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Abstract

The graph R(d) of realizations of d is a graph whose vertices are
the graphs with degree sequence d, two vertices are adjacent in the
graph R(d) if one can be obtained from the other by a switching. It
has been shown that the graph R(d) is connected. Let CR(d) be the
set of connected graphs with degree sequence d. Taylor [13] proved
that the subgraph of R(d) induced by CR(d) is connected. Several
connected subgraphs of CR(3") are obtained in this paper. As an
application, we are able to obtain the interpolation and extremal
results for the number of maximum induced forests in the classes of
connected subgraphs of CR(3").
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1 Introduction

Only finite simple graphs are considered in this paper. For the most part,
our notation and terminology follows that of Bondy and Murty [2]. Let
G = (V, E) denote a graph with vertex set V = V(G) and edge set E =
E(G). We will use the following notation and terminology for a typical
graph G. Let V(G) = {v1,v2,...,vs} and E(G) = {ej,ez,...,em}. As
usual |S| denote the cardinality of a set S and therefore we define n = |V/|
to be the order of G and m = |E| the size of G. To simplify writing, we
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write e = uv for the edge e that joins the vertex u to the vertex v. A path
of length k in a graph G, denoted by Pk, is a sequence of distinct vertices
Uy, Us,...,u; Of G such that for all i =1,2,...,k — 1, u;u;4; are edges of
G. A u,v-path is a path which has u as its first vertex and v as its last
vertex in the path. The degree of a vertex v of a graph G is defined as
dg(v) = |{e € E : e = uv for some u € V}|. The maximum degree of a
graph G is usually denoted by A(G). If S C V(G), the graph G[S] is the
subgraph induced by S in G. For a graph G and X C E(G), we denote
G — X the graph obtained from G by removing all edges in X. If X = {e},
we write G —e for G — {e}. For a graph G and X C V(G), the graph G— X
is the graph obtained from G by removing all vertices in X and all edges
incident with vertices in X. For a graph G and X C E(G), we denote
G + X the graph obtained from G by adding all edges in X. If X = {e},
we simply write G + e for G + {e}. For two disjoint graphs G and H (i.e.
V(G)NV(H) =), we denote GU H their union, and define pG the union
of p copies of G. For a graph G and s € V(G), the neighborhood of s in G
is defined by
N(s) ={v e V(G):sv e E(G)}.

If S C V(G), then we define
N(©S) = M)

8ES

If F C V(G), we write Np(S) for N(S)NF. A graph G is said to be regular
if all of its vertices have the same degree. A 3-regular graph is called cubic
graph.

Let G be a graph of order n and V(G) = {v1,v2,...,vn} be the ver-
tex set of G. The sequence (dg(v1),dg(v2),...,dg(vr)) is called a degree
sequence of G, and we simply write (d(v1),d(v2), . .., d(vy,)) if the underly-
ing graph G is clear from the context. A sequence d = (d;,dy,...,d,) of
non-negative integers is a graphic degree sequence if it is a degree sequence
of some graph G. In this case, G is called a realization of d.

An algorithm for determining whether or not a given sequence of non-
negative integers is graphic was independently obtained by Havel [6] and
Hakimi [5]. We state their results in the following theorem.

Theorem 1.1 Let d = (d,ds,...,ds) be a non-increasing sequence of
non-negative integers and denote the sequence

(d2 bt 1,d3 - 1:°-',dd1+1 - 1,dd1+2,...,dn) = d'.

Then d is graphic if and only if d’ is graphic.
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Let G be a graph and ab,cd € E(G) be independent, where ac, bd ¢
E(G). Put
Ge(abied) = (@ - {ab,cd}) + {ac, bd}.

The operation o(a, b; c,d) is called a switching operation. It is easy to
see that the graph obtained from G by a switching has the same degree
sequence as G. The following theorem has been shown by Havel [6] and
Hakimi [5). :

Theorem 1.2 Letd = (dy,ds,...,d,) be a graphic degree sequence. If Gy
and G are any two realizations of d, then G2 can be obtained from G, by
a finite sequence of switchings.

