On Super Edge-Magic Graphs

SUH-RYUNG KIM*

Department of Mathematics Education Seoul National University, Seoul 151-742, Korea

JI YEON PARK[†]

Department of Mathematics Kyung Hee University, Seoul 130-701, Korea

Abstract

A graph G=(V,E) is said to be super edge-magic if there exists a one-to-one correspondence λ from $V \cup E$ onto $\{1,2,3,\ldots,|V|+|E|\}$ such that $\lambda(V)=\{1,2,\ldots,|V|\}$ and $\lambda(x)+\lambda(xy)+\lambda(y)$ is constant for every edge xy. In this paper, given a positive integer k ($k\geq 6$) we use the partitions of k having three distinct parts to construct infinitely many super edge-magic graphs without isolated vertices with edge magic number k. Especially we use this method to find graphs with the maximum number of edges among the super edge-magic graphs with ν vertices. In addition, we investigate whether or not some interesting families of graphs are super edge-magic.

Key words. Edge-magic labeling, Super edge-magic graphs, Magic number

1 Introduction

Throughout this paper, we assume that all graphs are finite, simple and undirected. A graph G has vertex set V(G) and edge set E(G) and we let $|V(G)| = \nu(G)$ and $|E(G)| = \varepsilon(G)$. A general reference for graph theoretic notions is West [4].

Given a graph G, let V = V(G), E = E(G), $\nu(G) = \nu$, and $\epsilon(G) = \epsilon$. A one-to-one correspondence λ from $V \cup E$ onto the integers $\{1, 2, \ldots, \nu + \epsilon\}$ is an *edge-magic labeling* if there is a constant k so that for any edge xy,

$$\lambda(x) + \lambda(xy) + \lambda(y) = k.$$

^{*}This work was supported by the Com2MaC-SRC/ERC program of MOST/KOSEF (grant # R11-1999-054)

[†]Corresponding author. email address: jypark0902@khu.ac.kr

The constant k is called the edge magic number for λ . An edge-magic labeling λ is called super edge-magic if $\lambda(V) = \{1, 2, \dots, \nu\}$ and $\lambda(E) = \{\nu + 1, \nu + 2, \dots, \nu + \varepsilon\}$. A graph G is called edge-magic (resp. super edge-magic) if there exists an edge-magic (resp. super edge-magic) labeling of G.

In this paper, given a positive integer k ($k \ge 6$) we use the partitions of k having three distinct parts to construct infinitely many super edge-magic graphs with edge magic number k. Then we give an upper bound for the number of edges of a super edge-magic graph with edge magic number k in terms of k. We show that this upper bound is sharp in infinitely many cases by constructing a super edge-magic graph with 2n-3 edges and edge magic number 3n for every $n \ge 2$. Also, we investigate whether several noteworthy families of graphs are super edge-magic or not. Especially, we focus on an (n,t)-kite consisting of a cycle of length n with a t-edge path attached to one vertex and $K_2 \cup C_n$ motivated by Wallis [3] questions to characterize edge-magic graphs among these graphs. In fact, we completely characterize super edge-magic $K_2 \cup C_n$. In addition, we show that a graph derived from a star by adding a pendant edge to each vertex of degree 1 is super edge-magic.

2 Constructing super edge-magic graphs without isolated vertices by using a partition method

We observe that given a super edge-magic graph G without isolated vertices and its super edge-magic labeling λ with the edge magic number k, $\{\{\lambda(x),\lambda(xy),\lambda(y)\}: xy\in E(G)\}$ is a set of the partitions of k with three distinct parts satisfying the following properties:

- 1. Their union forms $\{1, 2, ..., m\}$ for some positive integer m;
- 2. The maximum number of each partition belongs to only that partition;
- 3. The maximum numbers from each partition are consecutive.

