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The game chromatic number of a graph G is defined through a two person
game. Suppose G = (V, E) be a graph, and C is a set of k colors. Two
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Abstract

In a (k, d)-relaxed coloring game, two players, Alice and Bob, take
turns coloring the vertices of a graph G with colors from a set C of k
colors. A color i is legal for an uncolored vertex z (at a certain step)
means that after coloring = with color i, the subgraph induced by
vertices of color i has maximum degree at most d. Each player can
only color a vertex with a legal color. Alice’s goal is to have all the
vertices colored, and Bob's goal is the opposite: to have an uncolored
vertex without legal color. The d-relaxed game chromatic number of
a graph G, denoted by xg‘” (G) is the least number k so that when
playing the (k,d)-relaxed coloring game on G, Alice has a winning
strategy. This paper proves that if G is an outer planar graph, then
XC)<7—-dford=0,1,2,3,4.
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persons, say Alice and Bob, alternately color the vertices of G with colors
from the color set C, with Alice having the first move. A color 1 is legal for
an uncolored vertex z if z has no neighbour colored with color i. In each
move, Alice and Bob must color an uncolored vertex with a legal color. The
game is over if either all the vertices are colored or no legal color is available
for the uncolored vertices. Alice’s goal is to have all the vertices colored,
and Bob’s goal is to prevent this from happening. The game chromatic
number xg(G) of G is the least number of colors for which Alice has a
winning strategy in coloring G. The concept of the game chromatic number
of a graph was introduced in [1], and has attracted some recent attention
,25,6,7,9, 10, 11, 12, 13].

The relaxed game chromatic number is a variation of the game chromatic
number introduced in [3]. It is also defined through a two person game. The
rules are almost the same as above. The only difference is in the definition
of a legal color for an uncolored vertex.

Suppose d > 0 is an integer. In a d-relaxed coloring game (played on a
graph G with color set C), a color ¢ € C is legal for an uncolored vertex
z € V(G) if by coloring z with color ¢, each vertex of color i is adjacent to
at most d vertices of color i. In other words, color 1 is legal for vertex z if
the following hold:

1. z has at most d neighbours that are colored by color i.

2. If y is a neighbour of z colored by color i, then y has at most d — 1
neighbours that are colored by color 1.

The d-relazed game chromatic number xéd) (G) of G is the least cardinality
of a color set C for which Alice has a winning strategy for the d-relaxed
coloring game played on G with color set C. A 0O-relaxed coloring game is
the same as the coloring game, and the O-relaxed game chromatic number
of a graph G is the same as its game chromatic number. For convenience,
we call a d-relaxed coloring game with k colors a (k, d)-relazed coloring
game.
For a class C of graphs, let

x&d)(C) = max{x'(;d)(G) :G eC}).

Let F be the set of all forests, and let Q be the class of outer planar graphs.
The following results are proved in a series of papers.

Theorem 1 [7, 3, 8] xg(F) =4, xé‘)(]-') =3 and xéz).(}') =2.

Theorem 2 [4, 9, 3, 8] xz(@) < 7, x$)(Q) < 6, xP(Q) < 5 and
x((,s)(Q) < 2. Moreover, xg)(Q) >3.
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This paper generalizes the results above concerning relaxed game chro-
matic number of outer planar graphs and proves the following:

Theorem 3 For0<d <4, ,(;")(Q) <7-d.

2 Alice’s strategy

Let G be a 2-connected triangulated outer planar graph (i.e., each inner
face of G is a triangle). We produce an ordering of the vertices of G
as follows: choose an edge incident to the infinite face and label its two
end vertices v;,v2. Suppose we have labeled vertices v;,vs,:--,v;, and
there are unlabeled vertices. Then choose a triangle which contains only
one unlabeled vertex and label it v;4;. This method produces a labeling
v1,v2, -+, vn of V(G) such that for each j (3 < j < n), v; is adjacent to two
labeled vertices v;, ,v;, with j; < j2 < j. We call v; a parent of v; if v; ~ v;
and j < ¢. The ordering constructed above has the following properties:

1. For ¢ > 3, the vertex v; has exactly two parents and these two parents
are adjacent.

2. If i # 3, then v; and v; have at most one parent in common.

For each i > 3, suppose v;,,v;, are the two parents of v;. If i; < iy,
we call v;, the major parent of v;, and call v;, the minor parent of v;. The
vertex v; is called a major child of v;, and a minor child of v;,. For each
vertex z # v1,vs, we shall denote by f(z) and m(z) the major parent and
minor parent of z, respectively.