]

As a consequence of Theorem 1.2, Eggleton and Holton [3] defined in
1978 the graph R(d) of realizations of d whose vertices are the graphs with
degree sequence d; two vertices being adjacent in the graph R(d) if one can
be obtained from the other by a switching. They obtained the following
theorem.

Theorem 1.3 The graph R(d) is connected.

The following theorem was shown by Taylor [13] in 1980.

Theorem 1.4 For a graphic degree sequence d, let CR(d) be the set of all
connected realizations of d. Then the induced subgraph CR(d) of R(d) is
connected.

n

2  Connected subgraphs of CR(3")

Let CR(3™) be the class of connected cubic graphs of order n. Put J; =
CR(3™). Let J2 be the class of all connected cubic K}-free graphs of order n,
where K is a graph obtained from K and a subdivision to an edge. Finally,
let J3 be the class of all connected cubic triangle-free graphs of order n. It
is clear that J3 C J» C Jy. Let X, = {J1,J2,J3,J1 = J2, 01 — J3, 52 — Ja}.

The notation CR(3"),J1,J2,J3, and X,, as described above will be used
throughout this paper.

LetJ € X, and G € J. A switching o is called a J-switching with respect
to G if G7 € J. A sequence ay,09,...,0; of switchings is called a sequence
of J-switchings with respect to G if for all i = 1,2,...,¢,G192% ¢ J.
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As a consequence of Taylor [13], one can see that if G1,G2 € J1, then
there exists a sequence of J;-switchings 01,02, ...,0¢ with respect to G,
such that GJ*?>"%* = G. Thus the subgraph of R(3") induced by I, is
connected.

Let G be a connected graph of order at least three. A vertex v € V(G)
is called a cut vertez of G if G — v contains at least 2 components. An edge
e € E(G) is called a cut edge of G if G — e contains at least 2 components.
A connected graph G is 2-connected if G contains no cut vertices and it is
called 2-edge connected if it contains no cut edges. A maximal 2-connected
subgraph of a connected graph G is called a block of G. Thus a 2-connected
graph is a block. It is well known that if G is a connected graph containing
two distinct blocks B, and Bs, then E(B;) N E(B;) = 0 and |V(B;) N
V(B2)| < 1. If By and B, have a vertex v in common, then v is a cut
vertex of G. Furthermore if B is a block of order at least three, for any two
distinct vertices of B, there is a cycle in B containing the two vertices. Let
G be a graph and 7 be a positive integer. An r-regular spanning subgraph
of G is called an r-factor of G. Petersen (8] proved the following theorem.

Theorem 2.1 If G be a 2-connected cubic graph, then G contains a 2-
factor.
n

For a 2-connected cubic graph G, G may contain several 2-factors. If
we choose one such 2-factor F of G, then F' = (V(G), E(G) — E(F)) is a
1-factor of G.

A connected cubic graph G which contains K as its subgraph is not
2-connected. We first consider the class J; — J2 separately. Observe further
that J; — J2 # 0 if and only if n is even and n > 10.

Theorem 2.2 Let G1,G2 € J = 1) - Ja. Then Gy = G2 or there ez-
ists a sequence of J-switchings 01,03,...,0: with respect to Gy such that
G177 = Gs.

Proof. Let J = J; —J2 and G1,G> € J. Since G and G contain Kj as in-
duced subgraph, there exist ¢ € G, and f € G2 such that G; —e = G1UK}
and G2 — f = G4UK]. It turns out that the graphs G and G are connected
and have the same degree sequence. Thus G} = G} or by Taylor [13], there
exists a sequence of switchings 0y,09,...,0: such that G{??"% = Gj.
The sequence of switchings can be considered as a sequence of J-switchings
01,03,...,0; with respect to G1 and G{*?2"* = G3. Thus the proof is
complete. [ ]
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Since the class of cubic graphs of order n < 10 are known in [12] and
they are easy to verify as our purpose, we will consider from now on only
the connected cubic graphs of order n where n > 12. Let J € X,, and
J # I, — J2. We have the following theorems.

Theorem 2.3 Let J le. Xn, J# 11— Js, and G € J. If G contains a
cut vertez, then there exists a sequence of J-switchings 01,09,...,0; with
respect to G such that G192 s 2-connected.

