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Abstract

A vertex w in a (di)graph G is said to resolve a pair u, v of
vertices of G if the distance from u to w does not equal the distance
from v to w. A set S of vertices of G is a resolving set for G if
every pair of vertices of G is resolved by some vertex of $S. The
smallest cardinality of a resolving set for G, denoted by dim(G), is
called the metric dimension for G. We show that if G is the Cayley
digraph Cay(A : T) where I' = Zn @ Z . P Zsx with m < n < k
and A = {(1,0,0),(0,1,0),(0,0,1)}, then dim(G) = n if m < n and
improve known upper bounds if m = n. We use these results to
establish improved upper bounds for the metric dimension of Cayley
digraphs of abelian groups that are expressed as a direct product of
four or more cyclic groups. Lower bounds for Cayley digraphs of
groups that are multiple copies of Z are established.
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1 Introduction

Let G be a connected (di)graph. The distance from a vertex u to a vertex v in
G, denoted d(u,v), is the length of a shortest (directed) u — v path in G. A
vertex w of G resolves two vertices u and v of G if d(u,w) # d{v,w). A set
W = {wi,ws,...,wn} of G resolves G if every pair of vertices of G is resolved
with respect to some vertex in W. Alternatively if we fix the order of the vertices
in W as listed above, then W resolves G if and only if the n-vectors r(v|W) =
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(d(v,un),d(v,ws), ...,d(v, ws)) and r(u|W) = (d(u,w),d(u, w2), . ..,d(u, wn)),
called the representations of v and u with respect to W, are distinct. Note that
the only vertex with O in the i*® component of its representation with respect to
W is wi. Thus, in determining whether a set W is a resolving set, one need only
check that all pairs of vertices in V(G) — W have distinct representations with
respect to W. The minimum cardinality of a resolving set of G is called the metric
dimension or simply the dimension of G, and is denoted dim(G). A minimum
resolving set for G is also called a basis for G. Graph theory terminology not
given here can be found in [2].

Motivated by the problem of uniquely determining the location of an intruder
in a network, the concept of the metric dimension of a graph was introduced by
Slater in [13] and [14), and studied independently by Harary and Melter in [9].
It has since been studied further in [1], (3], [4]), [5], [6] and {11]. Applications
of this invariant to the navigation of robots in networks are discussed in [11]
and applications to chemistry are given in [1]. In [11], Khuller, Raghavachari
and Rosenfeld gave a construction that shows that finding the metric dimension
of a graph is NP-hard (see also [8]). Thus one is motivated to find the metric
dimension of classes of graphs. The metric dimension for trees was established
independently in (1}, [9], {11], and [13). Some bounds for this invariant, in terms
of the diameter of the graph, are given in [1). However, very little is known about
this invariant for general graphs. One may expect a correlation between the
automorphism group of a graph and its metric dimension. However, the results
on trees show that there are trees with arbitrarily large metric dimension having
the trivial automorphism group. It was also shown in [1] that in general there is
no correlation between the metric dimension of a graph and that of its subgraphs.
Nevertheless there appears to be a correlation between the metric dimension and
both local and global symmetries in (di)graphs that already show higher degrees
of symmetry, as for example in vertex transitive (di)graphs.

The literature abounds with results on Cayley (di)graphs that depend on
their highly symmetric structure. Cayley (di)graphs with minimal sets of gen-
erators are also natural models for interconnection networks in computer design
as they represent sparse (di)graphs with relatively small diameter. One of the
simplest Cayley (di)graphs, namely the n-cube, has led to a multitude of deep
and interesting problems [10]. Bounds for the metric dimension of the n-cube are
given in [1]. Only recently the exact asymptotic value for the metric dimension
of the n-cube, namely 2n/logzn, was found in [12] by showing that the problem
for these graphs is equivalent to a combinatorial search problem for counterfeit
coins. The metric dimension of Cayley digraphs was first studied in [6] to explore
relationships between this invariant and higher degrees of symmetry in vertex
transitive (di)graphs. Cayley digraphs have the added advantage that distances
between pairs of vertices can be described algebraically, thus lending themselves
more readily to the use of algebraic tools when computing ‘distance related’ in-
variants. In [6] sharp bounds on the metric dimension of certain types of Cayley
digraphs are presented. In this paper, we reexamine these graphs and improve
these bounds for Cayley digraphs of direct products of three cyclic groups.

