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Abstract

A connected graph is said to be super edge-connected if every min-
imum edge-cut isolates a vertex. The restricted edge-connectivity )\’ of a
connected graph is the minimum number of edges whose deletion results in
a disconnected graph such that each connected component has at least two
vertices. A graph G is called -optimal if X'(G) = min{dg(u) +dg(v)—2:
uv is an edge in G}. This paper proves that for any d and » with d > 2 and
n > 1 the Kautz undirected graph UK (d, n) is N-optimal except UK (2,1)
and UK(2,2) and, hence, is super edge-connected except UK (2,2).
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1 Introduction

Throughout this paper, a graph G = (V, E) always means a simple
connected graph with a vertex-set V' and an edge-set E. We follow [5, 18] for
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graph-theoretical terminology and notation not defined here. A set of edges
S of G is called an edge-cut if G — S disconnected. The edge-connectivity
A(G) of G is defined as the minimum cardinality of an edge-cut S.

It is well known that when the underlying topology of an interconnection
network is modelled by a connected graph G = (V, E), where V is the set
of processors and E is the set of communication links in the network, the
edge-connectivity A(G) is an important parameter to measure the fault-
tolerance of the network [17]. This parameter, however, has an obvious
deficiency, that it is tacitly assumed that all edges incident with a vertex
of G can potentially fail at the same time. In other words, in the definition
of A(G), absolutely no conditions or restrictions are imposed either on the
minimum edge-cut S or on the components of G ~ §.

To compensate for this shortcoming, in 1981, Bauer et al 1] proposed
the concept of super edge-connectedness. A connected graph is said to be
super edge-connected if every minimum edge-cut isolates a vertex. The
study of super edge-connected graphs has a particular significance in the
design of reliable networks, mainly due to the fact that attaining super
edge-connectedness implies minimizing the numbers of minimum edge-cuts
(see [4]). A quite natural problem is that if G is super edge-connected
then how many edges must be removed to disconnect G such that every
component of the resulting graph contains no isolated vertices.

In 1988, Esfahanian and Hakimi {8] proposed the concept of the re-
stricted edge-connectivity. The restricted edge-connectivity of G, denoted
by M(G), is defined as the minimum number of edges whose deletion results
in a disconnected graph and contains no isolated vertices. In general, X'(G)
does not always exist for a connected graph G. For example, X'(G) does
not exist if G is a star K, or a complete graph K3. We write \'(G) = oo
if X(G) does not exist. In [8], Esfahanian and Hakimi showed that if G
has at least four vertices then X'(G) does not exist if and only if G is a star
and that if \’(G) exists then

XN(G) <€), (1)

where the symbol dg(z) denotes the degree of the vertex z in G and £(G) =
min{dg(u) + dg(v) — 2: wv is an edge in G}.

A graph G is called X-optimal if A'(G) = £(G). Several sufficient con-
ditions for graphs to be X-optimal were given for example by Wang and
Li [14], Hellwig and Volkmann (9] for graphs with diameter 2, Ueffing and
Volkmann [12] for the cartesian product of graphs, Xu and Xu [19] for tran-
sitive graphs. It is clear that G is super edge-connected if A'(G) > A(G).
Recently, Hellwig and Volkmann [10} have showed that a A’-optimal graph
G is super edge-connected if its minimum degree §(G) > 3.

This new parameter ) in conjunction with A can provide more accurate
measures for fault tolerance of a large-scale parallel processing system and,
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thus, has received much attention of many researchers (see, for example,
6] ~ [17], [19]).

In this paper, we consider )’ for the Kautz undirected graph UK(d, n).
The following theorem completely determines N(UK(d,n)) for any d and
nwithd>2andn>1,

Theorem For the Kautz undirected graph UK(d,n) with d > 2 and
n>1,
0, forn=1,d=2;
3, forn=d=2;
NUK(d,n))={ 2d—-2, forn=1, d>3;
4d—-4, forn>2,d>3
orn>3, d>2.

Corollary The Kautz undirected graph UK(d,n) is M-optimal ex-
cept UK(2,1) and UK(2,2) and, hence, is super edge-connected except
UK(2,2).

The proofs of the theorem and the corollary are in Section 3. In Sec-
tion 2, the definition and some properties of the Kautz undirected graph
UK(d,n) are given.