Proof. Let G € J and G is not 2-connected. Since G is cubic, G' contains
at least three blocks. Let S be the set of all cut vertices of G and v € S.
Since dg(v) = 3, there exists a component G; of G — v such that v is
adjacent to exactly one vertex u of G; and this vertex is also a cut vertex
of G. Thus |S| > 2 and |S| = 2 if and only if G contains exactly three
blocks. We will proceed by induction on the number of blocks, b(G), of a
graph G. If b(G) = 3, there exists a cut set of vertices S = {u,v} of G.
Thus uv € E(G) and the blocks of G are By, By, and B3 = G[{u,v}] such
that B; and B, contain u and v respectively. It is clear that B, and B,
have order at least 5.

If J € {J1,J2,J3}, then choose e = ab € E(B;) and f = cd € E(B;)
such that e is not adjacent to u and f is not adjacent to v. Thus o(a, b; ¢, d)
is a J-switching with respect to G and G?(®%9) s 2-connected.

IfJ € {J1—Js,J2—J3} and G € J, then at least one of B; must contain
a triangle as its subgraph. Suppose B; contains a triangle T. Choose
e =ab € E(B,) and f = cd € E(B,) such that e ¢ E(T). Thus o(a, b;c,d)
is a J-switching with respect to G and G°(*:bi¢.d) is 3 2-connected graph
containing a triangle.

Let k be an integer greater than 2 and suppose that the theorem is true
for all connected cubic graphs H with b(H) < k. Let G be a connected
cubic graph with b(G) = k. Thus there exist two vertex disjoint blocks B;
and B; of G, each of which has order at least 5. We can analogously define
the switching o = o(a, b; c,d) as described above and the resulting graph
G; = G reduces the number of blocks of G by one. By induction, there
exists a sequence of J-switchings 09, 03, . ..,0; with respect to Gy such that
Go1939t = G293 is 2-connected. This completes the proof. [ |

Theorem 2.4 LetJ € X,,, J # J1 —J2, and G € J. If G is 2-connected,
then G is hamiltonian or there ezists a sequence of J-switchings 0,02, ... ,0;
with respect to G such that G2t is hamiltonian.

Proof. Let G be a 2-connected cubic graph. By Theorem 2.1, there is
a 2-factor F of G. Let ¢(F) be the number of cycle in F. Thus we may
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choose F of G with minimum ¢(F). If ¢(F) = 1, then G is hamiltonian.
Suppose ¢(F) = 2 and F = C; UCs.

If J € {J1,32,J3}, then choose e = ab € E(C1) and f = cd € E(C3)
such that a is not adjacent to ¢ and b is not adjacent to d. Thus o(a, b; c,d)
is a J-switching with respect to G and Ge(a:bicd) jg 3 hamiltonian graph.

IfJ € {J;—J3,J2—J3} and G € J, then at least one of C; must contain
three vertices which induces a triangle in G. Suppose C; contains three
vertices which induces a triangle T and C; has order at least 4. Choose
e =ab € E(C)) and f = cd € C; such that e ¢ E(T). Thus Go(@bd) i
hamiltonian containing a triangle. Suppose C) has order 3 and V(C) =
{z,y,2}. Then C; has order at least 9. Let {z',3',2'} € V(C2) such that
zz',yy', 22’ € E(G). Since G is not hamiltonian, z'y’',y'2’,2'z' ¢ E(Cy).
Let u € V(C;) and uz' € E(C;). Thus there is a vertex v € V(Cz2) such
that uv € E(G). Since z'y’,2'2' € E(C3), u & {¥',2'}.

Case 1. Suppose that y'v € E(G) or z'v € E(G). Without loss of gen-
erality, we may assume that y'v € E(G). Then GeW:v'iw) g 3 hamiltonian
graph containing a triangle.

Case 2. Suppose that y'v € E(G) and 2'v € E(G). Since N(v) =
{u,y',2'}, there is at least one edge e € {y'v,2'v} satisfying e € E(C3).
Without loss of generality, we may assume that 2'v € E(Cz). Therefore if
y'u € E(G), then G°(®=i%) ig a hamiltonian graph containing a triangle
and if y'u € E(G), then G°W¥'»¥) is 3 hamiltonian graph containing a
triangle.