Note that if two vertices of G are joined by an edge, then one is a parent
of the other. If w is a minor child of z, then f(w) is a parent of z. By
Property (2) of outerplanar graphs, two minor children of = have different
major parents. Therefore = can have at most two minor children, one with
major parent f(z) and the other with major parent m(x). »

Any outer planar graph G is a subgraph of a triangulated outer planar
graph. First we shall only consider 2-connected triangulated outer planar
graph, and describe a winning strategy for Alice for such graphs. Later we
shall explain that the same strategy works for all outer planar graphs.

Ford=0,1,---,4, Alice’s strategies for the (s, d)-relaxed coloring game
are the same, except that the color sets are of different sizes. In the fol-
lowing, we assume that s = 3,4,5,6,7 and d > 7 — s. Alice and Bob are
playing the (s, d)-relaxed coloring game on a 2-connected triangulated outer
planar graph G. The vertices of G are {vy,vs,--,v,}, where the ordering
is constructed as in the previous section.

We shall first describe the strategy for Alice to pick the vertex to be
colored next. Let U denote the set of uncolored vertices. Alice maintains
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a subset A C V of active vertices. Initially A = @. When a new vertex is
put into A, we say z is activated. Once a vertex is activated, it remains
active forever. Initially, Alice colors v; and activates v;. Now suppose
that Bob has colored the vertex b. Then b is activated if it not active yet.
Alice updates A and chooses the next vertex = to be colored by using the
following strategy:

Alice will jump from vertex to vertex until she finds the vertex she wants
to color. The so called “jumps” are done by applying the following rules
successively:

First Alice jumps to b. Assume Alice has jumped to a vertex z.

Rule 1. If z = v; or vs, then Alice chooses the least uncolored vertex,
activates it (if it is not active yet) and colors it;

Rule 2. If z is active and uncolored, then she colors z;

Rule 8. If z is inactive, uncolored, and both f(z) and m(z) are colored,
then she activates 2 and colors z;

Rule 4. If none of the above is true, then Alice activates z (if z is inactive),
and jumps to f(z) or m(z) (by following the Jumping Rule below)
and returns to Rule 1.

Jumping Rule: If f(z) is uncolored, or f(z) and z are colored the
same color, then jump to f(z). Otherwise, jump to m(zx).

After choosing the vertex z to be colored, Alice finds a legal color for
x as follows: if the colored neighbours of z use at most s — 1 colors, then
she colors z with a color not used by its colored neighbours; if the colored
neighbours of x use s colors, then she colors z with a legal color which is
not used by its parents and is used the least number of times among its
children. Since s > 3 and z has at most two parents, so there is always a
color not used by its parents. If s = 2, then this strategy does not apply:
some vertices must be colored the same color as one of their parents. In
[4], a slightly different strategy was used to prove that xés)(Q) <2

In the remainder of this section, we assume that s = 3,4,5,6,7 and
d > 7 —s, Alice and Bob play an (s, d)-relaxed coloring game on a triangu-
lated outer planar graph G and Alice uses the strategy described as above.
Observe that Alice only colors active vertices, and a vertex colored by Bob
is activated immediately.