2 Properties of Kautz Graphs

The well-known Kautz digraph is an important class of graphs and
widely used in the design and analysis of interconnection networks [3]. Let
d and n be two given integers with n > 1 and d > 2.

The Kautz digraph, denoted by K(d,n), is a digraph with the vertex-
set V= {2173 2o : z: € {0,1,...,d}, zip1 #zi, i=1,2,...,n -1}
and the directed edge-set E, where for z,y € V, if z = z1z5- - -z, then
(z,9) € E if and only if y = z0z3 - - Taax, where a € {0,1,...,d} \ {z.}.

The Kautz undirected graph, denoted by UK(d,n), is a simple undi-
rected graph obtained from K(d,n) by deleting the orientation of all edges
and omitting multiple edges.

(From definitions, K(d,1) is a complete digraph of order d + 1 and
UK(d,1) is a complete undirected graph of order d+ 1. Thus, A(UK(d, 1))
= d. It has been shown that K(d, n) is d-regular and has connectivity d. It
is clear that UK(d, 2) is (2d — 1)-regular, and UK (d, n) has the minimum
degree § = 2d—1 and the maximum degree A = 2d for n > 3. Furthermore,
Bermond et al [2] proved that the connectivity of UK (d,n) is 2d — 1 for
n 2> 2, which implies that A(UK(d,n)) = 2d — 1 for n > 2. For more
properties of K'(d, n) and UK (d, n), the reader is referred to the new book
by Xu [17].
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A pair of directed edges is said to be symmetric if they have the same
end-vertices but different orientations. The Kautz digraph contains sym-
metric edges. If there is a pair of symmetric edges between two vertices z
and y in K(d, n), then it is not difficult to see that the coordinates of z are
alternately in two different components a and b. It follows that the Kautz
digraph K (d,n) contains exactly (*5") pairs of symmetric edges. Clearly,
directed distance between two end-vertices in different pairs of symmetric
edges in K(d, n) is equal to either n—1 or n. Moreover, two end-vertices in
different pairs of symmetric edges have no vertices in common if and only
if n > 2. An edge in UK(d,n) is said to be singularif it corresponds a pair
of symmetric edges in K(d,n).

Let X and Y be two disjoint nonempty subsets of vertices in a digraph
G. Use the symbol E(X,Y) to denote the set of directed edges from X
to Y in G. The following property on a regular digraph is useful, and the
detail proof can be found in Example 1.4.1 in [18].

Lemma 2.1 Let X and Y be two disjoint nonempty subsets of vertices
in a connected regular digraph G. Then |E(X,Y)| = |E(Y, X)|. 1

For two end-vertices z and y of a pair of symmetric edges in K(d,n),
let

A7 =N"@@\{g},  AZ =NT(@@\{g}
Af =N*@\{z}, Ay =N"(@)\{z}

Lemma 2.2 Let zy be a singular edge in UK(d, n), where n > 2 and
d>2.
(i) E(A;,Af)NE(A;,A}) =0, and

|E(A7, A7)l = | E(A, AD)| = (4~ 1)°.

(ii) If » = 2, then for any u € (47 U A7) there is some v € (4, U A})
such that wv is a singular edge in UK (d, 2).

(iii) There exist 2d — 1 internally disjoint zy-paths in UK(d,n) such
that one of which is of length one, otherwise of length three.

Proof We may suppose that £ = abab.--ab if n is even and = =
abab - - - aba if n is odd. Without loss of generality, we suppose that n is
even. Then y = bab- - - ba, where a,b € {0,1,...,d} and a # b.

(i) For any u € A and v € A;, they can be expressed as v =
cabab---aba and v = abab---bae, where c,e € {0,1,...,d} and c,e ¢
{a,b}. Then u # v and (u,v) is a directed edge in K(d,n) for d 2 2.
Clearly, A7 N A =0 and

E(A;,A})={(u,v): c,e€{0,1,...,d}\ {a,b}}.
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Thus, |[E(AZ, Af)| = (d-1)2

Similarly, For any z € A} and w € A7, they can be expressed as z =
bab - - -abg and w = hbab - - - bab, where g,h € {0, 1,...,d} and g,k ¢ {a, b}.
Then z # w and (w, 2) is a directed edge in K(d,n) for d > 2. Clearly,
AfNA; =0and '

E(A;,AY)={(z,w): h,g€{0,1,...,d}\ {a,b}}.

