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Abstract

A graph G is 2-stratified if its vertex set is partitioned into two
classes (each of which is a stratum or a color class). We color the
vertices in one color class red and the other color class blue. Let X
be a 2-stratified graph with one fixed blue vertex v specified. We say
that X is rooted at v. The X-domination number of a graph G is the
minjmum number of red vertices of G in a red-blue coloring of the
vertices of G such that every blue vertex v of G belongs to a copy
of X rooted at v. In this paper we investigate the X-domination
number of prisms when X is a 2-stratified 4-cycle rooted at a blue
vertex.
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1 Introduction

In this paper we continue the study of stratification and domination in
graphs started by Chartrand et al. [4] and studied further in [3] and else-
where. A graph G whose vertex set has been partitioned into two sets V;
and V; is called a 2-stratified graph. The sets V; and V; are called the strata
or sometimes the color classes of G. We ordinarily color the vertices of V;
red and the vertices of V5 blue.
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In [12], Rashidi studied a number of problems involving stratified graphs;
while distance in stratified graphs was investigated in [1, 2, 5].

A set S C V(G) of a graph G is a dominating set if every vertex not in
S is adjacent to a vertex in S. The domination number of G, denoted by
4(G), is the minimum cardinality of a dominating set. A dominating set of
G of cardinality y(G) is called a (G)-set. The concept of domination in
graphs, with its many variations, is now well studied in graph theory. The
book by Chartrand and Lesniak [6] includes a chapter on domination. For
a more thorough study of domination in graphs, see Haynes, Hedetniemi,
and Slater [10, 11].

In [4] a new mathematical framework for studying domination is pre-
sented. It is shown that the domination number and many domination
related parameters can be interpreted as restricted 2-stratifications or 2-
colorings, with the red vertices forming the dominating set. This frame-
work places the domination number in a new perspective and suggests many
other parameters of a graph which are related in some way to the domina-
tion number.

More precisely, let X be a 2-stratified graph with one fixed blue vertex
v specified. We say that X is rooted at the blue vertex v. An X-coloring
of a graph G is defined in [4] to be a red-blue coloring of the vertices of G
such that every blue vertex v of G belongs to a copy of X (not necessarily
induced in G) rooted at v. The X-domination number vx(G) of G is the
minimum number of red vertices of G in an X-coloring of G. In [4], an
X-coloring of G that colors vx(G) vertices red is called a «yx -coloring of G.
The set of red vertices in a yx-coloring is called a yx-set. If G has order n
and G has no copy of X, then certainly vx (G) = n.

A prism is the cartesian product G = C, x K3, n 2 3, of a cycle
C, and a Ks. Throughout this paper, our prism G consists of two n-
cycles vy,va,...,Vn,v; and ug,ug, ..., uy,, u; With u;v; an edge for all ¢ =
1,2,...,n. Our aim is to determine the X-domination number of a prism
when X is a 2-stratified cycle Cj.

For notation and graph theory terminology we in general follow {10].
Specifically, let G = (V, E) be a graph with vertex set V and edge set E.
The order of G is n = |V| and its size is m = |E|. Let v be a vertex
in V. The open neighborhood of v is N(v) = {u € V|uv € E} and the
closed neighborhood of v is N[v] = {v} U N(v). For a set S of vertices,
the open neighborhood of S is defined by N(S) = UyesN(v), and the closed
neighborhood of S by N[S] = N(S)US. A vertex w € V is a private neighbor
of v (with respect to S) if N[w] N S = {v}; and the private neighbor set of
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v with respect to S, denoted pn(v, S), is the set of all private neighbors of
v.

We denote the subgraph of G induced by S by G[S]. The minimum
degree (resp., maximum degree) among the vertices of G is denoted by
6(G) (resp., A(G)). A cycle on n vertices is denoted by C,, and a path on
n vertices by P,.

2 Known Results

2.1 A 2-stratified P,

If X is a K3 rooted at a blue vertex v that is adjacent to a red vertex, then
it is shown in [4] that vx(G) = ¥(G). Thus domination can be interpreted
as restricted 2-stratifications or 2-colorings, with the red vertices forming
the dominating set. Clearly, this X-coloring is the only well-defined one for
connected graphs X with order 2.