Suppose that ¢(F) = k > 3, we can analogously apply an appropriate
J-switching or a sequence of J-switchings with respect to G to obtain a
2-connected cubic graph G’ containing a 2-factor F' with c¢(F') < ¢(F).
This completes the proof. ]

Let n be an integer and n > 6. Let G(2n) be a graph of order 2n with
V(G(2n)) = {vo,v1,.--,v2n—1} and E(G(2n)) = {vivi41 :i=0,1,...,2n—
1(mod 2n)} U {vo¥n, 10n+1} U {0jv2n—js1: 5 =2,3,...,n = 1}.

It is clear that G(2n) is a cubic triangle-free graph containing a hamil-
tonian cycle C with E(C) = {vivi41:1=0,1,...,2n — 1(mod 2n)}.

Let J € {J1,J2,J3} and let G € J. Suppose further that G is hamil-
tonian. Up to isomorphism, we may assume that G contains C as its
hamiltonian cycle. Thus the following sets are uniquely determined.

RV(G)={v; € V(G):i=1,2,3,...,n},

LV(G) =V(G) — RV(G),

[L, R)(G) = {uv € E(G) : u € LV(G) and v € RV(G)} — E(C),

[R,L)(G) = {uv € E(G) : u € RV(G) and v € LV(G)} — E(C),

(L, L)(G) = {uwv € E(G) : u,v € L(G)} - E(C), and

[R, R)(G) = {wv € E(G) : u,v € RV(G)} — E(C).
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Since e € [L, R)(G) if and only if e € [R, L)(G), we have [L, R](G) =
[R,L}(G) and |[L,L)(@)] = [[R, R)G)|. Let e = vv; € [L,L)(G). Then
there exists f = v,v; € [R,R)(G). If i € {0,2n — 1} and s € {1,2}, then
o1 = 01(vi, Vj; V¢, V) is a J-switching with respect to G. Thus |[Z, L)(G*!)| =
I[R,RI(G™)| = |[L,L)(G)| - 1. fi € {n+1,n+2} and s € {n —
1,n}, then 0y = o1 (v;,vj;v¢,v,) is a J-switching with respect to G. Thus
|[L, L](G°)| = |[R, R)(G"")| = |[L, L)(G)| — 1. In other case, a switching
o1 = 01(vi, vj; Vs, v¢) is a J-switching with respect to G. Thus the number
of [L, L)(G?') can be decreased by 2 from the number of [L, L}(G). With
this observation, there exists a sequence of J-switchings g1, 09, ..., 0; such
that [R, R)(Go172%t) = [L, L}(G"1%*%) = {.

Theorem 2.5 Let J € {I1,J2,J3}. If G € I and [R,R)(G) = 0, then
G = G(2n) or there exists a sequence of J-switchings 01,02,...,0; with
respect to G such that G°192""t = G(2n).

Proof. If vov, ¢ E(G), then there exist i € {3,4,...,n—1}and j € {n+
3,n+4,...,2n—1} such that vv;, vov; € E(G). Then G = Go(vo:¥iivn.v;)
is a J-switching with respect to G and vgv, € [L, R](G(vo-¥si¥=+¥5)), Simi-
larly if vyvpy1 € E(Go(v0:iivn:))  then there exists a J-switching oo with
respect to G; = G such that G2 = G192 and voup,V1Vn41 € G2. If
vov; € E(G2) and i # 2n — 1, then there exists j, 3 < j < n—2,
such that ven—1v; € E(G2) and voven—1 € E(G3) = E(G3®), where
03 = 0(v2,V;;V2n—1,7;). Let j be smallest integer in {3,4,...,n — 1} such
that v;ven—j+1 € E(G3). Then there exist ¢ and k such that j < k < n,
n+1<1i<2n—j+1 and v;v;,Vkv2n-j+1 € E(G3). Thus VjVon—j41 €
E(G4) = E(GS*), where 04 = 0(v;,vi;¥2n—j4+1,V). Similarly there ex-
ists a sequence of J-switchings o3, 04, - ..,0: with respect to G4 such that
G(2n) = G{89¢"% = Go192"9¢, This completes the proof. [ ]

By Theorem 2.5, we have the following theorem.