First, recall the definition of a Cayley digraph (see [7]).
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Let T be a finite group and A a set of generators for I'. The Cayley digraph
of T' with generating set A, denoted by Cay(A : T'), is defined as follows:
1. The vertices of Cay(A : T") are precisely the elements of T,
2. ForuandvinT, there is an arc from u to v if and only if ug = v for some
generator g € A,

Note that for a given finite group I' and a specified set of generators A of
[, every element of the group can be expressed as a product of generators in
I'. Hence, in the digraph G = Cay(A : '), there exists a path from any vertex
to every other vertex. Thus, any Cayley digraph is strongly connected, and the
metric dimension of any Cayley digraph is thus defined. It is not difficult to see
that the metric dimension of the Cayley digraph of the cyclic group with one
generator is 1.

In [6] the following two results are established.

Theorem 1.1 Let m and n be positive integers. Let H be the Cayley digraph
for the group Zm @ Zn with generating set {(1,0), (0, 1)}. Then dim(H) =
min(m,n).

Let k > 2 be an integer. Then ef") denotes the k-vector whose i*® entry is 1
and all of whose other entries are 0.

Theorem 1.2 Let k,ny,na,...,nx be positive integers, each of which is at least
2, such thatny Sna<n3 <...< ny. LetT' =Zn, @Zn; @ ... D Zn, and
A={e1 i<k} IfG=Cay(A:T), then

k-2
k-1 < dim(G) < ni-1 + Y (i — 1).

i=1

In [6] the metric dimensions of Cayley digraphs of groups of order at most
125 that are direct products of three cyclic groups are determined. These results
show that both the upper and lower bounds of Theorem 1.2 can be attained and
support the belief that higher degrees of symmetry, in vertex transitive graphs,
have some correlation with higher metric dimension. In this paper we show that
the lower bound of Theorem 1.2 is achieved for Cayley digraphs of groups that are
products of three cyclic groups Zm,Zn,Zx where m < n < k. We also improve
the upper bound of this theorem if m = n.

2 The Converse Metric Dimension of a Graph

In order to simplify our arguments, we introduce some terminology and related
observations. A vertex v conversely resolves a pair a,b in a (strong) digraph if
d(v,a) # d(v,b). A set S of vertices is a converse resolving set for a digraph
H if every two vertices of H are conversely resolved by some vertex of S. The
smallest cardinality of a converse resolving set for H is called the converse metric
dimension or simply the converse dimension of H and is denoted by dim(H).
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The converse of a digraph H is the digraph obtained from H by reversing all
its arcs, and it is denoted by H.
Remar‘E: Aset Sisa resol‘y_'!gg set for H ‘1£ and only if S is a converse resolving
set for H. Thus dim(H) = dim(ﬁ). So if H is isomorphic to H, then dim(H) =
a-i?z(H ). Since every Cayley digraph is isomorphic to its converse, its metric
dimension and converse metric dimension are equal. This need not be the case
for all digraphs. We now describe a digraph Dy for which the metric dimension
and converse metric dimension are not equal. For some positive integer n let
V(D) = {vi,wl0 < i < n}U{wi,ri,8(l < i< n}. To describe the arcs of Dn
we begin by constructing the directed path uoui...un. Now join v; to up by
the arc (vi,uo) for all i,1 < i < n and add the ares (v, ), (us,wi), (wi,m),
(wi,8:) and (ri,ws) for 1 < i < n. Finally join every vertex z from the set
{r:,8i|1 < i < n} to every v; (0 < j < n) by the arc (z,v5). Figure 1 shows Ds.
Since N*(r:) = N*(s:) U {ws} for (1 < i < n), every resolving set for D, must
contain one of 3, 8; or w; for 1 < i < n. Hencedim(D,) > n. Since {s:|1 < i < n}
is a resolving set for Dy, it now follows that dim(D,) = n. Since every two vertices
in {%:]0 < i < n} have the same in-neighbourhood every converse resolving set
for D must contain at least n of these vertices. Similarly since r; and s; have
the same in-neighbourhood for 1 £ i < n every converse resolving set for Dy
must contain at least one vertex from each pair {ri,s:} (1 £ ¢ < n). Hence

?Zn(D,.) > 2n. Since {ri,vi|l < i< n} is a converse resolving set it follows that
dim(Dy,) = 2n.