Lemma 1 If Alice has just finished her move and v is an uncolored vertez,
then v has at most 3 active children. Moreover, v has at most 1 active
major child.
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Proof. By our strategy, each time a major child w of v is activated, Alice
will jump from w to v. The first time Alice jumps to a vertex, she activates
it; the second time she jumps to it, she colors that vertex. So if v is
uncolored, then v has at most 1 active major child. As v has at most two
minor children, so v has at most 3 active children. |
For any vertex v, we denote by Ma(v) the set of major children of v.

Lemma 2 Suppose at a certain moment, Alice has just finished her move.
Assume that the following hold

® i is a color not used by any parent of z.
® u is a child of z colored by color .

¢ u has 3 neighbours, say w,,ws,ws, colored by color i.

Then z is a colored vertez.

Proof. Assume to the contrary that all the above hold, but z is uncolored.
We consider two cases.
Case 1 u is a major child of z.

w
Figure 1: u is a major child of =

Refer to Figure 1. The vertex u has at most three neighbours, namely z,
w and w’, which are not an element of Ma(z)UMa(u). As z is uncolored, at
least one of wy, w2, w3 belong to Ma(z)UMa(u). Without loss of generality,
assume that w; € Ma(z) U Ma(u).

If u is colored by Bob, then after Bob colors u, Alice jumps once to z.
When w; is activated, Alice jumps once to z (either directly or through
u). So when u and w; are both colored, Alice has jumped to z twice, and
hence z is colored.
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Assume u is colored by Alice. If u is colored before w,, then w; is
colored by Bob, because Alice never colors a vertex the same color as a
parent of that vertex. When u is activated Alice jumps to = once. When
w is colored, Alice jumps to x again. So if u,w; are all colored, Alice has
jumped to z twice, and hence z is colored. Assume u is colored after w;.
When Alice colors u, all the s colors are used by the neighbours of u, for
otherwise Alice will not color u the same color as w;. Moreover, the color
i is used the least number of times among the children of .

Let B be the set of colored neighbours of u at the moment u is colored.
Since B contains vertices of s colors and w;, w2, w3 are of the same color,
we have |B U {wy,wz,w3}| > s+ 2 > 5. Therefore

|(B U {wy, w2, ws}) N (Ma(u) U Ma(z))| > 3.

If v € BN (Ma(u) U Ma(z)), then at the time v is activated, Alice jumps
once to {z,u}. If v € ({w1, w2, w3} — B) N (Ma(u) U Ma(z)), then v must
be colored by Bob, as v is colored after » and has the same color as u.
When Bob colors v, Alice jumps once to {z,u}. Note that at the time
u is activated, Alice jumps once from u to z. After u is colored, then
whenever Alice jumps to u, Alice jumps again from u to z. Therefore if all
of BU {wy, w2, w3, u} are colored, then Alice will have jumped to z at least
twice, and hence z is colored.

Case 2 u is a minor child of z.

Then f(u) is a parent of z. So f(u) is either uncolored or colored by a
color different from 1.

If u is colored by Bob, then each time w;,ws, w3 is activated, Alice
jumps once to the set {f(u),z} (either directly or through u). When u is
colored, Alice jumps once to the set {f(x),z}. Note that at any time, f(u)
is either uncolored or colored with a color different from :. By the jumping
rule, Alice will not jump from W = {u, w;,ws, w3} to f(u) after f(z) is
colored (as z is uncolored). Therefore Alice jumps from W to f(u) at most
twice, and hence jumps to z at least twice. So z will be colored.

If u is colored by Alice, but colored before wj, w2, ws, then each of
wy, wa, w3 is colored by Bob. Each time Bob colors a w;, Alice jumps once
from W to {f(u),z}. Moreover, at the time u is activated, Alice jumps
once to the set {f(u),z}. When W is colored, Alice jumps from W to
{f(u),z} at least 4 times, and hence jumps to x at least twice. So z will
be colored.

Assume that u is colored by Alice, and at the time Alice colors u, some
w; is colored. By assumption, this colored w; is not a parent of u, hence is
a child of u. So when Alice colors u, all the s colors are used among the
neighbours of u, for otherwise Alice will not color u the same color as a
child. Let B be the set of colored neighbours of u at the time Alice colors
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u. Similarly as in Case 1, we have
lBU {w1)w2’w3}’ 2 5.