2.2 A 2-stratified P;

Let F be a 2-stratified P; rooted at a blue vertex v. The five possible choices
for the graph F are shown in Figure 1. (The red vertices in Figure 1 are
darkened.)

F, B, B Fy Fy
Figure 1:

The following result is established in [4].

Theorem 1 ([4]) If G is a connected graph of order at least 3, then for
i € {1,2,4,5}, the parameter v, (G) is given by the following table:

i 1 2 4 5
1R(G) = | %(G) | ¥(C) [ %(G) | 72(G)
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where 7,(G) denotes the total domination number (see [10]), v-(G) denotes
the restrained domination number (see (7, 10]), and v2(G) denotes the 2-
domination number (see [8, 10]).

2.3 A 2-stratified Kj;

The two 2-stratified graphs K3 rooted at a blue vertex v are shown in
Figure 2, where the red vertices are indicated by darkened vertices.

~ L

Figure 2:

Obviously, in any Fg-coloring and F3-coloring of G, every vertex not on
a triangle of G must be colored red. Feg-coloring and F7-coloring of graphs
are studied in [4] and [?7].

3 A 2-stratified Cy

Let X be a 2-stratified C rooted at a blue vertex v. The five possible choices
for the graph X are shown in Figure 3. (The red vertices in Figure 3 are
darkened.)

v v v v v
X1 X2 X3 X4 Xs

Figure 3:
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4 Stratification in Prisms

In this section, we determine the X-domination number of a prism when
X is a 2-stratified cycle Cs. We shall prove:

Theorem 2 Forn > 3, let G =Cy x K. Then forie {1,2,3,4,5}, the
parameter yx,(G) is given by the following table:

i TX (G)
1| /2] + [n/4] = |n/4]
2 ifn=4
2 { 2n :)therwise
3 n
n
4 2[3]

w|§

o 5]

Throughout Section 4, we let G = C,, x Ks. The proof of Theorem 2
follows from Propositions 3, 4, 5, 6 and 7. We have selected two of the
more interesting and informative proofs in this section and simply stated
the remaining results without proof.

Proposition 3 Forn > 3, vx,(G) = |n/2] + [n/4] — |n/4].
Proof. The desired result follows from Claims 1 and 2.
Claim 1 7x,(G) 2 n/2] + [n/4]  [n/4].

Proof. In any X;-coloring of a graph, every vertex colored blue is rooted
at a copy of X;. Hence as an immediate consequence of the definition of
- an Xj-coloring, any X-coloring of G colors at least one vertex from every
4-cycle red.

347



Suppose n is odd. Consider any given Xj-coloring of G. Renaming
vertices if necessary, we may assume v, is colored red. Since G — {u1,v1}
contains (n — 1)/2 disjoint 4-cycles, each of which contains at least one red
vertex, our given X-coloring contains at least (n+1)/2 red vertices. Thus,
7x:(G) 2 (n+1)/2.

Suppose n is even. Then, G has n/2 disjoint 4-cycles, and therefore
has at least n/2 red vertices. Thus, vyx,(G) > n/2. Further, suppose
n = 2(mod4) and that exactly n/2 vertices are colored red. Then, ev-
ery 4-cycle in G contains exactly one red vertex. In particular, v, is the
only red vertex in the 4-cycle vy, u,u3,v2,v1. Since up is rooted in a
copy of X1, the vertex ug is colored red, and so ug3 is the only red ver-
tex in the 4-cycle ug, v3, v4,u4,us. Since vy is rooted in a copy of Xj, the
vertex vg is colored red, and so vg is the only red vertex in the 4-cycle
s, us, g, Vs, V5. Proceeding in this manner, v,_, is the only red vertex in
the 4-cycle vn_1, Un—1, Un, Un, Un—1. But then u, is not rooted at a copy of
X1, a contradiction. Hence, if n = 2(mod4), then at least n/2+ 1 vertices
are colored red. O

Claim 2 7x,(G) < [n/2] + [n/4] = |n/4].

