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Abstract
In this paper , the unimodality of (r,8)-Stirling numbers and
certain asymptotic approximation of (r,8)-Bell numbers are estab-
lished. Together with these results and the most general form of
Central Limit Theorem, viz. Bounded Variance Normal Convergence
Criterion, the (r, 8)-Stirling numbers are shown to be asymptotically
normal.

1 Introduction

The normal distribution plays a very important role in a wide variety of
applications of probability theory to physical problems and to problems of
statistics. One of the reasons for this is found in a class of limit theorems
known generically as the Central Limit Theorem. A class of independent
variable may individually have distributions which are quite different from
the normal distribution. But when these are summed and standardized in
an approximate manner, the resulting random variable has a distribution
which is approximately normal.

Harper [13] introduced a method for proving that a sequence of numbers
satisfy the Local Limit Theorem (LLT) and, together with the asymptotic
approximation of Moser and Wyman [16] for the Bell numbers, used the
method in proving that the Stirling numbers of the second kind satisfy
the LLT. This method was later generalized by Bender {2] and the gen-
eralization was improved by Canfield [3]. Rucinski and Voigt [18] used
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the improved generalized method in proving that LLT is satisfied by the
numbers S} (a) defined by the relation

n
=) _ Sr(a)pi(z)
k=0
where a is the sequence (a,a+r,a+2r,...), fora >0, 7 >0 and

k

@) =[[Iz - (e +in)].

i=0

The numbers SP(a) when a is an arithmetic progression coincide with the
(r, B)-Stirling numbers.

In this paper, we used the method of Moser and Wyman [16] to es-
tablish an asymptotic approximation of the (r, 8)-Bell numbers. With this
asymptotic approximation and following the method of Harper we proved
that the (r, B)-Stirling numbers satisfy the LLT which is also known as the
Bounded Variance Normal Convergence Criterion.

2 The (r,3)-Stirling Numbers

The (r, B)-Stirling numbers, denoted by (}), were defined in [8] by
means of the following ‘linear transformation’:

where (t — 7)gx = f;ol (t — r —iB). The parameters r and S may be real
or complex numbers. However, in this paper, we restrict r and 8 to be
nonnegative real numbers.

Several properties of the (r, 8)-Stirling numbers were given in (8. To
mention a few, we have the triangular recurrence relation

= + (kB +7) ' 0y
< k ﬁ," k - 1 ﬂ," < k >ﬁ,1’
the exponential generating function
= /n z" 1 e/ gz k
s = -1), 2
,g < k)p,r al - BFR (e ~1) )
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and the explicit formulas
‘ k
n E H ( ,B . cj
j+7)
<k >ﬁ,r cotcr+...+cp=n—k j=0

eu(y), = g(—l)’“-"(j) (8 + 7)™,

Moreover, the (r, 8)-Stirling numbers were interpreted combinatorially based
on the above explicit formulas. For the second formula, the (r, 8)-Stirling
numbers with multiplier 8*k! were interpreted as follows:
Consider k + 1 distinct cells the first k of which each has 8 compartments
and the last cell with r distinct compartments. Suppose we distribute n
distinct balls into k 4+ 1 cells one ball a time such that

(A1) the capacity of each compartment is unlimited;

(B1) the first k cells are nonempty.
Let Q be the set of all possible ways of distributing n balls under restriction
(A1). Then the number of outcomes in Q satisfying (B1) is B*k!(}) P
with B,r > 0. '

3 Unimodality

One important concept in probability theory that may be helpful in analyz-
ing the behavior of a certain distribution is unimodality. This concept will
give us an idea whether a distribution will approach to normality. Here, we
will show that the behavior of (r, 8)-Stirling numbers is unimodal.

The following theorem in [6] is very useful in determining the unimodal-
ity of a real sequence.

Theorem 8.2 If the generating polynomial
n
P(z) = Z'vkx", vy #0
k=0

of real nonnegative sequence v , 0 < k < n has only real roots < 0, then
vk 19 unimodal, either with a peak or a plateau.

The following Lemma is also essential to the proof of the unimodality
as well as the asymptotic normality of the (r, §)-Stirling numbers.