;.1...91 ..... n/%2. .58 93

------

Figure 1: Digraph with unequal dimension and converse dimension

If W = {w1,ws,...,wn} is a converse resolving set for a digraph D that has
been assigned the given ox;:_i_er we deﬁne the it® converse co-ordinate of vertez v
with respect to W to be d:(v) = dp(v,ws) = dp(ws,v) for 1 < i < n. The
sum of the converse co-ordinates of a vertex v, W(v) = 30 ‘Js(v), is called

i=1

the converse co-ordinate sum of v with respect to W. So any two vertices having
distinct converse co-ordinate sums are conversely resolved by W. However, the
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converse need not be true.

3 The Metric Dimension of Cayley Digraphs
of Direct Products of Three Cyclic Groups

In this section we show that the upper bound of Theorem 1.2 can be improved
for the direct product of three cyclic groups.

Theorem 3.1 If D is the Cayley digroph of T’ = Zm @ Zn @ Zx where2< m <
n < k with set of generators A = {(1,0,0), (0,1,0), (0,0,1)}, then dim(D) = n.

Proof: By Theorem 1.2 we know that dim(D) > n. We now show that dim(D) <
n by showing that the converse metric dimension of D is at most n.

To describe the vertices of a converse resolving set W = {w;,wa,... yWn} we
first describe an n x 3 matrix X as follows: The (j,3) entry is 0 and the (4, 2)
entryisj—1for1 < j<n. The(j1)entryisOfor1 <j<n—m+1 and equals
J=(m-m+1)forn-m+1<j<n. Let w; be the vertex whose co-ordinates
in the Cayley digraph D are given by the i** row of X » 1 £1 < n. The matrix X
is shown below.

( 0 0 0\
0 1 0
0 2 0
0 n-m 0
1 n—m+41 0
0

X= 2 n—m+42

i-1 n-m+i-1 0

m—2 n—2 0
\ m—1 n-1 0)

Figure 2 shows the set W for the group Zs @ Zs @ Z7. (Note that the figure
shows neither all the vertices nor all the arcs of the Cayley digraph, but it shows
the 2-dimensional hyper-plane in which the resolving vertices lie and a part of all
the remaining hyper-planes that run ‘parallel’ to this hyper-plane.)

Let v = (v1,v2,v3) be a vertex of D. Then the converse co-ordinates of ¥ with
respect to W are given by:

zg(v) =v; 4 (v2—0)mod n+vs

ig(v) =v; + (v2 — 1) mod n + v

d3(v) =v1+ (v2—2) mod n + g
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Figure 2: A converse resolving set for a Cayley digraph of Zs @ Ze Y/

z,._m.n(v) = v, + (v2 — (R — m)) mod n + v3
dn—m+2(v) = (01 + (m—1)) mod m + (va+ (m — 1)) mod n +vs

‘Z,._l(v) = (vy +2) mod m + (v2 +2) mod n +va

‘c-i...(v) = (v +1) mod m + (v2 + 1) mod n +v3

Hence the converse co-ordinate sum of v with respect to W is given by:

W(v) = (n - m)vy +nvz + dm(m—1) + 3n(n - 1)

Let a = (a1,a2,a3) and b = (b1, b2, ba) be two distinct vertices of D. Suppose
that w = (0,0, 0) does not conversely resolve a and b and let y = (a1 +e2+ a3) —

(b1 + bz + b3) = 0. Suppose also that W(a) e W(b) for otherwise a and b are
conversely resolved by some point in W.

Claim 3.2 a; # b,

Proof: Suppose a; = by. Then, since W(a) = W(b), (n — m)a, +naz = (n —
m)by + nbs so that a3 = bs. But a1 + a2+ a3 = by + b2 + b3 so that a2 = bz from
which it follows that a = b, a contradiction. O

We assume that a; > b; and thusw’ = (b +1,n—m+b +1,0) € W.

Claim 3.3 w' = (b1 + 1,n — m + by +1,0) conversely resolves a and b.