Proof. If n = 3, then {v;,us} is an X;-coloring of G, and the desired
upper bound follows. Hence we may assume n > 4. Suppose first that
n # 2(mod4). Let
n/4)-1
S= | {vai+1,uais3}.
=0

If n = 0(mod4), let D = S. If n = 1(mod4), let D = SU {v,}. If
n = 3(mod4), let D = SU {un,vn_2}. In all cases, coloring the vertices in
D red and coloring all remaining vertices blue, produces an X;-coloring of
G, and 50 1x,(G) < |D| = [n/2] + [n/4] — |n/4).

Suppose, secondly, that n = 2(mod4). If n = 6, let S = @, while if
n > 10, let
In/4] -2

U {v4e+1, u4i+3}-

i=0

Let R = {vn—5,Vn—4, Un—2,Un—1}. Coloring the vertices in RU S red and
coloring all remaining vertices blue, produces an X;-coloring of G, a.nd SO
7%,(G) < IR+ IS| = n/2] + [n/4] - |n/4]. ©

We omit the proof of the next three propositions.
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Proposition 4 For n > 3, vx,(G) = 2n, unless n = 4 in which case
1x,(G) =2.

Proposition 5 Forn > 3, vx,(G) =n.

Proposition 8 Forn > 3, yx,(G) =2 [-133]

Proposition 7 Forn > 3, vx,(Cn X Ka) = [ ‘%"]

Proof. In any Xs-coloring of a graph, every vertex colored blue is rooted
at a copy of Xs. Hence as an immediate consequence of the definition of an
Xs-coloring, any Xs-coloring of G colors at least four vertices from every
subgraph H = P; x K, of G red. Furthermore, if it colors a vertex v blue,
then v lies on a 4-cycle with three red vertices.

Consider any given Xz-coloring of G. If every vertex of G is colored
red, then the required lower bound follows. Hence, renaming vertices if
necessary, we may assume that our given Xjs-coloring of G colors v; blue.
Thus, v; lies on a 4-cycle in which the other three vertices are colored red.
Renaming vertices if necessary, we may therefore assume that the vertices
u3, uz and vs are all colored red.

If n = 0 (mod 3), then G contains /3 disjoint copies of H, each of which
contains at least four red vertices, and so our given Xs-coloring contains at
least 4n/3 = [4n/3] red vertices. If n = 1 (mod 3), then G — {uz, v} can
be partitioned into (n — 1)/3 disjoint copies of H, each of which contains
at least four red vertices, and so our given Xs-coloring of G colors at least
2+4(n—1)/3 = (4n+2)/3 = [4n/3] vertices red. Finally, if n = 2(mod 3),
then G — {u;,u2,v1,v2} can be partitioned into (n — 2)/3 disjoint copies
of H, each of which contains at least four red vertices, and so our given
Xs-coloring of G colors at least 3 +4(n — 2)/3 = (4n + 1)/3 = [4n/3]
vertices red.

In all three cases, our given Xs-coloring of G colors at least [4n/3] ver-
tices red. Thus, vx,(G) > [4n/3]. We show next that vx,(G) < [4n/3].
Let '

[n/3)-1
S= J {usisa vsis3}.
i=0
If n % 2(mod3), let D =V(G) - S. If n =2(mod3), let D = V(G) —
(S U {v,.}). Then coloring the vertices of D red and coloring all remaining
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vertices of G blue produces an Xs-coloring of G. Thus, vx,(G) < |D| =
[4n/3]. O

5 Domination Parameters in Prisms

In this section, we determine the relationship between the X-domination
numbers of a prism and domination type parameters. In all but one of the
five possible choices for a 2-stratified Cy (see Figure 3), the red vertices form
a dominating set in the graph. Hence we have the following observation.

Observation 8 Fori € {1,3,4,5} and for any greph G, ¥(G) < vx,(G).
Given a graph G = (V, E) and a subset S C V, we call the coloring of G

that colors the vertices of S red and the vertices of V — S blue the red-blue
coloring associated with S. We shall prove:

Theorem 9 Forn > 3, let G = C, x Ky. Then fori € {1,3,4,5}, the
parameter vx,(G) is given by the following table:

i 1x:(G) =
1 1(G)
3 7(G)
7%(G)+1 if n= 1(mod6)
! { 7(G) otherwise.
5

7£9(G) =1 if n= 2(mod86)
7%2(G) otherwise.

where v2(G) denotes the 2-domination number, v, (G) denotes the total
domination number, and v.o(G) denotes the double total domination num-
ber (which we define in Subsection 5.4).