Lemma 3.3 Let Qn(z) = 3k (%) 4, =*- Then the roots of Qn are distinct
real and nonpositive for all n > 1.
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Proof. Using the explicit formula of the (r, 8)-Stirling numbers with n =1
we have Q;(z) = r+z. Assume that Q,—(z) has n—1 distinct nonpositive
real roots, n > 2. Now using the triangular recurrence relation (1) of the
(r, B)-Stirling numbers, we have

Qn(e) = B Qu-1(2) + (2+7)Qn-1(a). @)

Let On(z) = Qn(z)e”"ur. Then differentiating O,—1 with respect to z
and simplifying, we have

% é"“’(z) = % ﬁz-}z Qnor(z)eB B 4 (z+ ")Qn—x(z)ei"'"%"’l] '

Again, using (1), we get

2 0nile) = ZAn(@FH

/33% Qn-1(z) = Q,.(z)ei"’u?".
Hence

On(e) = fag Qn-1(2).

Since Qn—1(z) has n distinct nonpositive real roots, by Rolle’s Theorem,
£ Qn_1(z) has n— 1 distinct negative real roots. This implies that Q,,(z)
has n distinct nonpositive real roots. Therefore, the roots of @, must also
be distinct real and nonpositive for all integer n > 1. O

Finally, the following result gives the unimodality of the (r, 8)-Stirling
numbers. This follows from Theorem 3.2 and Lemma 3.3 by taking vx =

(:)p,r'

Theorem 3.4 The sequence (}) g o the (r, B)-Stirling numbers, n fized
(= 3), k variable (k < n), is unimodal.

4 An Asymptotic Formula for the (r,3)-Bell
numbers

An Asymptotic Expansion
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In this section, we will establish an asymptotic formula for the (r, 8)-Bell
numbers Gy, » g defined by

Gars =3 (0),.-

k=0

We will be using the rhethod of Moser and Wymann [16] in obtaining the
asymptotic formula for the Bell numbers. Here we assume that the param-
eter B is a positive real number.

We begin by obtaining a generating function for the (r, 8)-Bell numbers.

Theorem 4.1 For 8 # 0, (r, B)-Bell numbers Gnrp have the following
exponential generating function:

efr -1
EG,,B '—exp[rx+ ; ]

n=0

where both e* and exp z denote the ezponential function.

Proof. Using the definition of G r g and the exponential generating func-
tion for (r, B)-Stirling numbers, we can easily obtain the above generating
function. O

By making use of the exponentla.l generating function for G, s and
Cauchy’s Theorem for integrals we obtain the integral representation

Ba~1
nl [ €Xp [rz+ 3 ]
Gn,r,ﬂ = é;r-z: 1 dz)

¥

where 7 is the circle z = Re®®, —7 < 6 < w. Contour integration yields

Gnrp= nl /w exp (ﬁ_leﬂkcw +7Re* — in — ﬂ") dé
™0 2miRn J_, ’

which can be written into the compact form

n

Garp=A [ exp(F(6))ds, @
-n
where
Ae nlexp (rR+ 1R — g~1)
- 2rRn ’
and
F(8) = B'ePRe" 1L rRe®® — inf — (rR + f~1ePR). (5)
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Define € = e~3= and let

Ji= [ exp(F(®)d# and Jp= / " exp(F(6))do.

-

Thus (3) can be written as

Gorp=AJ1 + A / exp(F(8))d8 + AJz.

Lémma 4.2 There exists a constant k > 0 such that
|Jo| < e=*87"¢"% (r — ).
Proof: It can be shown that

| exp(F(8)) |= ¢~ [(rR+B1e#R)+57 cos(BRain 8)eP =]
Since cos@ < 1 for 0 < € < 8 < 7, we have
| exp(F(8)) |= e=#*¢""[1 — cos(BRsin 6)].

Since [1 — cos(BRsin6)] > 0 for cos@ < 1 for 0 < € < § < m, there exists a
constant k > 0 such that [1 — cos(8Rsind)] < k. Hence

|J2| < e"‘ﬁ_ldm(w -¢€).0
It will be seen later that R — oo as n — oo. With the result in Lemma
4.2 we see that J; and Jp will tend to zero as n — oo. Hence
€
Gnrp~A | exp(F(0))d6. (6)
—€

Observe that F(6) is analytic at 6 = 0.Thus F(6) has a Maclaurin
series expansion about 8 = 0. This Maclaurin expansion can be written in
the form

