 48 triples in 7

A (maximal volume) (3,2) trade of volume 316 and foundation size 17 is
given on page 223 of [4].

Given a set F of size five and sets Gy and G each of size six, we can
place a copy of this known trade on the foundation set F UGy UG,. Thus
this trade can be considered as a subtrade of volume 316 on the triples
(FUGLUG:)3.

3.9 Subtrade type (9):
volume 254, with 42 triples in 7°

Let F = {f1, f2, f3, fs, f5} be a set of five points and G; and G,, where
G: = {z1, 22, 23,24, 25, Tg }, be two sets of six points.

We give a trade on the triples F1(G, UG;)? U (G1 UG2)® = F1G2 U
FIG3UF'GIG UGG UGIGZ UGS UGS.

Since the triple set used in this subtrade may be written as F}(G; U
G2)?U(G1UG2)3, the sets G1 and G; can be considered as a single combined
set of twelve points, for the purposes of this subtrade only (we still need to
consider these points as two groups of six for the purposes of other subtrades
and the overall trade structure).

In fact, we rearrange the twelve points of G; U G2 into three groups of
four points, labelled P, P,, and P; — again just for this subtrade con-
struction. We temporarily relabel the points so that P, = {z1,z2,23,%4},
for z = 1, 2,3. Note that we are reusing the notation used elsewhere for the
points of the sets of size six (that is, the sets G, € N). The new usage
applies to this subtrade construction only.

In this new arrangement, our subtrade uses the triples
FYPLUPRUPR)?U(P,UPUPs)?

= (Urgoga F*P2UP2)U(Uycacyes F*PEP}UPZPEU PLP})UPLP}F}.
We use the following five 1-factors on the twelve points P, U P, U P;:
01 = {lL113,1314,2132,223;, 2334, 2433},

02 = {212;,2324,3112,3:14,3314,3413)},
Os = {3132,3334, 1122, 122;,132,, 1425},
04 = {1113,1214,2123, 2224,3133,3234},
Os = {l1l4,1213,2124,2523,3,34, 3233}
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The remaining pairs in (P; U P> U P;)? (those not in one of the above
1-factors) are partitioned into the following two sets:

By = {;33,p2q2,P30, P32, a1, 0404 | (p,0) € {(1,2),(2,3),(3,1)}},
E = {pIQI’pIQ4aP2QSsPZQ4,P3QS:p4QZ I (Pa q) € {(1’2)’ (273):(37 1)}}

Every point in P, U P, U P; is in exactly three pairs from E; and three
pairs from Es.

The subtrade is as follows, taking p + 1 and p — 1 modulo three:
{fipigx | Pigx € Oz,i —z =1,2 (mod 5),

z,i € [1,5]} C T, (60 triples)
{fipsar |1 € {1,2,8}, pjqx € E1} C Th, (54 triples)
{fipjar | i € {4,5}, pjax € B2} C T, (36 triples)

{1,'2,'3]3 | i,5,k € [1, 4], i+ji+k Odd}
\{112133, 112331, 132131, 142431, 1421 34,11 2434} CT1, (26 triples)
{Pipj(p+ l)k I pPE [1)3]1 ivjik € [134]}

\{psp2(p+1)2 | p€1,3]} C T, (69 triples)
{ppalp-Mlpe[L,3} €T, (3 triples)
{prp2ps, p2p3pa | p € [1,3]} C T, (6 triples)
{fipiax | Pigk € Oz,i —z=3,4 mod 5,

:B,i € [115]} g T27 (60 triplw)
{fipiax | i € {4,5}, pix € B4} C T3, (36 triples)
{fiviar | i € {1,2,3}, pjgx € B2} C T, (54 triples)

{1:23% | 4,4,k € [1,4], i +j + k even}
\ {122234,122432, 142,32, 13?332,132233a 122333} C T2, (26 triples)
{Pipj(P— l)k I pPE [113]: i:]ak € [1a4]}

\Mpipalp—1)1 | p€1,3]} C T, (69 triples)
{psp2(p+1)21p€ (1,3} C T2, (3 triples)
{prp2pa, prpspa | p € [1,3]} C T, (6 triples)
{fzpja | Pjar € Oz,z € [1,5]} C T, (30 triples)

{112133,112331,132131, 142431, 142134, 112434} C T¢, (6 triples)
{122234, 122432, 142232, 132332, 132233, 122333} C T°. (6 triples)
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3.10 Subtrade type (10):
volume 1758, with 138 triples in 7T°

Let F = {f1, f2, f3, f4, fs} be a set of five points and Gy, Gs, Gs, and Gy,
where G; = {21, 22, %3, %4, z5, Z¢ }, be four sets of six points.

The following is a subtrade on the triples (FUG; UG, UGs U Gy =
F3UU, ¢, <4 (F?GLUF'G2UG?) VUi<zey<a(F'GLIGLUGIGLUGLG2)U
UlS:<u<z$4 G::G;G‘lz

This subtrade contains a few of the smaller subtrades given above —
this was done to simplify the trade construction in the case m = 4 (mod 6)
— but most of the subtrade is new.