Throughout Section 5, we let G = C, x Kj. The proof of Theorem 9
follows from Propositions 10, 12, 14 and 16.

350



5.1 The domination number

A dominating set S in a graph is a minimal dominating set if and only if
for each v € S, we have pn(v, S) # 0.

Proposition 10 For n > 3, 4(G) = vx, (G).

Proof. By Observation 8, ¥(G) < vx,(G). Hence it suffices for us to show
that ¥(G) 2> vx,(G). Among all y(G)-sets, let S be chosen so that

(1) G[S] has minimum size.
(2) Subject to (1), the red-blue coloring associated with S contains
the maximum
number of blue vertices that are rooted at a copy of X;.

We proceed further by proving three claims,
Claim 3 [N(v)NS| <1 forallveS.

Proof. Suppose there exists a vertex v; € S such that [N(v;) N S| > 2.
If u; € S, then by symmetry we may assume that v;,.; € S. But then
(S = {wi,vi}) U {ui—1} is a dominating set of G of cardinality less than
7(G), which is impossible. Hence, u; ¢ S; that is, {v;—1,vi+1} C S. Then,
u; € pn(v;,S), and so u;_; ¢ S and u;4; ¢ S. Hence, (S — {v:}) U {;}
is a 9(G)-set that induces a subgraph of G with fewer edges than G[9],
contradicting our choice of S. O

Claim 4 |[{u;,%:}NS| <1 fori=1,2,...,n.

Proof. Suppose that {u;,»;} C 9 for some ¢, 1 < ¢ < n. By Claim 3,
S N {ui—1,%i-1,%i+1, i1} = 0. By the minimality of S, pn(v;,S) C
{vi-1,v+1} and pn(u;, S) C {ui—1,%:+1}. Suppose that v;—; € pn(v;, S)
and u;4) € pn(u;, S). Then, SN {ui42,vi—2} = 0. Hence, (S — {uw;, %}) U
{%i4+1,vi-1} is a 4(G)-set that induces a subgraph of G with fewer edges
than G[S], contradicting our choice of S. Similarly we have a contradiction
if viy1 € pn(v;, S) and u;—; € pn(ui,S). Hence, by symmetry, we may
assume pn(v;, S) = {vi+1} and pn(ui, S) = {uiy1}. Hence, {ui—2,v:-2} C
S while § N {u;42,vi42} = 0. But then (S — {v;}) U {viy1} is a v(G)-set
that induces a subgraph of G with fewer edges than G[S], contradicting our
choice of S. O :
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Claim 5 The red-blue coloring associated with S is an X;-coloring of G.

Proof. Suppose not. Then, renaming vertices if necessary, we may assume
that v; is a blue vertex that is not rooted at a copy of X in the red-
blue coloring associated with S. Since S is a dominating set, at least one
neighbor of v, is in S. If v € S, then by Claim 4, u; ¢ S. Since v, is not
rooted at a copy of X in the red-blue coloring associated with S5, we must
have u; € S. Similarly, if v, € S, then u; € S. Hence, u; € S.

If SN {v2,vn} = 0, then {uz,u,} C S, and so |[N(u1) N S| = 2, contra-
dicting Claim 3. Hence at least one of v; and vy is in S. By symmetry, we
may assume v € S.

By Claim 4, u; ¢ S. If u, € S, then S — {u;} is a dominating set of
cardinality less than 4(G), which is impossible. Hence, u, ¢ S, and so
v, € S (since v; is not rooted at a copy of X;). If vz € S, then §—{vy} isa
dominating set, which is impossible. If u3 € S, then (S — {11, v2})U{uz2} is
a dominating set of cardinality less than «(G), which is impossible. Hence,
SN {uz,v3} = 0. In order to dominate uz, we have u4 € S. Thus by
Claim 4, v4 ¢ S.