F(0) = (RePR+rR—n)i0+ %(m# +RePR+rR)i20 ()
+3°[704(ePR) + TR ()"
k=3

where we define p to be the operator p = R Choose R such that Ref®+
rR —n = 0, that is, R satisfies the equation ze?? +rz —n = 0. This Ris
shown to exist in the following lemma.
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Lemma 4.3 There erists a unique positive real solution to the equation
zePR 4rz —n=0,

Proof.: We can rewrite the given equation into the form

T
n—rxr

= ¢~ Bz

The desired solution is the z-coordinate of the intersection of the functions
h(z) = ==— and g(z) =e~F=. D

n—rz

It can be seen from the preceding Lemma that R — oo as n — co. With
this choice of R, we have

F(0) = —%(/BR2 + RePR 4+ rR)0 + i [8716"(eP?) + rR] (i6)*.
A k=3

We now introduce the following notations:

$ = [%(ﬁ R?¢"F + ReP® + rR)"z] o
ar = [B~1e™BRpk+2(ePR) 4 rRe—8 R] (ig)*+2 8
(k+1)! [}(BR? + R+ rRe~BR)]
z = e"%
f(Z) = Z akzk.
k=1
Then F(8) = —¢* + f(2) and
h
Gurg~C [ oi=e + f(o)i ©)
-h

where h = §(BR?eP" + Ref" 4 7R)!/%¢ =" and C = [i(ﬂmeﬂﬁwn)]m'

We have defined z as a function of R. However, for the moment we
consider z to be an independent variable and expand e/(*) into a convergent
Maclaurin series expansion of the form

[~ o]
/) =Y byt (10)
k=0

where by = /@ =1, b) = e/ f/(0) = a;, by =ap+ 5.;-
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Lemma 4.4 There is a constant R, such that for sl R> R,,
lax] < |20+, (11)
Proof. We see that

R*+2[1 + o(R**2)] (2)F

lax| = lg+2
(k + 2)/(BR2) ™ [1 + o( R2)]
which tends to "
2 k42 5 1k+2
G <2 ¢
as R — oco. From this, it follows that there is a constant R, satisfying
(11).o

Now, it will follow from Lemma 4.4 that the radius of convergence of
(10) becomes large when @ is near zero. Thus, z = e~ is within the
domain of convergence.

With z = e‘%&,

s—1 h
Garg~CY, ( / e-é’w) #+Q, (12)

k=0 \Y—h

h ©0
= b, 2*
Q,= /_ . (kme brz ) do.

Note that R — oo as n — oo. Furthermore with

where

h = %(ﬁRzeﬁR + RePR + rR)l/ze;gﬁ

= -;-(ﬂR2 + R+rRe PR)Y 2,252

h — 00 as R — oo0. From these facts and the known asymptotic expansion
of the function of the form

h
/ ¢~#* (polynomial in |¢)dé,
-h

the replacement of h by oo in (12) is easily justified (see [8]). Hence

8—1 o0
Gnrg~C E ( / e bkd¢) 2* 4+ Qs. (13)
k=0 W™
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It remains to show that Q, = o(|z|°) as R — oo that is, as z — 0. From a
Lemma in [4], |bk| < [2¢]5t2(1 + |2¢]2)*~!. Thus,

oo
Z b2*
k=8

where 1 = |26](1 + [2¢]?)|2].

< (126121 + 2617)° 72l [1 + o+ 62 + ..,

Now, for iz < 1, we have

)
S st
k=s

2614201 + oyt jzp
= TG+ ) 0

Let M and P,(|#])|=|° denote the denominator and the numerator, re-
spectively in (14). Since [¢| < h and z = e‘éig, we have

16%12] < % (BR®+ R+ rRe“’R)s/z e 5 0as R— oo.