Conversely, for a positive integer k ($k \ge 6$), if there is a set of ϵ partitions of k with three distinct parts satisfying the above three properties we can construct a super edge-magic graph G without isolated vertices with edge magic number k as follows: Then their union forms $\{1, 2, \ldots, m\}$ for some positive integer m by Property 1. Then $m - \epsilon + 1, m - \epsilon + 2, \ldots, m$ are the maximum numbers from each partition by properties 2 and 3. Let

$$V(G) = \{1, 2, \ldots, m - \epsilon\}$$

Figure 1: A super edge-magic graph constructed from parts $\{1,2,9\}$, $\{1,3,8\}$, $\{1,4,7\}$, $\{3,4,5\}$, $\{2,4,6\}$.

and define the edge set by vertices i and j being adjacent if i and j are in the same partition.

We illustrate the above method by examples: Take k = 12. Then the partitions of 12 having three distinct parts are as follows:

$$12 = 1 + 2 + 9$$

$$= 1 + 3 + 8$$

$$= 1 + 4 + 7$$

$$= 1 + 5 + 6$$

$$= 2 + 3 + 7$$

$$= 2 + 4 + 6$$

$$= 3 + 4 + 5.$$

We may take parts $\{1,2,9\}$, $\{1,3,8\}$, $\{1,4,7\}$, $\{1,5,6\}$ that satisfy the above properties. From these, we construct a super edge-magic graph as follows: the vertex set is $\{1,2,3,4,5\}$. The edge set is $\{\{1,2\},\{1,3\},\{1,4\},\{1,5\}\}$. Thus, we obtain the graph star $K_{1,4}$ with central vertex labeled 1. Parts $\{1,2,9\}$, $\{1,3,8\}$, $\{1,4,7\}$, $\{2,4,6\}$, $\{3,4,5\}$ also satisfy the above properties and we obtain the super edge-magic graph given in Figure 1. We note that 7=1+2+4 is the only partition with three distinct parts and therefore there is no super edge-magic graph without isolated vertices with edge magic number 7. In fact, we may show that for every integer $k \geq 6$ other than 7, there is a super edge-magic graph without isolated vertices with edge magic number k. For, we may construct a set of

partitions of k satisfying the above three conditions: For k even $(k \ge 6)$,

$$k = 1+2+(k-3)$$

$$= 1+3+(k-4)$$

$$\vdots$$

$$= 1+(i-1)+(k-i)$$

$$\vdots$$

$$= 1+(k/2-1)+k/2$$

For k odd $(k \ge 9)$,

$$k = 1+2+(k-3)$$

$$= 1+3+(k-4)$$

$$\vdots$$

$$= 1+(i-1)+(k-i)$$

$$\vdots$$

$$= 1+(k-3)/2+(k+1)/2$$

$$= 2+(k-3)/2+(k-1)/2$$

As mentioned before, Enomoto et al. [1] showed that the following:

Lemma 1 (Enomoto et al. [1]) If a nontrivial graph G is super edgemagic, then $\varepsilon \leq 2\nu - 3$.

Their lemma is significant in the sense that it eliminates huge number of graphs from being super edge-magic graphs. It is interesting to find families of super edge-magic graphs that satisfy $\varepsilon=2\nu-3$ as the super edge-magic graphs satisfying this equality have the maximum number of edges among the super edge-magic graphs with ν vertices.

The following proposition gives an upper bound for the number of edges of a super edge-magic graph with edge magic number k in terms of k.

Proposition 2 Given k, let G be a super edge-magic graph with edge magic number k. Then

$$\epsilon \leq \frac{2}{3}k - 3.$$

proof. Since k-3 in partition 1+2+(k-3) is the largest possible part, it is true that $k-3 \ge \nu + \epsilon$ or $\nu \le k - \epsilon - 3$. From this inequality and the inequality in Lemma 1, we can derive the inequality in the proposition. \square

The bound given in Proposition 2 is also sharp. The graph given in Figure 1 has edge magic number 12 and 5 edges, which satisfies both equalities in