We use a subtrade of type (1) (volume 72 with 21 triples in 7) on the
triples (FUG1)® = FSUF?GlUF'G2 UGS.

We use subtrades of type (2) (volume 30 with 0 triples in 7°) on the
triples F2Gl, for z = 2, 3,4.

We use subtrades of type (4) (volume 10 with O triples in T) on the
triples G3, for z = 2,3,4.

We use subtrades of type (5) (volume 30 with 15 triples in T°) on the
triples F1G2, for z = 2,3, 4.

The remainder of the subtrade has volume 1476, with 72 triples placed
in T¢, using the triples

( U FIG;G;uaga;uG;Gg)u( U G;G;G:).

1<z<y<4 1<z<y<z<4

We require the following subset of U, <, <, <,<4s GrGLG?, which forms
a decomposition of the pair set U, ¢, <y<4 G3GJ:

D = {1.2,3:,1:2u4y, 1324y, 2:3u4y | 7,3, 2 € [1, 6],
t=Ey=z=w+1l(mod 2), z+y+2=z+y+w=0 (mod 3)}.

The triple set D is an example of a 3-GDD of type 64, which are known
to exist (see Theorem 1.22 of [7]). However the particular structure of D
is important; of the 72 triples in D, the sum of the subscripts is even for
36 triples and odd for 36 triples. Although all 72 triples are discarded
(placed in T°°), the absence of the odd-sum triples from 7} and the even-
sum triples from T3 causes an imbalance which must be corrected through
the disposition of the other triples.
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We also need to define some pair sets before giving the subtrade. The
15 pairs on a 6-set can be partitioned into five 1-factors. For z = 1,2, 3,4,
let p. be the union of three of the 1-factors on G, and let g- be the union
of the remaining two 1-factors. Then p, and g: partition G2, with the
property that every point of G occurs in exactly three pairs from p, and
two pairs from g¢.

Finally we give a partition of the pair set ;<. <4 G3G} into two
subsets of size 108: T

A = {ziyj|lzye(l,3,y=z+1(mod3), i,j € [1,6], j odd}
U{4iz; | z € [1,3), 4, € [1,6], j evenl),
B = {zy;lz,y€ 1,3, y=z+1 (mod 3), i,j € (1,6], j even}

U{4;$j l S [113]a i,j € [1:6]: J Odd}'

Note that every point in G; U G2 U G3 UGy occurs in equal numbers of
pairs from A and B (nine of each).

The subtrade is then:

{fizjur | zjye € A, i € {1,2,3}} C T, (324 triples)
{fizjyx | zjyx € B, i € {4,5}} € T, (216 triples)
{zyjz | 1<z <y<2z<4,1,5,k€[l,6],
i+j+kodd}\DCT, (396 triples)
GIGi,GIGL, GIGL C T, (270 triples)

{zizjdr | = € [1,3], ziz; € pz, k € {2,4,6}} CT1, (81 triples)
{zizj4e | = € [1,3], ziz; € gz, k € {1,3,5}} CT1, (54 triples)
{4:4;z¢ | z € [1,3], 44 € pa, k€ {1,3,5}} CT1, (81 triples)
{4:i4jze | z € [1,3), 4i4; € a4, k € {2,4,6}} CT1, (54 triples)
{fixjyk I Ziyr € A, i€ {4! 5}} CT, (216 tripl&s)
{fizjye | zjyx € B, 1 € {1,2,3}} C I, (324 triples)
{xiyjzk I 1fz<y<z<4, i,5,k€ [1’6])
i+j+keven}\DCT, (396 triples)
GIG%, Gng, G3G2 - T2, (270 triples)
{zizj4e | z € [1,3], zizj € pz, k€ {1,3,5}} C T2, (81 triples)
{zizi4i | € [1,3)], 27 € ¢, k € {2,4,6}} C T2, (54 triples)
{4i4jze | z € [1,3)], 4i4; € ps, k € {2,4,6}} C T, (81 triples)
{4:4jzx |z €[1,3], 4 4, € q, k€{1,3,5}} C T, (54 triples)

DCTe
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4 Results

The combined results of [4] and this paper are summarised in the following
theorem:

Theorem 4.1 The mazimal possible volume of a simple, non-Steiner (3,2)
trade of foundation size v is given below for all v € N:

Foundation size (v) | Mazimal trade volume

v<5 vol(Tps(v)) =0
v=0 (mod 4) vol (T (v)) = v(v +1)(v - 4)/12
v=2 (mod4) vol (Tar(v)) = v(v — 1)(v - 2)/12
v="7 vol(Ty(v)) =12

v=1,3 (mod 6), v > 7 | vol(Tae(v)) = v(v —1)(v — 3)/12
V=5 (mod6), v>5 | vol(Tay(v)) = (v(v—1)(v—3)—16)/12

Proof. Follows from Theorem 1.1 (from [4]), and from Theorems 2.1, 2.2,
2.3, and 24. o
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