Proof: Consider ‘a—(a,'w’) - .Z(b, w)y=a-bi+l)+@-n-m+h +
1)) mod n + a3 — [m — 1 + (b2 — (n — m + b1 + 1)) mod n + bs]. We have the
following cases.

Case 1 a2~ (n—m+b1+1) > 0and b2—(n—m+b1+1) > Oor az—(n—-m+bi+1) <
Oandba—(n—m+by +1) <0.
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In this case, ‘t-i-(a,w’) - g(b,w') =y—m = —m # 0 80 a and b are conversely
resolved by w’.
Case‘z_az—(n-in+b1+1)20andbz—(n,—m+b1+1) <0.
Then d(a,w') - d(bw') = —-m —n+y = —m—n 3 0 so again w’ conversely
resolves a and b.
Case‘e,_az—(n—‘ln+b1+1)<Oandbz—(n—m+b1+1)20.
Then d(a, ') - d(bw')=y+n-m=n-m#0.

It follows that W is a converse resolving set for D. O

We now turn our attention to Cayley digraphs of abelian groups that are the
direct product of three (or more) cyclic groups where some of these cyclic groups
have the same order. It follows from Theorem 1.2 that if I is the direct product of
7 copies of Z2 and one copy of Z where k > 2 and if A = {e{™ V|1 <i<r+ 1},
then the Cayley digraph Cay(A : T') has metric dimension at most r + 1. Qur
next result shows that in the case where r = 2 this upper bound is also a lower
bound.

Theorem 3.4 If D is the Cayley digraph of Zo @ Z> @ Zx, k > 2, with set of
generators A = {(1,0,0),(0,1,0),(0,0,1)}, then the metric dimension of D is 3.

Proof: Let S be a smallest resolving set. Without loss of generality, (0,0,0) is
an element of S. s

No two of the vertices in the set {(0,1,0),(1,0,0), (0,0, k—1)} are resolved by
any vertex in the k-cycle which contains (0, 0,0) except (0,0,k — 1) (i.e. vertices
of the form (0,0,1), where 0 < i < k—2). If (0,0,k — 1) is an element of S, then
S must contain at least one more vertex to resolve (0,1,0) and (1,0,0). So in
this case |S] > 3. ‘

Suppose now that (0,0,k — 1) is not an element of S. If S also contains a
vertex of the form (0,0,7) with 1 < i< k— 2 (i.e. a vertex other than (0,0,0) or
(0,0,k — 1) which is on the same k-cycle as these), then § must contain at least
one more vertex to resolve the pair of points (1,0,%) and (0,1,i). So |S| > 3.

Suppose that S contains no point of the form (0, 0,7) except the origin. Since
the vertices (0,1, 0) and (1,0, 0) are not resolved by any vertex of the form (1,1,1),
the set S must contain a vertex of the form (0,1,1) or (1,0,1). Suppose S contains
a vertex of the form (0,1,7). The only vertex of the form (0,1,i) that resolves
every pair of vertices in the set {(0,1,0),(1,0,0),(0,0,k—1)} is (0,1,k—1). Since
neither (0,0,0) nor (0,1,k — 1) resolves the pair (1,1,k — 1), (0,1,k — 2), there
must be at least one more vertex in S. Once again, |S| > 3.

Thus, the metric dimension of D is at least 3. This together with the comment
prior to the theorem says that dim(D) = 3. O

Theorem 3.5 If D is the Cayleyrdigmph f Zn@PZPZx where3 <n < k
with set of generators A = {(1,0,0),(0,1,0),(0,0,1)}, then the metric dimension
of D 1is at most k.

Proof: To show that dim(D) < k we show that D has a converse resolving set
W = {w1,ws,...,wr}. To describe W we first describe a kX 3 matrix X as follows:
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The (j, 1) entry of X is 0 and the (j,3) entry of X is j—1 for 1 < j < k. The (5,2)
entryisOfor 1<j<k-n+landequalsj—(k—n+1)fork—-n+2<j<k.
Let w; be the vertex whose co-ordinates in the Cayely digraph D are given by
the i*® row of X,1<i < k.

Then W conversely resolves G. This follows as in the proof of Theorem 3.1 O

Note that the upper bound k represents an improvement over the upper bound
m+n—1 =2n—1 given by Theorem 1.2 in the case when k < m+n—1=2n-1.
In other words, an upper bound on the metric dimension in the case where 3 <
m =n < k is min(k,2n - 1).