Lemma 1 and Proposition 2. In fact, we may show that the both bounds are sharp if an edge magic number is a multiple of 3 (it should be a multiple of 3 in order for the second inequality to be sharp). For k = 3n, define the following partitions:

$$k = 1+2+(3n-3)$$

$$= 1+3+(3n-4)$$

$$= 2+3+(3n-5)$$

$$= 2+4+(3n-6)$$

$$= \vdots$$

$$= (3j-1)/2+(3j+1)/2+(3n-3j)$$

$$= (3j-1)/2+(3j+3)/2+(3n-3j-1)$$

$$= (3j+1)/2+(3j+3)/2+(3n-3j-3)$$

$$= (3j+1)/2+(3j+5)/2+(3n-3j-3)$$

$$= (3j+3)/2+(3j+5)/2+(3n-3j-4)$$

$$= (3j+3)/2+(3j+7)/2+(3n-3j-5)$$

$$= (3j+3)/2+(3j+7)/2+(3n-3j-5)$$

$$= \vdots$$

$$= (n-2)+n+(n+2)$$

$$= (n-1)+n+(n+1)$$

where j is an odd number satisfying $1 \le j \le (2n-1)/3$.

Then it can easily be checked that this collection of partitions satisfies properties 1, 2, 3 and therefore it determines the following super edgemagic graph denoted by BT_n with edge magic number k:

$$V(BT_n) = \{v_1, v_2, \ldots, v_n\};$$

$$E(BT_n) = \{v_i v_{i+1} \mid 1 \le i \le n-1\} \cup \{v_{2i-1} v_{2i+1} \mid 1 \le i \le \left\lfloor \frac{n-1}{2} \right\rfloor \}$$

$$\cup \{v_{2i} v_{2i+2} \mid 1 \le i \le \left\lfloor \frac{n-2}{2} \right\rfloor \}.$$

Since the number of edges of BT_n is 2n-3, the upper bound given in Proposition 2 is achieved for BT_n . (The graph given in Figure 1 is BT_4 .) The labeling $\lambda: V \cup E \rightarrow \{1, 2, ..., 3n-3\}$ determined by the above collection of partitions is as follows:

$$\lambda(v_i) = i, \text{ for } 1 \le i \le n;$$

$$\lambda(v_i v_{i+1}) = 3n - (2i+1), \text{ for } 1 \le i \le n-1;$$

$$\lambda(v_{2i-1} v_{2i+1}) = 3n - 4i, \text{ for } 1 \le i \le \left\lfloor \frac{n-1}{2} \right\rfloor;$$

$$\lambda(v_{2i} v_{2i+2}) = 3n - (4i+2), \text{ for } 1 \le i \le \left\lfloor \frac{n-2}{2} \right\rfloor.$$

Now we have the following proposition:

Proposition 3 For every $n \geq 2$, the graph BT_n is super edge-magic with the maximum number of edges among the graphs with n vertices.

3 Labeling some interesting families of super edge-magic graphs

In Section 2, we suggested a way to construct infinitely many super edgemagic graphs. In this section, we take some interesting families of graphs to see whether or not they are super edge-magic.

3.1 (n, t)-kite

An (n,t)-kite consists of a cycle of length n with a t-edge path (the tail) attached to one vertex. Wallis [3] posed a problem to investigate the edge-magic properties of (n,t)-kites for general t. We give a necessary condition for an (n,t)-kite being super edge-magic as follows:

Theorem 4 Suppose that the graph (n,t)-kite is super edge-magic with an edge magic number k and a super edge-magic labeling λ . Let v be the vertex of degree 3 and w be the pendant vertex. Then the following are true:

- 1. n and t must have the same parity;
- 2. The edge magic number is either $k = \frac{5(n+t)}{2} + 1$ and $\lambda(v) \lambda(w) = -\frac{n+t}{2}$ or $k = \frac{5(n+t)}{2} + 2$ and $\lambda(v) \lambda(w) = \frac{n+t}{2}$.