Hence for sufficiently large R, M > 1/2. Moreover,

/ " ¥ P(\gl)db

-0

exists and tends to zero as R — co. Therefore,

Qs _ [ e**Pu(l4])
st_w M

Thus, [Qs| = o(|z|)°. Consequently,

Gnyrp ~ ci ( / ~ e-¢‘b,,d¢) e~F, (15)

k=0 —oo

Since ff; e~*"z™ = 0 for odd n, and bak41, as a polynomial in ¢, contain
only odd powers of ¢, it follows that

Gy ~ Ci ( / ” e-¢’b2kd¢) e kB8R, (16)

k=0 \W—%

An Asymptotic Approximation
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Calculation yields

BR® + 3R24+ B8R+ rRe PR 3
a = 3 3/? (1¢)
3! [5(,3122 +R+ rRe'ﬁR)]
BR* +6BR + 7TR?+ 'R+ rRe PR

41 [3(BR? + R+ rRe PR))’

(ie)*.

a2
Taking the first two terms of the asymptotic expansion of (15), we have
b 2 had 2
Gnrpg~ C/ e~¢ bod¢+022/ e~ % bad.
—o0 —00
2
Since by = ap + 3 and b, =1,

Crrg~C [ e¥dp+C2? /

—00 -

o 2 22 [® 2

age™? d¢+C—2- / e % a2dg. (17)
(= -] -—00
Let Iy, I, Is, denote, respectively the integrals in (17). Then evaluating
the last two integrals by parts and since f:o e¥dg = /7, we obtain

I, = CJm
I = Ce R./m(BR3 + 68R? + B! + re PR)
: = 8R(BR + 1+ re PR)?
—5CeR/x(BR? + 38 'R? + +rePR)?
24R(BR+1+re—PR)3 '

Iy =

Substituting the results in (17) and simplifying, we obtain

D
Gars ~ OV 1L+ 2E2), (18)

where

D = (36°R®+8BR3+3BR+3—1087! —2rePR)yre PR (19)

E = (3°-56)R'+ (216 —0PR* + (39 -55)R  (20)
+(24—-308")R+ (367" - 567%)

F = ARPHBR+1+re 7). (21)

Since RefR = (n —rR)A~! and R™ = n™(BefR + )™,

_ nlexp(rR + ﬂ"e"i: B)
7 [n*(BePR + 1)~ [2(n — rR)B~Y/2 (BR+ 1+ re-AR)Y/2




Using Stirling’s approximation for n!, namely,
1
{ ~ -n,ntjz —_
nl~ (2r)e """ I(1 4 12n)’

we obtain

0201+ ) exp(rR + B~ PR — B)(B8R 4 )
w1/2[(n — rR)B-)4(BR + 1 + re—BR)}¢n

(22)

Finally, we have

nV2(1+ gL)exp(rR+ PR~ f—n)(BPR 47" /  DiE
[(n—rR)B1}(BR+ 1+ re-PR) (1 +—F ) +(23)

Gnrp ~

A consequence of the asymptotic formula is the following lemma.

2
Lemma 4.5 GG#EN’- - (%ﬂﬁﬁ) — 00 as N — 0o.
n,r8 n,r,8

Proof. Using the above asymptotic formula for the (r, 8)-Bell numbers and

the fact that .
(n+1)(1 + 52)%(n ~ rR)

~1
n(l+ 1)?

as n — oo, and SRePR 4 rR = n, we have

Gn+2rﬂ (Gn+l rﬂ)2 n
17 -— LAY A — + o 1 .
Gn,r,ﬂ Gﬂ,f‘,ﬂ R2 ( )

Finally, letting n — oo, we obtain the desired result. O
5 The Asymptotic Normality

The following theorem is essential to the proof of the main theorem, that
is, on the asymptotic normality of the (r, 8)-Stirling numbers. This result
is one of the most general forms of the central limit theorem that gives
conditions under which the sum of a large number of random variables has
a probability distribution that is approximately normal.

Theorem 5.1 [11] (Bounded Variance Normal Convergence Criterion)
Let the independent summands { X, }ir, centered at ezpectations, be such
that

Zvar(X,.k) =1, for all n.
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Let F,, be the (cumulative) distribution function of Xn,. Then Sp =
4 Xn, converges normally with mean =0 and variance=1 and the

mazivar(Xnx)— 0 #f and only if for all e > 0,

. n 2 =
Jim on(e) = Jim D J X dFn. =0

The following lemma is also needed.

Lemma 5.1 If =2, , i =1,2,..,n are the distinct nonpositive real roots

of @n(z), then

n
. = Tn, Tn,,Tn,,_,
(), > o g B

1<81 <83<...<8p—; <N

n — . —a
where <j>ﬁ,r—1 ifn=7j.
Proof. This can be proved by induction on n and using Lemma 3.3.

Lemma 5.2 The distribution whose density function is

(= (), )

is the distribution of a sum of independent random variables taking on only
the values 0 and 1.