Theorem 3.8 If D is the Cayley digraph of T' = Zn @ Zn P Zn with set of gen-
erators A = {(1,0,0),(0,1,0),(0,0,1)}, where n > 3, then the metric dimension
of D is at most 3 if n is even and 2872 if n is odd.

Proof:

Case 1 (n even): We first define three sets Ay = {(0,i,0)[0 < i < 252},
Az = {(i,i+ %,0)|0 < i € 252}, and Aa = {(4,4,0)|} < i < n—1}, and then we
show that the union of these sets conversely resolves G. (For example, if n =6
we have A; = {(0,0,0),(0,1,0),(0,2,0)}, A2 = {(0,3,0),(1,4,0),(2,5,0)}, and
As = {(3,3,0),(4,4,0),(5,5,0)}. Figure 3 shows the case n = 6 where again we
show all the vertices in the hyperplane containing these vertices, but we do not
show all the vertices in the hyperplanes paralle!l to this one.)

Figure 3: A converse resolving set for a Cayley digraph of Z¢ ) Ze @ Zs

Let § = A1 U A2 U As. Note that |S] = 3. Let Si2 = A1 U A2. Then 512(v)
denotes the converse co-ordinate sum of v with respect to Si2. If v = (v1,v2,v3)
and vo = |{kjvs — k < 0 and 1 < k < 252}|, then
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n=2

2 == _
k=1
n~2
(n+ 2)u, (n-2n _T n(n — 1)
7 — (=5 +n :L,:lk)+ 5 +nvs
22
n(n—1)
= "”1"‘""3"'7""',;""‘—2'-

Let a = (ai1,a2,a3) and b = (by,b2,b3) be elements of I' with a # b. If
§1—2(a) # ‘-571-2(6) then S is a converse resolving set for D for teiax_l at lezlsi one
element in A;UA2 conversely resolves the pair a,b. So we assume S12(a) = S12(b).
If (0,0, 0) conversely resolves the pair a, b, then S is a converse resolving set. We
assume this is not the case so that 1 + a2 + a3z = by + bz + ba.

Claim 3.7 a1 # b

Proof: The proof is similar to that of Claim 3.2. If a; = b; then, since S_u(a) =

:ﬁ(b) we have na; +nas = nb, +nbs and a3z = bs. But a1 +az+as = by +bo+bs
so that a2 = bz and a = b, a contradiction. O

So we assume that a; > b;.

Let ¥ = (a1 + a2 +a3) — (b1 + b2 +b3) = 0. Since a; > by, we have by +1 € Zn
and either w = (b1 +1,b1 + 1,0) or @’ = (b1 + 1,1 + 1 +n/2,0) belongs to S. If
az 2 bz, then that vertex among these two which belongs to S conversely resolves
a and b. We now assume az < b2. We consider two subcases.

Subcase 1.1: a2 < b2 and 0 < az+1 < n/2-1. In this case, w” = (0,a2+1,0) €
S conversely resolves @ and b since d(w”,a) — d(w”’,b) =y+n=n#0.
Subcase 1.2: a2 < bz andn/2 < a2+1 <n—1. Suppose (a2 +1,a2+1,0) € §
does not conversely resolve a and b. Then 0= (a1 — (a2 +1)) modn+n—-1+
az — ((br — (a2 + 1)) mod n + (b2 — (a2 + 1)) + b3). So @y — (a2 +1) > 0 and
(b1 —(a2+1)) < 0. Sincen/2<a2+1<n-1,wehave0 < az+1-n/2 <
n/2—1. Thus w” = (a2 + 1 — n/2,a2 +1,0) € S and w" resolves a and b unless
by — (a2 +1-n/2) <0 and a; — (a2 +1 —n/2) > 0. In this case, (az,a2,0) € S
sincen/2—1< a2 < n—2and if az = n/2—1, then b) < 0, a contradiction. The
point (a2, az,0) resolves a and b since (a1 — az) mod n + a3 — ((by — az) mod n +
(b2 —a2) modn+b3) =y —n=-n£0.