Proof. Let G be a graph of (n, t)-kite and let $v, v_1, \dots, v_{n-1}, v$ be a vertex sequence of C_n . Let $\lambda(v) = \alpha$ and $\lambda(w) = \beta$. Then

$$\begin{split} k(n+t) &= \sum_{xy \in E(G)} \left[\lambda(x) + \lambda(xy) + \lambda(y) \right] \\ &= 2 \sum_{x \in V(G)} \lambda(x) + \lambda(v) - \lambda(w) + \sum_{xy \in E(G)} \lambda(xy) \\ &= \frac{2(n+t)(n+t+1)}{2} + \alpha - \beta + \frac{(n+t)[(n+t+1) + (2n+2t)]}{2} \\ &= \frac{(n+t)[5(n+t)+3]}{2} + \alpha - \beta. \end{split}$$

This implies that $k = \frac{5(n+t)+3}{2} + \frac{\alpha-\beta}{n+t}$ is an integer. Since $0 < |\frac{\alpha-\beta}{n+t}| < 1$, it is true that $|\frac{\alpha-\beta}{n+t}| = \frac{1}{2}$ and that n and t must have the same parity.

Furthermore,
$$k = \frac{5(n+t)}{2} + 1$$
 if $\lambda(v) - \lambda(w) = -\frac{n+t}{2}$, and $k = \frac{5(n+t)}{2} + 2$ if $\lambda(v) - \lambda(w) = \frac{n+t}{2}$.

It has been shown (Theorem 2.23 in [3]) that an (n, 1)-kite is edge-magic. We show that it is also super edge-magic if n is odd and that the converse is also true.

Theorem 5 An (n,1)-kite is super edge-magic if and only if n is odd.

Proof. The 'only if' part immediately follows from Theorem 4. To show the 'if' part, let n = 2m + 1 for a nonnegative integer m. We define a labeling $\lambda: V \cup E \to \{1, 2, 3, \dots, 4m + 4\}$ as follows:

$$\lambda(v_i) = \left\{ egin{array}{ll} i/2+1 & ext{if i is even;} \\ m+2+(i+1)/2 & ext{if i is odd,} \end{array}
ight. \ \lambda(v) = 1; \ \lambda(w) = m+2; \ \lambda(vw) = 4m+3; \ \lambda(vv_{n-1}) = 4m+4; \ \lambda(vv_1) = 4m+2; \ \lambda(v_iv_{i+1}) = 4m+2-i ext{ for } 1 \leq i \leq n-2. \end{array}$$

It is easily seen that λ is a super edge-magic labeling of an (n, 1)-kite with the edge magic number 5m + 6. Hence, an (n, 1)-kite is super edge-magic graph.

Park et al. [2] showed that (n, 2)-kite is super edge-magic for every positive even number n. The following theorem shows that (n, 3)-kite might not be super edge-magic even if n is odd.

Theorem 6 A (3,3)-kite is not super edge-magic.

Proof. Suppose that a (3,3)-kite denoted by G is a super edge-magic graph with an edge magic number k. Then there is a labelling λ from $V(G) \cup E(G)$ to $\{1,2,\ldots,12\}$. Let v be the vertex of degree 3 and w be the pendant. In addition, let $E(G) = \{e_1,e_2,e_3,e_4,e_5,e_6\}$, $\lambda(v) = \alpha$, and $\lambda(w) = \beta$. Then, by Theorem 4 either k=16 and $\alpha-\beta=-3$ or k=17 and $\alpha-\beta=3$. Suppose that k=16 and $\alpha-\beta=-3$. Then for each edge label, the possible labels of its endpoints are as follows:

From Table 1, we know that the labels of the endpoints of e_6 are 1 and 3. For convenience, we denote by $\Lambda(e_i)$ the set of labels for endpoints of edge e_i . There are exactly three cases to consider: (i) $\alpha = 1$ and $\beta = 4$; (ii) $\alpha = 2$ and $\beta = 5$; (iii) $\alpha = 3$ and $\beta = 6$. If $\alpha = 1$ and $\beta = 4$, then $\Lambda(e_5) \neq \{1,4\}$ since v and w are not adjacent. Thus $\Lambda(e_5) = \{2,3\}$. Since

Edge	e_1	e_2	e_3	e_4	e_5	e_6
Edge label	7	8	9	10	11	12
Possible sets	{3,6}	$\{2, 6\}$	$\{1, 6\}$	$\{1,5\}$	$\{1,4\}$	$\{1,3\}$
of labels of	$\{4,5\}$	${3,5}$	$\{2, 5\}$	$\{2, 4\}$	$\{2,3\}$	
endpoints			$\{3,4\}$			