Each time a vertex of B U {w;,ws, w3} is activated, Alice jumps once to
the set {f(u), z}, except at the time Alice colors u or Bob colors f(u) € B.
Therefore either Alice has jumped to the set {f(u),z} at least 4 times after
u, Wy, wa, w3 are colored or f(u) is colored by Bob and Alice has jumped
to the set {f(u),z} at least 3 times. Similarly as above, this implies that
Alice has jumped to z at least twice, so z is colored. |

3 The strategy is a winning strategy for Alice

Theorem 4 Suppose G = (V, E) is an outer planar graph, s = 3,4,5,6,7,
and d > 7 —s. For the (3,d)-relazed coloring game on G, the strategy
described in the previous section is @ winning strategy.

Proof. First we consider the case that G is triangulated. It suffices to
prove that any uncolored vertex has a legal color not used by its parents.
Assume to the contrary that there is an uncolored vertex z such that every
color is either used by a parent of z, or is not legal for z.

Assume s = 3and d > 4. By Lemma 1, = has at most 4 colored children,
and hence at most 6 colored neighbours (if z has 4 colored children, then
one of them is colored by Bob in his last move). Since any color not used by
the parents of z is not a legal color for z, each color is used by a neighbour of
z. This implies that each color is used at most 4 times, and hence assigning
any color to = would not violate Condition (1).

Let i be a color not used by any parent of z. By assumption, i is not a
legal color for z. Hence Condition (2) is violated, i.e., z has a neighbour, say
u, colored with color i, and u has d > 4 neighbours, say w;,ws, - - - ,Wq, of
color ¢. The vertex u cannot be colored by Bob in his last move. Otherwise,
before u is coloured, u has four neighbours wy, ws, w3, w4 of colour i. By
Lemma 1, one of these four neighbours, say w,, is a parent of u. As ¢ is not
used by any parent of z, w is a child of z. This implies that u is a major
child of z. Now ws, ws, wy are coloured children of u. By Lemma 1, two of
w2, w3, w4 are minor children of » and one is a major child of ». Assume
wo, w3 are minor children of » and wjy is a major child of ». Then one of
w2, W3, Say wp, is a major child of z. As u has a major active child wy, u is
active. So z has two active major children: u and w,. This is in contrary
to Lemma 1. Thus before Bob’s last move, u is colored with color i and
has at least 3 neighbours of colour i. But this is in contrary to Lemma 2.

Next assume that s = 4 and d > 3. Similarly as above, z has at most 4
colored children and hence 6 colored neighbours. By our assumption, each
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color is used by a neighbour of z. Hence each color is used at most 3 times,
and hence assigning any color to z would not violate Condition (1).

Let i, be two colors not used by any parent of z. Similarly as above,
z has a neighbour u colored with color i, and » has d > 3 neighbours
wi,wy, -+ -, wq of color i; and z also has a neighbour u’ of color 7, and ' -
has d > 3 neighbours w},w},- -, w}, colored with color j. Without loss
of generality, we assume that the last colored vertex of {u’,w},ws, w3} is
colored after the last colored vertex of {u,w;, w2, ws}. By Lemma 2, at the
time u and w, wo, w3 are all colored, Alice will color z in the next step. So
it is impossible that {u’, w},w), w3} are all colored and z is still uncolored.

The proofs for s = 5, 6,7 are similar. The cases d = 6, 7 is quite straight-
forward and the case s = 5 is a little bit involved. Since the conclusion of
Theorem 3 for s = 5,6,7 was proved in [9, 3, 8], we omit the details for
these cases.

If G is not triangulated, then let G’ be a triangulation of G. When
playing the coloring game on G, Alice simply pretend she is playing the
game on G’. By examining the proof of Lemma 2, it is easy to see that the
same argument shows that the strategy is still a winning strategy for Alice.
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