Case 2 (n 0dd): Let S = A,UA2UA3UA; where A, = {(0,0,0),(0,1,0),...,(0, 252,0)},
Az = {(0, %‘_lso)}: Az = {(1,1‘-;—1,0),(i,i+ %:0)'2 i< &;—1}) and Aq =
{(25,251,0),(,4,0)| 242 < i < n—1}. (For example, if n = 7 we have A; =
{(0'0’0)) (0,1,0), (0' 2»0)}: Ay = {(0v4’0)}y Az = {(173x 0)’(2)5)0)1(3’630)},
and Aq = {(4,3,0),(5,5,0),(6,6,0)}.) Note that in general, |§] = 3221 Let
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S123 = Ay U A2 U Az. Then ‘571;(0) denotes the converse co-ordinate sum of v
with respect to Si23. Let v, = |{klv1 — k < 0,1 < k < 232 }|. Then we have

n-—1
7
— 1 -1
5123(”) = .(%2”_1 + Z(vl p— k) + n_(tlz——) +nv3
k=1
n=1
(n+v , (n=1un Py n(n—1)
= o — k 4 ——z
o) + 2 + Yn kgl + ) + nvs
n=1
-
-1
= nui+nv+rn— Y, k+&2—-—).
k=1

Let @ = (a1,az,as) and b = (b, ba, bs) be distinct vertices in G with S123(a) =
:S—:‘Tz—:;(b). As in the even case, we may assume that ay > bi. (The proof that
a1 # by is similar to that of Claim 3.7.) Let y = (a1 +a2+a3) —(by +b2+b3) =0.

Ifaz > bo and if by +1 # 1 and by + 1 # (n + 1)/2, then one of w1 =
(br+1,b1 +1,0) or wa = (b1 +1,b1 + 1+ (n—1)/2,0) belongs to 5 and conversely
resolves @ and b. I by +1 =1 or b1 +1 = (n+1)/2, then w3 = (b1 +1,(n—1)/2,0)
belongs to S and if az > b2, then wa conversely resolves a and b. We now assume
a2 < by and consider several subcases:

Subcase 2.1 a2 < by and either 0 < a2 +1 < (n—-3)/2oraz+1=(n+1)/2.
Then w” = (0,a2 + 1,0) € S and as in the even case, w" conversely resolves a
and b.

Subcase 2.2 a2 < bz and (n +3)/2 < az +1 < n—1. As in the even case,
if (a2 + 1,a2 +1,0) € S does not resolve a and b, then a; — (a2 +1) > 0 and
by — (a2 +1) < 0. Also, w” = (a2 + 1 - (n—1)/2,a2+1),0) € S. If w” does not
conversely resolve a and b, then as in the even case (a2,a2,0) conversely resolves
a and b.

Subcase 2.3 a2 < ba and az + 1 = (n - 1)/2, ie,, az = (n - 3)/2. If b2 #
(n — 1)/2, then since 252 = @2 < bz we have b2 2 24l In this case w” =
(0, 2£L,0) conversely resolves a and b since d(w"”, @) — dw”,b)=y+n=n#0.
If b2 = (n — 1)/2, then (1, 25%,0) conversely resolves a and b unless (b1 —1) <0
(and (a1 — 1) > 0). So we assume by = 0. Suppose that a1 2 (n +1)/2.
Then w” = (251,n — 1,0) € As C S provided n > 3 (since this is the vertex
(,i + 25%,0) with i = (n — 1)/2). Also w” conversely resolves a and b since
d(w",a)—d(w",b) = y—2n # 0. Finally, ifa; < (n+1)/2, the vertex (2}, 23*,0)
conversely resolves a and b since d(w",a) — d(w”,b) =y+n=n#0.

Subcase 2.4 a2 < bz and az+1 = (n+3)/2. In this case the vertex (2§*, 25%,0),
which belongs to S, will conversely resolve a and b. O

Next we determine lower bounds for the metric dimension of Cayley digraphs
of abelian groups of multiple copies of Z. Let ' be the group that is the direct
product of k > 2 copies of the cyclic group Zs, n 2> 2. We denote this by (Z.).
Let A = {e)1 <i < n}. Let D = Cay(A : ). The (k — 1)-dimensional
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hyperplane with respect to the i** coordinate whose i** coordinate equals a is
denoted by X;(a). So X:i(a) = {(z1,22,..-,2x) € (Z,)*| =i =a}. Then

Xi(a) N X;(b) = {(z1,Z2,...,2x) € (Zn)*| zi=0 and z; = b}.
Moreover, the complement of X;(e) U X;(b) is the set
Xi(@) UX;(®) = {(1,%2,...,2x) € (Zn)*| i #a and z; # b}.