Theorem 2.6 Let J € {J1,J2,J3}. Then the subgraph of CR(3") induced
by J is connected.
]

Let n be an integer and n > 6. Let H(2n) be a graph of order 2n with
V(H(2n)) = {vo,v1,...,v2n-1} and E(H(2n)) = {viviy1 : i = 0,1,...,2n—
;(mOd 2n)} U}{vovz,'vlvznq} U {Vn—19n+1,VnUns2} U {vjvon_jp1 : § =
,4,...,n =2}
It is clear that H(2n) is a cubic hamiltonian graph of order 2n containing
a triangle. Again put C as its hamiltonian cycle with E(C) = {vjviyy :i =
0,1,...,2n — 1(mod 2n)}.
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Let J € {J; — J3,J2 — J3} and let G € J. Suppose further that G is
hamiltonian. Up to isomorphism, we may suppose that G contains C as
its hamiltonian cycle. Thus the following sets are uniquely determined.

RV(G)={v e V(G):1=1,2,3,...,n},

LV(G) =V(G) — RV(G),

[L,R)(G) = {uv € E(G) : u € LV(G) and v € RV(G)} — E(C),

[R,L)(G) = {uv € E(G) :u € RV(G) and v € LV(G)} - E(C),

[L, L)(G) = {uv € E(G) : u,v € L(G)} — E(C), and

[R, B)(G) = {uwv € E(G) : u,v € RV(G)} — E(C).

Since e € [L, B](G) if and only if e € [R,L](G), we have [L, R|(G) =
[R,L)(G) and |[L, L)(G)| = |[R, R)(G)|. Suppose that vov; ¢ E(G). Thus
there exist 1, j such that vov;, v2v; € E(G) and Gy = G(¥0:%i¥2:%) contains
vov; as its edge. By using the same argument as described previously, there
exists a sequence of J-switchings 01,03, ...,0: with respect to G such that
Gy = G°192--% and [L, L](G:) = 0. Again by using the same argument as
described in the proof of Theorem 2.5 we have the following theorem.

Theorem 2.7 LetJ € {J1-J3,J2—J3}. If G € J and [R, R)(G) = 0, then
G = H(2n) or there ezists a sequence of J-switchings 01,02,...,0¢ with
respect to G such that G192t = H(2n).

n

By Theorem 2.7, we have the following theorem.

Theorem 2.8 Let J € {J; — J3,J2 — Js}. Then the subgraph of CR(3")
induced by J is connected.
| |

Combining results in this section we can conclude the following theorem.

Theorem 2.9 Let J € X,. Then the subgraph of CR(3"™) induced by J s
connected.
|

3 Interpolation and Extremal Results

Let G be the class of all simple graphs, a function f : G — Z is called a
graph parameter if G = H, then f(G) = f(H). If f is a graph parameter
and J C G, f is called an interpolation graph parameter with respect to J if

there exist integers  and y such that

{f(G):Gel}=[x,y]={k€Z:z <k <y}
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Studying interpolation theorems for graph parameters may be divided
into two parts, the first part deals with the question that given a graph
parameter f and a subset J of G, does f interpolate over J? If f interpolates
over J, then {f(G) : G € J} is uniquely determined by

min(f,J) = min{f(G) : G € J} and max(f,J) = max{f(G): G € J}.

Thus the second part of the interpolation theorems for graph parame-
ters is to find the values of min(f,J) and max(f,J) for the corresponding
interpolation graph parameter f and the set J and this part falls into the
category of the extremal problems in graph theory.

Acyclic graph is a graph containing no cycle as its subgraph. An acyclic
graph is called a forest. Therefore, each component of an acyclic graph is
a tree.

Erdés et al. [4] first defined a graph parameter ¢ as follows. Let G be a
graph and F' C V(Q). F is called an induced forest of G if G[F is acyclic.
An induced forest F of G is mazimal if for every v € V(G) — F, FU {v} is
not an induced forest of G. Let #(G) be defined as

t(G) := max{|F| : F is an induced forest of G}.