Proof Consider an experiment consisting of n independent trials. Suppose
that each trial results in an outcome that may be classified as a success
or a failure (we take the value 1 for success and 0 for failure). If X, is
a random variable that assumes the values 0 and 1 in the kth trial of the
experiment, then Y_p_; X, represents the number of successes that occur
in the experiment. In particular, if in the kth trial the weight of failure is
Zn, and the weight of success is 1, then the kth trial can be generated by
the linear factor z + n,. Thus the entire experiment can be generated by
the product

n

J=0

(a: + Zn, )(:L' + zﬂz) te (z + z"'n)'
Moreover, if —z,, s are the roots of

a5 (3),

J=1
then

i<n> :cj=(z+z,.,)(z+z,.,)---(z+x,,”). (24)
B,r

=1\
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By Lemma 3.3, the —z,, s are distinct and nonpositive.
Now, we can define

Zn,

_k_, ify=0
Pr[x:..,=y1={ RS
oy Hy=1

Then

n n
Pr va'u=9] = Y [[PrXi =w); u=01
=31

i=1

n 1_y‘
Y I =2, (cefine0®=1)
=1 1%,

where the sum is taken over all possible binary sequence with n — j zeros
and j ones. Thus,

n Zn, Tn,, ***Tn,
Pr S X., =j| = I R —
g T ] 1551 <32§<5!\—an (1 + z""l )(1 + an) e (1 + zﬂn)

Letting z = 1 in (24) and using Lemma 5.1, we prove the lemma completely.
0

Let us consider now the main resulit.

Theorem 5.3 The (r, 8)-Stirling numbers are asymptotically normal in the
sense that

o1 n 1 = 2
—_—( . —_ e /%t as n — 0
j2=:1 Gnrp <.7 >p,r - Vr [-oo '

Gn+2rp (Gn+l -rﬁ)2 (Gn+1 r.8 )
Tn = 17 3, — 17 z + 17, —_ 1 .
" ‘/ G"t"tp Gﬂ:';p Gn,r,ﬁ
Proof From Lemma 3.3 , the roots of the polynomial Q,, are distinct real
and nonpositive. This is equivalent to the fact that Q,, can be factored into
linear terms with real nonnegative coefficients. That is, Q, = (z+zn, )(z+

Tny) -+ (Z+7Zn,). Let X, be a random variable that takes only the values
0 and 1. By Lemma 5.2, we have

Pr [Zx:w =‘7] = Gn]:r,ﬁ <:>ﬁ»"‘

where
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Let S!, = 3, X4, . Using the triangular recurrence relation for the (r, 8)-
Stirling numbers, we calculate the expectation and variance of S}, as follows

1[G 1[G G, 1 1

E(S') == {L‘-ﬁ - 1 } Var(S') = — | 2nt2n8 _ ( n+l.r.ﬂ) _1

( 'l) ﬂ Gn.r.ﬂ (r+ ) ’ ar( ﬂ) ﬂz Gﬂ.".ﬂ G"n"vp ﬁ )
. Xo —BEXn) o

We normalize and let S, = Y, Xpn,, where X, = i Since

0< X, <1land0 < BE(X;,) <1, -1< X, —E(X;,) < 1. Now,
using Lemma 4.5, we have lim,,—,oc Var(S},) = co. Thus, lims—c0 Xn, =0.
Hence by the definition of a limit of a sequence, given € > 0, there exists a
natural number N such that |Xn,| < € for all n > N. This implies that,

00 €
E(X2)= / X2dF,, = | X%dF,,
—00

-

where F,, is the cumulative probability distribution of Xy, . Thus,

X2dF,, =0.
|z|>e

Therefore ,

Y[ X%dF,, =0, forain2N,
k. Vlz|>e

That is, for all € > 0,

. o 2 -
Jon, onle) = Jim 3 J KOl =0

Since Xn,'s are independent random variables, Var(Sn) = 3, Var(Xa,).
But S, is a normalized form of S, so Var(S,) = 1. This implies that
Y« Var(Xa,) = 1. Thus the hypotheses of the normal convergence crite-
rion are fulfilled. Therefore, S, converges normally with mean = 0, and

variance = 1 and (maxxVar(X,,)) — 0. This finally proves the theorem.
(m]
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