Thus, |E(A;, AF)| = (d - 1)%

Since u # w and v # 2, A; N A; = 0 and Afn A} =0. Also since
two end-vertices in different pairs of symmetric edges have no vertex in
common if n > 2, A7 N A} =0 and A;,"ﬂA; =0, and so A;,A;,*,A;,Ai,+
are pairwise disjoint. Thus, E(A7, Af) N E(A;, Af) =0.

(ii) Since n = 2, we may assume z = ab, y = ba, where a,b €
{0,1,...,d} and a # b. If u € A7, then for d > 2 we may assume v = ca
(c # a,b), and so v = ac € A}. If u € Af, we may assume v = be
(c # a,b), andso v = cb € Ay, where c € {0,1,...,d}. Thus, (u,v) and
(v, u) are a pair of symmetric edges in K(d,2), and so v is a singular edge
in UK(d,2).

The assertion (iii) holds clearly from (i). 1

Two directed walks from {z,y} to {u,v} in K(d,n) is said internally
disjoint, if they have common vertices only in {z,y} or {u,v}.

Lemma 2.3 Let zy and uv be nonadjacent edges in UK (d, n) where
d 2 2and n > 2. If zy is singular, then there are (2d— 2) internally-disjoint
directed paths from {z,y} to {u,v} in K(d,n).

Proof Let z=z,z3---x,, where z; € {a,b} C {0,1,...,d} and a # b.
Then y = zpx3:--zna, Where @ = z; if n is even and & = z5 if n is
odd. Let u = ujuy : - - un. Then v = ugug - - - upun41, Where uy, ... yUntl €
{0,1,...,d} and u; # u;41,i=1,2,...,n. Choose (2d — 2) directed walks
Wi, Wa,..., Wa1,T1,Ts,...,Tu-1 from {z,y} to {u,v} as follows: For
1<i<d-1,

Wi = x1Z933 - Tp, T3 - Znwi, T3 - - - Tpwjuyg, ...,
WU U2+ * * Un—1, U1U2 ** * Un_1Un;  if Wi 3# ug;
Wi = z12923. 25,2023 - Taw;, T3 - - - Towiuy, . . .,

WiURUG * * * Un—1, UIU2 * * " Un—1Un, if Wi =1u,
andfor1<j<d-1,

T; = ZTITg * - - TnQy T3Ly - - Tnalj, Tq - Tnatjuy, ...,

£jugug - - Un, UgUg - Uplnyy i ¢ # ug;
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T; = 2%3Tq--+TnQ,T3%4"  Tnatj, Ta-  Tnaljus,...,

atjugu,; C0tUp, LjUSUY ¢ UnUntd if lj = uz,

where w;,t; € {0,1,...,d}\{a,b} and wy,we,...,wa-1 are pairwise dis-
tinct and ty,%9, ...,tq—) are pairwise distinct. We now show that these
directed walks are internally disjoint.

Assume that there are i and j (1 < i # j < d — 1) such that W; and
W; are internally joint. Without loss of generality, we may suppose that
w; # u; and let z be the first internal vertex of W; and W; in common.
Let the length of the section W;(z,2) be k and the length of the section
Wi(z,z) be t. Then 2 <k, ¢t <n — 1. Since z can reach z along W; by k
steps and along W; by ¢ steps, we can express 2 as

z = Tkt) ' TpWik) - - Uk—1
_ T4l TaWiuy - - U1, Wj # u1,
Zpg1 o TnW;U ** Uy, wy; = Uy,

Since w; # wj, we have k # t. If k < ¢, there is some A withk+1<
h < n such that w; = z), € {a, b}, a contradiction. If k > ¢, there is some [
with t + 1 < ! < n such that w; = z; € {a, b}, a contradiction. Therefore,
Wi, Ws, ..., Wa_1 are internally disjoint.

Similarly, we can show that Ty, T3, ..., Tu—1 are internally disjoint.

Assume that there are ¢ and j (1 < 1,5 < d—1) such that W; and Tj are
internally joint. Let z be the first internal vertex of W; and T} in common.
Let the length of the section W;(z, z) be k and the length of the section
Tj(y,2z) be t. Then 2 <k, t <n —1. Thus, we can express z as

.
Tpg1'  TaWill) = Uk—1 =  Ti42 - Tnlljug -« U,

if w; # wy, tj # uo;
Tpg) TaWilg: - Ug = Te42 o TnObjug -« U,

2= if wy = wuy,t; # ug;
Tpt1 " TpWily * - Ug—1 = Tep2 " TnQUQ - -~ Utt],

if w; # ug, t; = ug;
Thel'  TaWiliz' Uk = Te42 " TaUR" - Uttl,

L if wy = w1, b5 = us.