Table 1: Possible labels for k = 16

3 is used twice for a vertex label, $\Lambda(e_1) = \{4,5\}$ and $\Lambda(e_2) = \{2,6\}$. Since 2 is used twice, $\Lambda(e_3) = \{1,6\}$ and $\Lambda(e_4) = \{1,5\}$. From the fact that $\Lambda(e_1) = \{4,5\}$ and $\Lambda(e_4) = \{1,5\}$ have a common element, we know that edges e_1 and e_4 are adjacent and that the vertex with label 1 and that with label 4 are at distance two. Now we reach a contradiction. If $\alpha = 2$ and $\beta = 5$, then $\Lambda(e_3) \neq \{2,5\}$ since v and w are not adjacent. Since 2 is a label for v of degree 3, 2 must be used three times. Thus $\Lambda(e_2) = \{2, 6\}$, $\Lambda(e_4) = \{2,4\}$, and $\Lambda(e_5) = \{2,3\}$. Since 3 is used twice, $\Lambda(e_1) = \{4,5\}$. Then edges e_1 and e_4 are adjacent, and so the vertex with label 2 and that with label 5 are at distance two. This is an contradiction again. If $\alpha = 3$ and $\beta = 6$, then $\Lambda(e_1) \neq \{3,6\}$ and so $\Lambda(e_1) = \{4,5\}$. Since label 6 must be used once, either $\Lambda(e_2) = \{2,6\}$ or $\Lambda(e_3) = \{1,6\}$. If $\Lambda(e_3) = \{1,6\}$, then e3 and e6 are adjacent, and so the vertex with label 3 and that with label 6 are at distance two, which is a contradiction. If $\Lambda(e_2) = \{2, 6\}$, then $\Lambda(e_3)=\{3,4\}$ and $\Lambda(e_5)=\{2,3\}$ since 3 must be used three times. Then edges e_2 and e_5 are adjacent. Thus the vertex with label 3 and that with label 6 are at distance two and we reach a contradiction. Thus it is impossible that k = 16 and $\alpha - \beta = -3$.

We suppose that k=17 and $\alpha-\beta=3$. Then for each edge label, the possible labels of its endpoints are as follows:

Edge	e_1	e_2	e_3	e4	e_5	e_6
Edge label	7	8	9	10	11	12
$\Lambda(e_i)$	{4,6}	{3,6} {4,5}	$\{2,6\}$ $\{3,5\}$	{1,6} {2,5} {3,4}	$\{1,5\}$ $\{2,4\}$	$\{1,4\}$ $\{2,3\}$

Table 2: Possible labels for k = 17

From Table 2, we know that $\Lambda(e_1) = \{4,6\}$. There are exactly three cases to consider: (i) $\alpha = 4$ and $\beta = 1$; (ii) $\alpha = 5$ and $\beta = 2$; (iii) $\alpha = 6$ and $\beta = 3$. If $\alpha = 4$ and $\beta = 1$, then $\Lambda(e_6) \neq \{1,4\}$ and so $\Lambda(e_6) = \{2,3\}$. Since 1 must be used once, either $\Lambda(e_4) = \{1,6\}$ or $\Lambda(e_5) = \{1,5\}$. If $\Lambda(e_4) = \{1,6\}$, then

Figure 2: A super edge-magic labeling of (5,3)-kite.