If k = 2, then dim(D) > 2. We now assume k > 3. Let A; = (z1,72,...,Zk)
and A2 = (y1,¥2,...,¥x) be vertices of D that agree on all coordinates except on
the i** and j** coordinates. So z; = wt for ! # 4,5. Moreover, we assume that
zi=a+l,z;=bandyi=a,y; =b+1forsome0<a<n-—-land0<b<n-1
in Zn. The next result describes the set of vertices that can resolve 4; and A3
and will be used to establish a lower bound for the metric dimension of D.

Proposition 3.8 Let Ay and A2 be defined as above. Then a vertez w of D re-
solves A1 and Az if and only if w does not belong to (Xi(a)NX;(b))UX;(a) U X;(b).

Proof: Suppose first that w = (wy, w2, ..., wik) € Xi(a) N X;(b). Then w; = a
and w; = b and so d(A1,w) = Y ic (12, k) (i) (Wt —T) mod 0+ (wi - (a +
1)) modn + (w; —b)modn = 245(1.2,....1:)'-(;,5)(“’1 —zi)modn +n—1 and
d(A2,w) = Y12, k) -y Wt —w) mod n + (wi —a)modn + (w; - (b+
1)modn =73 c(,5 x-(jy(@r—w)modn +n—1. Sincey =z for | #i,j
it follows that d(A;,w) = d(A2,w). Thus A; and A» are not resolved by any
vertex in Xi(a) N X;(b).

Suppose now that w = (w1, wz,...,wn) € Xi(a) U X;(b). Then w; # a and
w; # b. We consider three cases:

Case la+1 < ws <n-1landb+1 < wj £ n-1. Then d(A;,w)
Zle(l.?.....k)—(i,j)(w‘ —z)modn + w;i - (@ + 1)+ w; — b and d(A2,w)
Y12, k)~ 45y (Wt —m) mod . + wi — a4+ w; — (b+1). Hence d(A;,w) =
d(Az,‘w).

Case 20 < wi < @aand 0 < wj <b Then d(A1,w) = Y19, k) (i) (W1 =
zi) mod n +n+w; — (a+1)+n+wj—band d(Az,w) = Yte(1.2, k) —Lig) (W1 —
w)modn +n+wi—a+n+w;— (b+1). Once again d(A1, w) = d(Az, w).
Case30Swi<aandb+l<wj<n-lore+l<w;<n—1and0< w;<b.
We prove this only for the first of these two subcases as the second one fol-
lows by an identical argument. In that case d(A1,w) = Fieq12,... k) — i) (W1 =
Zymodn +n+w; —(a+1)+w; —b and d(Az,w) = 2le(1.2,....k} - (ing) (W2 =
w)modn +n+w; —a+wj— (b+1). Once again d(A;,w) = d(A2, w).

For the converse suppose w = (w1, ws,...,wk) € Xi(a) — X;(b). (The case
where w € X;(b)~ X;(a) can be argued similarly.) Then w; = a and w; # b. Thus
d(A,w) = 2,6“‘2____',:}_“.].) (w;—zt) mod n +(a—(a+1)) mod n+(w;—b) mod n
and d(Az,w) = 2ie1.2,. k(i) (Wt —w)mod n 4 (w; — (b+ 1)) mod n. If
w; 2b+1, then d(Ay,w) = T (19 pj-tejyWt —z) modn +n—-14+wj—b
and d(Az,w) = 3 e 019, k) (i) (W —y1) mod n +w; —b—1; otherwise, w; < b
and d(A1,w) = Y19, k)-ijy(Wi —T)modn +n—1+n+w; —band
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d(A2,w) = Cicn12,... k)~ iy (Wt —y) modn +n+w; —b—1. In either case
d(Ar,w) # d(A2,w