Thus #(G) is the maximum cardinality of induced forests of G. An induced
forest F of G with |F| = t(G) is call a mazimum induced forest of G.

The second author proved in [9] that if G is a graph and ¢ is a switching
on G, then [t(G) — t(G7)| < 1. With this result and the results in Section
2 we have the following theorem.

Theorem 3.1 Let J € X,,. Then t is an interpolation graph parameter
with respect to J.
]

We now answer the second part of interpolation theorem. In other
words, we will find min(¢,J) and max(¢,J) for all J € X,,.

Let G be a graph and X,Y be disjoint nonempty subsets of V(G).
Denote by e(X) the number of edges in G[X] and e(X,Y) the number of
edges in G connecting vertices in X to vertices in Y.

Let G be a cubic graph of order n and F be a maximum induced forest
of G. Let |F| = f and therefore G — F has order n — f. An upper bound
of max(t,J;) can be obtained by the following obvious identities.

1. 32 = |E(G)| = e(F) + &(F, V(G - F)) +e(V(G - F))
2. 3(n — f) = e(F, V(G — F)) + 2¢(V(G - F)).
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It follows that ‘

3 = o(F) +3(n - ) —e(V(G = F)) < f = 1+3(n - ).

Therefore f < 3272,

Since Js C Jz C Ji, max(t,Js) < max(t, Jz) < max(t,J;) < 2872,

We will show in the next theorem that max(¢,J3) = |3272] by con-
structing a connected cubic triangle-free graph G of order n and t(G) =
|22=2|. Note that several classes of graphs can be constructed to reach the
bound even if we restrict that the graph is planar and n > 8. We now turn
to consider the graph G(2n) as we have constructed in Section 2. G(2n)
is a connected cubic triangle-free graph of order 2n if n > 3. We have the
following theorem.

Theorem 3.2 If n = 2m > 6, then ¢(G(2m)) = | 2272].

Proof. Let G = G(2m) — {voUm,V1¥m+1} and S = {v1,v3,..., 0} f m is
odd and S = {v1,v3,...,Ym—1,Vm} if m is even. Thus F =G - S is a tree
of order | 32=1| = |32=2|, Since v1,vm € S, adding edges votUm, V1¥m+1 tO
G will not create any cycle in F. Therefore t(G(2m)) = |38-1| = 2272

a

Corollary 3.3 max(t,Js) = max(t,J2) = max(t,J1) = | 3272].
]

Let G be a connected cubic graph of order n containing Kj as its sub-
graph. Put G' = G- K. Thus G" has order n—5 and size % —8. Moreover
t(G) = t(G") + t(K}) = t(G") + 3. Let F' be a maximum induced forest of
G' and |F'| = f'. We have

I _g=e(V(G) S (f-1)+3(n—-5-f)=38n—-16-2f".

It follows that f' < 38716 and #(G) < 3216 4 3 = 3n7d,

Theorem 3.4 max(t,J; — J2) = lgnT—iJ‘

Proof. It is clear that J, — J2 # 0 if and only if = is even and n > 10.
If n = 10, we can take G as a graph obtained from two copies of K} and
joining the two vertices of degree 2. Let n — 6 =2m > 6 and H = G(2m).
Thus by Theorem 3.2, we have t(H) = [gn—ftzj . In the proof of Theorem
3.2, let e = vov; € E(H) and define a graph K with V(K) = V(H) U {z}
and E(K) = (E(H) —e) U {voz,zv: } and finally let G be a graph obtained
from K and a copy of K, by joining the two vertices of degree 2. Thus
#(G) = |2=B=2 | +1+8 = |2 4y = | Bn4),

a

Since J — J3 C J1 — Ja, max(t,J2 — Js) < max(t,J, — Js) < |32%72).
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Theorem 3.5 max(t,J2 — J5) = max(¢,J; - Jg) = | 3872 ).

Proof. Let m be an integer such that n = 2m. The graph H(2m) contains a
triangle. Let § = {v1,vs,...,9m} if misoddand S = {v1,v3,...,vm—1,vm}
if m is even. Thus F = G — S is a tree of order {3272). Thus max(t, J; —
J3) = max(¢,J; - Js) = | 3272).

Thus the values of max(%, J) are obtained for all J € X,,.