We can obtain w; or ¢; € {a, b}, a contradiction. Therefore, W; and T} are
internally disjoint for any  and j with 1 < ¢, < d — 1. Since any directed
walk from {z,y} to {u,v} contains a directed path from {z,y} to {u,v},
the lemma follows immediately. 1

Lemma 2.4 Let xy and uv be two distinct singular edges in UK(d, 2)
that have no end-vertices in common. Then there are (4d — 4) internally
disjoint paths between {z,y} and {u,v} in UK (d,2).
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Proof Letz = z,22 and u = ujus, where z;,z9,u;,u2 € {0,1,..., d},
Ty # T, uy # ug. Then y = 2oz and v = ugu,. Choose 4d — 4 directed
walks Wlﬁ W21 LRRE} Wd—laTl, T2: LR 1Td—l) Pl: ey Pd—ls le Q2t ey Qd—l
in K(d,2) from {z,y} to {u,v} or from {u,v} to {z,y} as follows.

W, = { TimTowiwiu,wu, w;#u,
% - .
T122, T2Wi, Wik, Wi = Uy,

T = Zax1, T1tj, tjuz, vau, &5 # up,

J T2%1, Z1ts, tiw, tj = ug;

P = v ug, UpPs, PiZ1, T1 T2, Pi # Ty,

! U1 U2, U2Pi, PiT2, pi =1T1;

Q; = ugu1, 19y, §;%2, T2Z1, G; F T2,

’ upuy, U195, 95 %1, g; = %o,
where w;, ¢; € {0,1,...,d}\{z),z2}, w;,ws,..., wy_; are pairwise differ-
ent, t1,82,..., ta—) are pairwise different, p;, ¢; € {0,1,...,d}\ {u1, w2}, p1,
P2,...,pd—1 are pairwise different, g1, g2, ..., g4-1 are pairwise different. It

is easy to check that Wy, Wy, ..., Wy_1, T\, T, ..., Ty—1, P1,Ps,...,Py_y,
1,Q2,...,Q4— are internally disjoint, and each of them must contain a
directed path from {z, y} to {u,v} or from {u,v} to {z,y} as its subgraph.
[}

3 Proof of Theorem

In this section, we give the proofs of the theorem and the corollary
stated in Introduction.

A set of edges F in G is called a nontrivial edge-cut if G — F is discon-

nected and contains no isolated vertices. A nontrivial edge-cut F is called
a X-cut if |F| = X(G).

Proof of Theorem It is clear that M'(UK(d, 1)) does not exist for
d=2and N(UK(d,1)) =2d—2 for d > 3 since UK(d, 1) = K4,,. Clearly
N(UK(2,2)) = 3, we only consider n =2, d >3 0orn >3, d > 2. Under
this hypothesis, UK (d, n) has vertices more than four and, hence, by (1)
we have

N(UK(d,n)) < E(UKd,n)) = 26(UK(d,n)) - 2 = 4d — 4.

In order to complete the proof of the theorem, we only need to prove
N(UK(,n)) >4d - 4.

Let F be a MN-cut of UK(d,n). Then UK(d,n) — F has exactly two
connected components, say G; and Ga. Let X = V(G;) and Y = V(G3).
Then

IF|=|E(X,Y)U E(Y,X)| = X(UK(d,n)).
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We now show that |F| > 4d — 4 by considering two case according to the
values of n and d.

Casel n=2andd>3.

If G; and G2 both contain singular edges then |F| > 4d — 4 by Lemma
2.4. Without loss of generality, assume that G contains no singular edges.
Since every vertex in U K (d, 2) is incident with a singular edge, every vertex
in G is incident with a singular edge in F'.

If there is some vertex z € X such that (A7 U A}) C X, where zy is a
singular edge in F and y € Y, then (A; UA;) CY, for otherwise, there is
a singular edge in G by Lemma 2.2 (ii), which contradicts the hypothesis
that Gy contains no singular edges. It follows from Lemma 2.2 (i) that, for
d>3,

|F} |B(A;, A+ | E(Ay, AT + 1

2
> 2(d-1)%+1>4d-4.