By Claim 4, |S N {us,vs}|] < 1. If us ¢ S and vs € S, then (S -
{w1,u4,v2}) U {ug,v4} is a dominating set of cardinality less than (G),
which is impossible. If us € S and vs ¢ S, then (S—{uy, ug, v2})U{uz, v3} is
a dominating set of cardinality less than (G), which is impossible. Hence,
SN {us,vs} = 0. Let §" = (S — {v2}) U {vs}. Then, S’ is a ¥(G)-set such
that G[S’] has the same size as G[S] and the red-blue coloring associated
with S’ contains one more blue vertex that is rooted at a copy of X, than
does the red-blue coloring associated with S. This contradicts our choice
of theset S. O

By Claim 5, the red-blue coloring associated with S is an X;-coloring of
G. Hence, vx, (G) < v(G), thus completing the proof of Proposition 10. O

As a consequence of the proof of Proposition 10, we have the following
result.

Corollary 11 Forn > 3, there exists a y(G)-set whose associated red-blue
coloring is a minimum X, -coloring in G.
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5.2 The 2-domination number

Let S be a dominating set in a graph G = (V, E). We say that a vertex v €
V is double dominated by S if [IN[v]JNS| > 2. The set S is a 2-dominating set
of G if every vertex in V — S is double dominated by S. The 2-domination
number, denoted by v,(G), is the minimum cardinality of a 2-dominating
set in G (see [8, 10]). A 2-dominating set of G of cardinality v2(G) is called
a ¥ (G)-set.

Proposition 12 Forn > 3, 12(G) = vx,(G).

Proof. The red vertices in any Xs-coloring of G form a 2-dominating
set of G, and so 12(G) < vx,(G). Hence it suffices for us to show that
72(G) 2 vx5(G). Among all 12(G)-sets, let S be chosen so that the red-
blue coloring associated with S contains the maximum number of blue
vertices that are rooted at a copy of Xs.

Claim 6 The red-blue coloring associated with S is an X3-coloring of G.

Proof. Suppose not. Then, renaming vertices if necessary, we may assume
that v, is a blue vertex that is not rooted at a copy of X3 in the red-blue
coloring associated with S. Since S is a 2-dominating set, at least two
neighbors of v; are in S.

We show that SN {uj,v2,v,} = {v2,vn}. Suppose {u;,v2} C S. Since
v; is not rooted at a copy of X3 in the red-blue coloring associated with
S, we must have uz € S. If v, € S, then u, € S. But then S — {u;} is a
2-dominating set of G, contradicting the minimality of S. Hence, v, ¢ S.
In order to double dominate v,, we must have {un,v,-1} C S. But then
(S = {u1}) U {v1} is a 42(G)-set such that the red-blue coloring associated
with this set contains at least one more blue vertex, namely u;, that is
rooted at a copy of X3 than does the red-blue coloring associated with S.
This contradicts our choice of the set S. Hence, {u;,v;} ¢ S. Similarly,
{u1,v9n} ¢ S. Hence, SN {uy,v2,9n} = {v2,v,}. In order to double
dominate u;, we must have {uz,u,} C S.

We show next that SN {u3,v3} = 0 while {uq,v4} C S. If v3 € S, then
(S = {v2}) U {v1} is a y2(G)-set such that the red-blue coloring associated
with this set contains at least two more blue vertices that are rooted at a
copy of X3 than does the red-blue coloring associated with S, a contradic-
tion. If u3 € S, then by considering the set (S — {u2}) U {u;} we produce a
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similar contradiction. Hence, SN {us,v3} = @. In order to double dominate
ua and v3, we must have {u4,v4} C S, as claimed.

Continuing in this way, we have that S N {u;,v;} = 9 for all i odd
while {u;,v;} C S for all i even. As observed earlier, in order to dou-
ble dominate u; and v; we have {upn,v,} C S. Hence, n is even. But then
(S —{v2,v4y...,vn})U{v1,v3,...,vn_1} is a 12(G)-set such that every blue
vertex in the red-blue coloring associated with this set is rooted at a copy
of X3, contrary to our choice of S. O

By Claim 6, the red-blue coloring associated with S is an X3-coloring of
G. Hence, vx,(G) < 72(G), thus completing the proof of Proposition 12. O

As a consequence of the proof of Proposition 12, we have the following
result.

Corollary 18 Forn > 3, there exists a v2(G)-set whose associated red-blue
coloring is a minimum Xs-coloring in G.