The problem of finding lower bounds of #(G), where G runs over a class
of cubic graphs, have been investigated in the literature. First observe that
if G is a cubic graph of order n and F is a maximum induced forest of G,
then G—F is a forest. Thus |F| > 2. The bound is sharp if and only if n is
a multiple of 4. The second author proved in [10] that if n = 4¢g+t, t = 0,2,
then min(t, R(3")) = 2¢+1. Liu and Zhao [7] proved that #(G) > $n~1 for
any connected cubic graph G of order n. This means that for any connected
cubic graph of order n, the bound of the order of maximum induced forest
can be improved from 50 percent of the number of vertices to 60 percent.

The second author proved in [11] the following result.

Theorem 3.6 Let n be an even integer with 1z > 12. Then

5 1 =
) _J 3n—2 ifn=2(modS8),
min(2,J;) = { f%n'l otherwise.

Note that a graph G that has been constructed in such a way that
¢(G) = min(¢,J,) and G contains K as its subgraph. Thus we have the
following corollary.

Corollary 3.7 Let n be an even integer with n > 12. IfJ € {J;,J; —
J2,J1 — T3}, then

- _f in~% ifn=2(mod8),
min(t,J) = { F.g.n] Y otherwise.

Zheng and Lu [14] proved that ¢(G) > % for any connected cubic graph
G of order n without triangle, except for two cubic graphs with n = 8 and
¢(G) = 5. This means that if we look at the class of connected cubic graphs
of order n containing no triangle, then the bound can be improved from 60
percent of the number of vertices to 66 percent.

It is easy to see that there exists cubic graph G of order n containing
triangles and ¢(G) > 33’-'
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We are able to extend the result of Zheng and Lu [14] by proving that
#(G) > & for any connected cubic K-free graph G of order n > 10.

Let H be a graph. A graph G is called an H-free graph if G does not
contain H as an induced subgraph. Let X be a set of graphs. Then a
graph G is called an X -free graph if for every H € X, G is an H-free graph.
In [12), five connected cubic graphs of order 8 are given, all of which have
maximum induced forests of order 5. Alon et al. [1] proved that let G be
a {K4, K}}-free graph with maximum degree 3. If G is of order n and of
size m, then ¢(G) > n— 2. Consequently, if G is a connected cubic Kj-free
graph of order n > 10, then #(G) > 3.

Observe that if G is a connected K}-free graph of order 8 and A(G) = 3,
then ¢(G) > 5 and ¢(G) = 5 if and only if G is a cubic graph.

Theorem 3.8 Let X = CR(3%) U {K4, K} and let G be an X -free graph
of order n. with A(G) = 3. Then t(G) > &.

Proof. Let X = CR(3%) U{K4, K} and let G be an X-free graph of order
n. By calculation we found that [32] = [%2] for all n with 4 <n < 10
and n # 8. For n = 8 we also have t(G) > 2, Thus the theorem holds
for all 4 < n < 10. Now suppose n > 11 and G contains a triangle T
with V(T) = {z,y,2}. If there exists a vertex in V(T), say z, such that
dg(z) = 2, then by induction on n there exists a maximum induced forest
F of G - T with |Fy| > gﬂ;—a)-. Hence F = F, U {z,y} is an induced
forest of G and |F| > 22. Suppose for all triangles T = {z,y,z} of G,
de(z) = de(y) = dg(z) = 3. Since G is a Ky-free graph, [N(T)| 2 2.

Case 1. Suppose z and y have a common neighbor u and v is a neighbor
of z. Since G is a K)-free graph, u and v are not adjacent in G. Thus by
induction on n, G — T contains an induced forest of order at least %"3—'32
Since dg_r(u) = 1, any maximum induced forest of G — T’ must contain u.
If there is a maximum induced forest F; of G — T' which does not contain
u, v-path, then Fj U {y, 2} is an induced forest of G of order at least 335
Suppose for any maximum induced forest F; of G — T, Fy contains u,v-
path. Since G' = G — T + uv satisfies conditions of the theorem, there is a
maximum induced forest F' of G’ of order at least 3(23’—31 If uv € E(F'),
then F = F'U{y, 2} is a maximum induced forest of G of order at least 2n,
If uv € E(F"), then F = (F' —uv) U {y, 2} is a maximum induced forest of
G of order at least .