If (AUAF) € X for any z € X, then (A7 UAT)NY # 0, which implies
that every vertex in X is incident with at least two edges in F. Thus, if
|X| > 2d — 1 then

IF| 2 2X] 22(2d - 1) =4d - 2 > 4d — 4.

Assume t = |X| < 2d — 2 below. Noting that UK (d, 2) is (2d — 1)-regular
and |E(G)| € 4t(t — 1), we have

|F|>@d-1)t—t(t—1)=2dt —t* > 4d -4,
since the function f(t) = 2dt — t? is convex on the interval [2,2d — 2] and
f@&) 2 f(2)=f(2d-2) =4d - 4.

Case 2 n>3andd>2.
If F contains no singular edges, then either G, or G must contain a
singular edge. By Lemma 2.1 and Lemma 2.3, we have that

IF| = |IBX,Y)|+|E(Y, X)|=2|E(X,Y)|
> 2(2d-2)=4d-4.

If F contains at least two singular edges, then it is easy to see that the
end-vertices of any two singular edges have no common neighbors if n > 4
and have at most two common neighbors if n = 3. It follows from Lemma
2.2 (iii) that |F| > 2(2d - 1) =2 =4d - 4.

We now assume that zy is the only singular edge in F, where z € X
and y € Y. If we can show that

|E(Y,X)| 22d~1, )
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then, by Lemma 2.1 and (2), we have

|7l |E(X,Y)U E(Y, X)| = 2|E(Y, X)| - 1

> 202d-1)-1=4d~3>4d -4,

as required. We now show the inequality (2).

Since d > 2, K(d, n) contains at least three symmetric edges, and so G;
or G contains a singular edge. Without loss of generality, assume that G
contains a singular edge uv.

If | X| = 2, then the only edge in G, is not singular, and so |E(Y, X)| =
2d — 1 clearly. Assume now that |[X| > 3. If any two distinct vertices
w,t € X\{z} are not adjacent in G, then

|E(Y, X)) |E(Y, X\{z})| +1
2 (d-1)IX\{z}|+1
> 2d-1)+1=2d~1.

Vv v

Now, let us suppose that there exist w,t € X\{z} such that they are
adjacent in Gy. By Lemma 2.3, there are 2d — 2 internally disjoint directed
paths from {u,v} to {w,t} in K(d,n). Let B be the set of edges of these
paths that are in (Y, X). Then |B| =24 - 2.

Clearly, |E(Y, X)| > |B| + |(v,z)| = 2d - 1 if (y,z) ¢ B. Assume
(y,z) € B below.

If A N X # 0 then, since {(y,2): z € A} N X} isnot in B, we have

[E(Y,X)| 2 |B] + 1A} N X| 2 2d-2+1=2d~ 1.

Assume A N X = 0. If A7 NY =0, then E(A7, A¥) C B(X,Y). If
d > 3, by Lemma 2.2 (i), we have

|E(Y, X)] [E(X,Y)| 2 |E(AZ, A))| + 1
(d-12+1>2d-1.

If d = 2, noting that E(A,, Af) has only one edge e and d~(y) = 2. If
e € E(Y, X) then e ¢ B, we have

IE(Y,X)| 2 |B|+1=(2d—2) +1=2d - 1.

Ife ¢ E(Y, X) then (Af UA]) C X or (A¥UA;) C Y. By Lemma 2.2
(i), we have that

|E(Y, X)I

IE(X, Y 2 |E(A;, A7) + 2
> (d-1)2+2>2d~1.
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If A7 NY # 0 then, since {(w,z): w € A7 NY} is not in B, we have
|E(Y,X)| = |B|+|Az; NY|2>22d-2+1=2d~1.

Thus, all cases imply that [E(Y, X)| > 2d — 1 and so the proof of the
theorem is complete. 1

Proof of Corollary It is a simple observation from the theorem
and the definition of UK(d,n) that N (UK(d,n)) = §(UK(d,n)) except
UK(2,1) and UK(2,2) and, hence, UK (d,n) is A'-optimal.

Note MUK (d,n)) = §(UK(d,n)), (UK(d,1)) = d, §(UK(d, n)) =
2d — 1 for n > 2. By the theorem, M'(UK(d,n)) > MUK(d,n)) except
UK(2,2) and, hence, UK (d,n) is super edge-connected.
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