5.3 The total domination number

A set S C V in a graph G = (V, E) is a total dominating set (TDS) if every
vertex is adjacent to at least one vertex of S. Equivalently, S is a TDS of
G if for every vertex v € V, |[N(v) N S| > 1. The total domination number
7:(G) is the minimum cardinality of a TDS of G. A TDS of cardinality
7:(G) we call a v (G)-set.

Proposition 14 Forn >3,

7(G)+1 if n= 1(mod6)
'YXA(G) =

7(G) otherwise.

Proof. Any TDS of G contains at least two vertices from every subgraph
H = P; x K of G (since the two vertices of degree 3 in H have disjoint
open neighborhoods, each of which contains at least one vertex from any
TDS). Let S be a «,(G)-set.

Suppose, first, that = = 1(mod 6). Renaming vertices if necessary, we
may assume v; ¢ S. To dominate v;, the set S contains at least one
neighbor of v;. If u; € S, then G—{u;,v:} can be partitioned into (n—1)/3
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disjoint copies of H, each of which contains at least two vertices of S, and
so [S| 21+2(n-1)/3 = (2n+1)/3. If va € S, then G — {uy, v}
can be partitioned into (n — 1)/3 disjoint copies of H, and so once again
[S| > (2n + 1)/3. Similarly, if v, € S, then |S| > (2n + 1)/3. Hence,
71(G) 2 (2n+1)/3 = 2[n/3] — 1. On the other hand, the set

(n-7)/6
U {usis2, usiss, v6iss, veire} | U {ur}
i=0

is a TDS of G of cardinality (2n + 1)/3, and so 7(G) < (2n+1)/3 =
2[n/3] — 1. Consequently, 7:(G) = 2[n/3] — 1, and so, by Theorem 2,
7(G) = vx.(G) - 1.

Suppose, then, that n # 1(mod6). The red vertices in any X,-coloring
of G form a TDS of G, and so 4,(G) < vx,(G). Hence it suffices for us to
show that |S| = v(G) > vx,(G).

Suppose n = 0 (mod 3). Then, G contains n/3 disjoint copies of H, each
of which contains at least two vertices of S, and so |S| > 2n/3 = 2[n/3].
Hence by Theorem 2, 7.(G) > vx,(G).

Suppose n = 2(mod 3). Renaming vertices if necessary, we may assume
vy ¢ S. If u; € S, then to totally dominate u; we may assume by symmetry
that ug € S, and so the 4-cycle C’: vy, vo, ug, uy,v; contains at least two
vertices of S. On the other hand, if u; ¢ S, then we may assume by
symmetry that v2 € S (to dominate v1). To totally dominate vs, at least
one of ug or v3 is in S, and so the 4-cycle C’: v,,v3, u3, uz, v2 contains at
least two vertices of S. In both cases the cycle C’ contains at least two
vertices of S and G — V(C’) can be partitioned into (n — 2)/3 disjoint
copies of H, each of which contains at least two vertices of S, and so
S| = 2+ 2(n-2)/3 = 2(n+1)/3 = 2[n/3]. Hence by Theorem 2,
W(G) 2 1x,(G).

We show next that if n = 4(mod6), then v,(G) > 2[n/3] (and so, by
Theorem 2, v4,(G) > vx,(G)). We proceed by induction onn > 4. If n =4,
then 7:(G) = 4 = 2[n/3]. This establishes the base case. Assume, then,
that » > 10 and that for all integers n’ = 4 (mod 6) with 4 < n’ < n that
7(Cnr x K32) 2 2[n’/3]. Among all v:(G)-sets, let S be chosen to contain as
many pairs {u;, v;} as possible. We show that S contains at least one such
pair. Assume, to the contrary, that |SN {w;,;}| <1foralli=1,2,...,n.
Let C be the red-blue coloring associated with S. If every blue vertex in C
is rooted at a copy of X4, then 7,(G) > vx,(G), as desired. Hence we may
assume, renaming vertices if necessary, that v, is a blue vertex that is not
rooted at a copy of X, in C. If u; € S, then to totally dominate u;, we
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may assume u € S. By assumption, |[SN{uz,v2}| < 1, and so v2 ¢ S. But
then v; is rooted at a copy of X4, a contradiction. Hence, u; ¢ S.