edges e_1 and e_4 are adjacent, and so the vertex with label 1 and that with label 4 are at distance two. This is a contradiction. Thus $\Lambda(e_5) = \{1, 5\}$. Since 4 is used three times, $\Lambda(e_2) = \{4, 5\}$, $\Lambda(e_4) = \{3, 4\}$. Then edges e_2 and e_5 are adjacent, and so so the vertex with label 1 and that with label 4 are at distance two. Thus we reach a contradiction. If $\alpha = 5$ and $\beta = 2$, then $\Lambda(e_4) \neq \{2, 5\}$. Since 5 must be used three times, $\Lambda(e_2) = \{4, 5\}$, $\Lambda(e_3) = \{3, 5\}$, and $\Lambda(e_5) = \{1, 5\}$. Since 4 is used twice, $\Lambda(e_6) = \{2, 3\}$. Then edges e_3 and e_6 are adjacent, and so vertex with label 2 and that with label 5 are at distance two. Thus we reach a contradiction. If $\alpha = 6$ and $\beta = 3$, then $\Lambda(e_2) \neq \{3, 6\}$ and so $\Lambda(e_2) = \{4, 5\}$. Since 6 must be used three times, $\Lambda(e_3) = \{2, 6\}$ and $\Lambda(e_4) = \{1, 6\}$. Since 4 is used twice, $\Lambda(e_6) = \{2, 3\}$. Then edges e_3 and e_6 are adjacent, and so the vertex with label 3 and that with label 6 are at distance two. Thus we reach a contradiction. Hence it is impossible that k = 17 and $\alpha - \beta = 3$. This completes the proof.

Except the (3,3)-kite, an (n,3)-kite is super edge-magic as long as n is odd:

Theorem 7 An (n,3)-kite is super edge-magic if and only if n is an odd integer greater than or equal to 5.

Proof. The 'only if' part follows from Theorems 4 and 6. To show the 'if' part, let $v_0, v_1, \ldots, v_{n-1}, v_0$ be a vertex sequence of C_n with the tail yxw attached to v_0 . Since n is an odd integer greater than or equal to 5, either n = 4m + 1 or 4m + 3 for a positive integer m. First suppose that n = 4m + 1 for a positive integer m. A labeling of (5,3)-kite is given in Figure 2.

For $m \geq 2$, we define a labeling $\lambda : V \cup E \rightarrow \{1, 2, 3, \dots, 8m + 8\}$ as follows:

$$\lambda(v_i) = \begin{cases} i/2+1 & \text{if } i=0,2,\dots,2m+2;\\ 2m+6+(i-1)/2 & \text{if } i=1,3,\dots,2m-3;\\ m+3 & \text{if } i=2m-1;\\ 3m+5 & \text{if } i=2m+1;\\ (i-1)/2+3 & \text{if } i=2m+3,2m+5,\dots,4m-1;\\ i/2+2m+4 & \text{if } i=2m+4,2m+6,\dots,4m; \end{cases}$$

$$\lambda(y) = 2m+4;$$

$$\lambda(x) = 2m+5;$$

$$\lambda(w) = 2m+3;$$

$$\lambda(w) = 2m+3;$$

$$\delta(w) = 2m+3$$

It is easily seen that λ is a super edge-magic labeling of (n,3)-kite with the edge magic number 10m + 11.

Now suppose that n=4m+3. We define a labeling $\lambda: V \cup E \rightarrow \{1,2,3,\ldots,8m+12\}$ as follows:

$$\lambda(v_i) = \begin{cases} i/2 + m & \text{if } i = 0, 2, \dots, 2m + 2; \\ 3m + 6 + (i - 1)/2 & \text{if } i = 1, 3, \dots, 2m + 1; \\ 2m + 2 & \text{if } i = 2m + 3; \\ i/2 + m + 1 & \text{if } i = 2m + 4, 2m + 6, \dots, 4m + 2; \\ (i - 3)/2 - m & \text{if } i = 2m + 5, 2m + 7, \dots, 4m + 1; \end{cases}$$

$$\lambda(y) = 3m + 4;$$

$$\lambda(x) = 3m + 5;$$

$$\lambda(w) = 3m + 5;$$

$$\lambda(w) = 3m + 3;$$

$$\lambda(v_i v_{i+1}) = \begin{cases} 6m + 10 - i & \text{if } 0 \le i \le 2m + 1 \\ 6m + 13 & \text{if } i = 2m + 2; \\ 6m + 11 & \text{if } i = 2m + 3; \\ 10m + 16 - i & \text{if } 2m + 4 \le i \le 4m + 1; \end{cases}$$

$$\lambda(v_{4m+2}v_0) = 6m + 14;$$

 $\lambda(v_0y) = 6m + 12;$
 $\lambda(yx) = 4m + 7;$
 $\lambda(xw) = 4m + 8.$

It is easily seen that λ is a super edge-magic labeling of (n,3)-kite with the edge magic number 10m + 16.