Case 2. Suppose &, ¥, z have different neighbors »,v and w respectively.
Since n > 11, G[{u,v,w}] is not a triangle. Thus there exist two vertices
in {u,v,w}, say u,v, such that uv ¢ E(G). We consider the following
subcases.
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Subcase 2.1 Suppose that G — T + uv contains K4. Let H be the copy
of K4 in G —T + uv. Thus uv € E(H) and vw ¢ E(G) . Since G' =
G -T - V(H) satisfies the condition of the theorem, ¢(G') > J"_—"l Let F'
be a maximum induced forest of G’ and F; be a maximum mduced forest of
H—uv. Since |F;| = 3 and there exists an induced forest F = F'U{y, z}UF,
of G, #(G) > |F| = |[F'U{y,z} UF| > 280 4+ 243 = 2n41 > 20

Subcase 2.2 Suppose that G—T +uv conta,ms K. Let H be the copy of

4in G—T+uv. Thus uv € E(H). Since G' = G—-T -V (H)~—{w} satisfies
the condition of the theorem, {(G') > —("—'91 Let F' be a maximum
induced forest of G' and F; be a maximum 1nduced forest of H — uv. Since
|F1] = 4 and there exists an induced forest F = F’ U{y,2} UF of G,
HG) 2 |F|=|F'U{y,z}UFR|> %8 104 4=

Subcase 2.3 Suppose that G- T + uv contains a cublc graph of order 8.
Let H be the cubic graph of order 8 in G —T +uv. Thus uv € E(H). Since
G' = G- T ~V(H) satisfies the condition of the theorem, ¢(G') > 2218,
Let F’ be a maximum induced forest of G’ and F; be a maximum mduced
forest of H — uv. Since |Fi| = 6 and there exists an induced forest F =
f"LU{y,z}UFl of G, #(G) > |F| = |F'U{y,z}UF| > 271 4 24 6=

>

Subca?se 2.4 Suppose that G — T + uv satisfies the condition of the
theorem. Thus there exists a maximum induced forest F' of G — T of order
at least 3"3—"31 If uv g E(F'), then F = F' U {z,y} is an induced forest
of G of order at least 22, If uv € E(F), then F = (F} — uv) U {z,y} is an
induced forest of G of order at least Zn,

Thus the proof is complete. ]

The following corollary is an immediate consequence of Theorem 3.8.

Corollary 3.9 Let G be a connected cubic K)-free graph of order n # 8.
Then t(G) > .
|

According to the result of Zheng and Lu [14] that ¢(G) > & for any
connected cubic graph G of order n without triangles, except for two cubic
graphs with n = 8. They mentioned in their paper that the lower bound is
best possible but no proof of this was given in the paper.

We now construct a class of graphs to show that min(¢,J3) = min(,J;) =

%1
First observe the following facts:
L ¢(Ks33) =4

2. t(Q3) = 5, where Q3 is the 3-cube.
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3. There is a switching o such that (2K})° is a connected triangle-free
graph and t((2K})?) = 7. Let K = (2K3)°.

4. e € E(K33) and f € E(Q3), then t(K33—e) = 4and t{(Q3— f) = 6.
Let P=K3z3—eand Q=Q3— f.

5. Let n be an even integer with n > 12. Writen =6g+¢, t =0,2,4
and construct a connected cubic triangle-free graph according to the
values of £:

(a) If t = 0, construct graph G of order 6¢ by taking g copies of P
and joining q appropriate edges between the g copies of P.

(b) Ift = 2, construct graph G of order 6g+2 by taking g—1 copies of .
" P and a copy of @ and then joining g appropriate edges between
them.

(c) If t = 4, construct a graph G of order 6q + 4 by taking ¢ — 1
copies of P and a copy of K and then joining g appropriate edges
between them.

It is easy to check that the graphs G constructed above satisfying t(G) =
[33’-‘] . Thus we have the following theorem.

Theorem 3.10 min(t,J2) = min(¢,J3) = min(¢,J; — J3) = [%].
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