Remark: By Proposition 3.8 we know that any two out-neighbours of 0 =
(0,0,...,0) are resolved precisely by any vertex in (X:(0) — X;(0)) U (X;(0) —
X:(0)) where i and j are the co-ordinates in which the two out-neighbours differ
from those in 0. By symmetry it follows that if A; and Az are any two distinct
out-neighbours of a vertex B = (b1, b2,...,bx) in D, say A1 and A2 differ from
B in precisely coordinates i and j, respectively, then A; and Az are resolved
precisely by any vertex in (Xi(b:) — X;{b;)) U (X;j(b;) — Xi(bs)). Note that this
holds even if b; or b; is n — 1. 'We now establish a lower bound on the metric
dimension of the Cayley digraph D described prior to Proposition 3.8

Proposition 3.9 Let D be the Cayley digraph of Proposition 3.8. If W is a
resolving set for D, then \W| > 1 + logak.

Proof: By symmetry we may assume that wo = (0,0,...,0) € W. Then wo
does not resolve any pair of out-neighbours of wo. So W — {wo} is non empty
and contains some vertex wy that resolves some pair of out-neighbours of wo. Let
51(0) be the collection of co-ordinates of w; that equal 0 and 5 (0) the collection
of all co-ordinates of w; that are not 0. (Then w; resolves |S1(0)| - [S1(0)|/2
pairs of out-neighbours of wo, namely those that have a 1 in any co-ordinate in
S51(0) and those having a 1 in any co-ordinate in 51(0).) One of S1(0) and 51(0)
contains at least k/2 elements. Let T} be that one of these two sets that has at
least k/2 elements. If k = 3, then |[W| > 1 + [logak] = 3. Suppose now that
k> 4. Then |Ti| 2 2. Thus w; does not resolve any two distinct out-neighbours
of wo that have a 1 in a co-ordinate in Ti. So W — {wo, w1} must contain a
vertex wz that resolves some pair of out-neighbours of wo each with a 1 in a
co-ordinate in 7j. Let S2(0) be the collection of co-ordinates of w; that are equal
to 0 and S52(0) = Ty — S2(0). (Then w> resolves |S2(0)| - [S2(0)|/2 pairs of out-
neighbours of wo that were not resolved by either wo nor wy.) Again at least one
of S2(0) or S2(0) contains at least |T1|/2 elements. Let T2 be the one of these
two sets that has at least |71|/2 elements. If T has only one element we stop;
otherwise, we continue in this manner constructing a strictly decreasing chain of
sets T} O T3 D ... and a sequence of vertices wg,w,ws,... of elements of W
such that no vertex in {wo,wn,...,w;} resolves any pair of out-neighbours of wo
with a 1 in a co-ordinate in Ti4) for i = 0,1,.... By the choice of the T}'s this
chain must contain at least logok elements. The result now follows. O

Corollary 3.10 If D is the Cayley digraph of Proposition 3.8, then dim(D) >
maz(n,1 + [logak]).

Proof: This follows immediately from Theorem 1.2 and Proposition 3.9. O

4 The Metric Dimension of Cayley Digraphs
of Abelian Groups

The following result was established in [6].
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a converse resolving set for D (and hence a resolving set) cannot lie in a (k — 2)-
dimensional hyperplane with respect to two co-ordinates. Suppose W = {u; =
(w1, w2i,. .., wki)|]l <1 < d} is a converse resolving set for D that lies in some
(k — 2)-dimensional hyperplane with respect to co-ordinates ! and m. We as-
sume n; < nm. We may also assume that co-ordinates | and m for every
vertex in W equal 0. Let = be the vertex whose I** co-ordinate is 1 and all
of whose other co-ordinates are 0. Let y be the vertex of D whose mt* co-
ordinate is nm — 1t + 1 and all of whose other co-ordinates are 0. Then d(w;,z) =
wiitwa+. .. +wg-1)i+ (- D4wisr)it. . .+ Wm-1)i +0+Wimp1)i+- - - +Wny,
and d(w;,y) = wii + wai + ... + W1y + 0+ wWepr)i + .-+ Wem—1)i + (Rem —
(Nm — 7 +1)) + Wim1)i + - - . Wny, . So d(wi, z) = d(wi,y) for all w; € W. So W
does not conversely resolve D. Hence D has no resolving set that is contained in
a (k — 2)- dimensional hyperplane with respect to any two of its co-ordinates.

Acknowledgement: We thank the anonymous referee for the useful comments
and careful reading of this manuscript.
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