3.2 $K_2 \cup C_n$

Wallis [3] proved that $K_2 \cup C_3$ is not edge-magic, but $K_2 \cup C_4$ is edge-magic. Then Wallis [3] proposed the following problem: For which values of n, is $K_2 \cup C_n$ edge-magic?

Park et al. [2] showed that $K_2 \cup C_n$ is super edge-magic for an even integer $n \neq 10$. They left the case n = 10 open as this case does not fit into the formula that they found. Here we present a super edge-magic labeling of $K_2 \cup C_n$ to complete the case where n is even. We could find this labeling by an exhaustive search based on the following observation:

Proposition 8 If the graph $K_2 \cup C_n$ has a super edge-magic labeling λ for a positive even integer, then the edge magic number for λ is $\frac{1}{2}(5n+12)$.

Proof. Let G denote $K_2 \cup C_n$ and let $v_0, v_1, \dots, v_{n-1}, v_0$ be a vertex sequence of C_n and let u and w be the vertices of K_2 . Since n is even, n=2l for a positive integer l. Let k be the edge magic number for λ . In addition, let $\lambda(u)=\alpha$ and $\lambda(w)=\beta$. Since $\nu=2l+2$ and $\epsilon=2l+1$,

$$\begin{split} k(2l+1) &= \sum_{xy \in E(G)} \left[\lambda(x) + \lambda(xy) + \lambda(y) \right] \\ &= 2 \sum_{x \in V(G)} \lambda(x) - \left[\lambda(u) + \lambda(w) \right] + \sum_{xy \in E(G)} \lambda(xy) \\ &= \frac{2(2l+2)(2l+3)}{2} - (\alpha+\beta) + \frac{(2l+1)[(2l+3) + (4l+3)]}{2} \\ &= (10l^2 + 19l + 9) - (\alpha+\beta). \end{split}$$

Since $3 \le \alpha + \beta \le 4l + 3$, it holds that $10l^2 + 15l + 6 \le k(2l + 1) \le 10l^2 + 19l + 6$. Since k is an integer, $k = 5l + 6 = \frac{1}{2}(5n + 12)$.

Proposition 9 The graph $K_2 \cup C_{10}$ is super edge-magic.

Proof. A super edge-magic labeling is given in Figure 3 when an edge magic number is 31.

The following theorem completely characterizes super edge-magic $K_2 \cup C_n$:

Figure 3: An super edge-magic labeling of $K_2 \cup C_{10}$.

Theorem 10 The graph $K_2 \cup C_n$ is super edge-magic if and only if n is even.

Proof. The 'if' part immediately follows from the result of Park et al. [2] and Proposition 9.

To show the 'only if' part, let G denote $K_2 \cup C_n$ and let $v_0, v_1, \dots, v_{n-1}, v_0$ be a vertex sequence of C_n and let u and w be the vertices of K_2 . We prove by contradiction. Suppose that n is odd and that G has a super edge-magic labeling λ with edge magic number k. Then n = 2m + 1 for a nonnegative integer m. Let $\lambda(u) = a$ and $\lambda(w) = b$. Since $\nu = 2m + 3$ and $\epsilon = 2m + 2$,

$$k(2m+2) = \sum_{xy \in E(G)} [\lambda(x) + \lambda(xy) + \lambda(y)]$$

$$= 2 \sum_{x \in V(G)} \lambda(x) - [\lambda(u) + \lambda(w)] + \sum_{xy \in E(G)} \lambda(xy)$$

$$= \frac{2(2m+3)(2m+4)}{2} - (a+b) + \frac{(2m+2)[(2m+4) + (4m+5)]}{2}$$

$$= (10m^2 + 29m + 21) - (a+b). \tag{1}$$

Since $3 \le (a+b) \le 4m+5$, it follows from the equality (1) that

$$10m^2 + 25m + 16 \le k(2m+2) \le 10m^2 + 29m + 18.$$

Since k is an integer, k = 5m + 8 or 5m + 9. Firstly suppose that k = 5m + 8. For any distinct vertices x and y, since $2m + 4 \le \lambda(xy) \le 4m + 5$ and $\lambda(x) + \lambda(xy) + \lambda(y) = 5m + 8$,