By symmetry, we may assume vz € S (to dominate v1), implying that
vs € S and S N {up,u3} = 0. To dominate wu,, it follows from our choice
of the set S that S N {Un—1,%n,¥n—1,%} = {tn—1,un}. If ug € S or if
vs € S, then (S —{v3})U{uz} is a 7,(G)-set that contains the pair {ug, v2},
contrary to our choice of S. Hence, SN {ug,vs} = 0.

Claim 7 v4 ¢ S.

Proof. Suppose v4 € S. If us € S, then (S — {v4}) U {vs} is a 7:(G)-set
that contains the pair {us,vs}, contrary to our choice of S. Hence, us ¢ S,
and so ug € S (to dominate us). Further, u7; € S to totally dominate ug.
By our choice of S, SN{ve, v7} = 0. If ug € S, then (S —{v4, ug})U{us,vs}
is a 7:(G)-set that contains the pair {us,vs}, contrary to our choice of S.
Hence, ug ¢ S. If vg € S, then (S —{u7})U{ve} is a 7, (G)-set that contains
the pair {ug, vg}, contrary to our choice of S. Hence, vs ¢ S, implying that
S N {ug, u10,v9,v10} = {ve,v10}. If uny € S, then (S — {v10}) U {ug} is
a 7,(G)-set that contains the pair {ug,vg}, a contradiction. Hence, u); ¢
S. If vy; € S, then (S — {vs,ur,v9}) U {us,us,vs} is & v:(G)-set that
contains the pair {us,vs}, a contradiction. Hence, vy; ¢ S, implying that
S N {u12, v12, u13, 13} = {w12,213}. Continuing in this way, we have that
for each i where 1 < i < (n—4)/6,

4
sn ( U {usi+j,vsi+j}) = {usi, U6i+1, V6i+3, V6i+a}
J

i1

This implies that SN{up—1,%n-1,%n, Un} = {¥n-1,vs}. But then the vertex
u, is not dominated by S, a contradiction. O

By Claim 7, vs ¢ S, implying that SN {u4,v4,us, vs,us, v6} = {us, us}.
If v; € Sorifug € S, then (S—{ug})U{vs} is a 7,(G)-set that contains the
pair {us, s}, contrary to our choice of S. Hence, SN {v7,u3} = @. Thus
if uz ¢ S, then ug € S to dominate vy. Let V' = {u,v1,uz,v2,..., 6,6}
Then, 8’ = SNV’ = {vz,v3,us,u6}, and {un_1,un} C S. Let G’ be the
prism Cp,_¢ x Ko obtained from G — V’ by adding the edges v7v, and
uyu,. Since S is a TDS of G, the set S — S’ is a TDS of G'. Thus, by
the induction hypothesis, |S| —4 = |S — S| 2 %(G’) 2 2[(n — 6)/3], and
so |S| > 2[n/3], as desired. Hence by Theorem 2, if n = 4 (mod 6), then
7(G) 2 7x,(G). O
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Since the red vertices in any X,-coloring of G form a TDS of G, as an
immediate consequence of Proposition 14 we have the following result.

Corollary 15 For n > 3 with n & 1(mod6), there ezists a v,(G)-set
whose associated red-blue coloring is a minimum X,4-coloring in G.

5.4 The double total domination number

In this subsection, we consider a generalization of total domination in
graphs which we call double total domination (defined in a similar way
as that of double domination introduced by Harary and Haynes [9]). Let
G = (V,E) be a graph and let § C V. We say that a vertex v € V is
double totally dominated by S if [N(v) N S| > 2. If every vertex of V is
double totally dominated by S, then we call S a double total dominating
set (DTDS) of G. The double total domination number v%,(G) is the mini-
mum cardinality of a DTDS of G. A DTDS of cardinality v£,(G) we call a
¥x2(G)-set. We omit a proof of the next two results (the interested reader
can obtain a proof directly from the authors).

Proposition 16 For n > 3,

v%2(G) =1 if n= 2(mod6)
7X5(G) = {

7£2(G) otherwise.

Proposition 17 Forn > 3 withn # 2 or 3 (mod 6), there erists a v%,(G)-
set whose associated red-blue coloring is a minimum Xs-coloring in G.
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