$$m+3 \le \lambda(x) + \lambda(y) \le 3m+4. \tag{2}$$

However, it follows from equality (1) that $(5m+8)(2m+2)=(10m^2+29m+21)-(a+b)$ and so $a+b=\lambda(u)+\lambda(w)=3m+5$. This contradicts (2).

Now suppose that k = 5m + 9. Then for any distinct vertices x and y, by a similar argument to the case k = 5m + 8, we can show that

$$m+4 \le \lambda(x) + \lambda(y) \le 3m+5. \tag{3}$$

However, if follows from equality (1) that $\lambda(u) + \lambda(w) = m + 3$. This contradicts (3).

3.3 A graph derived from a star by adding a pendant edge to each vertex of degree 1

It is known that the star $K_{1,n}$ is super edge-magic. In addition, it is known that a graph derived from a star by adding a pendant edge to each vertex of degree 1 is super edge-magic. The following theorem shows that graphs derived from a star by adding a pedant edge to each vertex of degree 1 are super edge-magic. These graphs were studied while we sought a counterexample to the conjecture that every tree is super edge-magic. It took quite an effort to find a super edge-magic labelings of such a graph and this might suggest that the conjecture seems to be rather difficult to answer.

Theorem 11 A graph G derived from a star by adding a pedant edge to each vertex of degree 1 is super edge-magic.

Proof. Let v_0 be a central vertex of $K_{1,n}$ and v_1, \ldots, v_n be the pendant vertices of $K_{1,n}$. Also, let w_i be the pendant vertex of G adjacent to v_i for $i=1,\ldots,n$. First we consider the case where n is odd. Then n=2m+1 for some nonnegative integer m. Define a labeling $\lambda: V \cup E \to \{1,\ldots,\nu+\epsilon\}$ as follows:

$$\lambda(v_0) = m + 2;$$

$$\lambda(v_i) = \begin{cases} i+1 & \text{if } 1 \le i \le m; \\ i+2 & \text{if } m+1 \le i \le 2m; \\ 2m+3 & \text{if } i = 2m+1; \end{cases}$$

$$\lambda(w_i) = \begin{cases} 4m-2i+5 & \text{if } 1 \le i \le m; \\ 6m-2i+4 & \text{if } m+1 \le i \le 2m; \\ 1 & \text{if } i = 2m+1; \end{cases}$$

$$\lambda(v_0v_i) = \begin{cases} 8m-i+6 & \text{if } 1 \le i \le m; \\ 8m-i+5 & \text{if } m+1 \le i \le 2m; \\ 6m+4 & \text{if } i = 2m+1; \end{cases}$$

$$\lambda(v_iw_i) = \begin{cases} 5m+i+3 & \text{if } 1 \le i \le m; \\ 3m+i+3 & \text{if } 1 \le i \le m; \\ 7m+5 & \text{if } i = 2m+1. \end{cases}$$

It can easily be seen that λ is a super edge-magic labeling of G with the edge magic number 9m + 9.

Now we consider the case where n is even. Then n=2m for some positive integer m. We consider two subcases. First assume that m is even. We define a labeling $\lambda: V \cup E \to \{1, \dots, \nu + \epsilon\}$ as follows:

$$\lambda(v_0) = m+2;$$

$$\lambda(v_i) = \begin{cases} i+1 & \text{if } 1 \le i \le m; \\ i+3 & \text{if } m+1 \le i \le 2m-1; \\ 2m+4 & \text{if } i = 2m; \end{cases}$$

$$\lambda(w_i) = \begin{cases} 3m+i+2 & \text{if } 1 \le i \le m-1; \\ m+3 & \text{if } i = m; \\ m+i+5 & \text{if } i = m+1, m+3, \dots, 2m-3; \\ m+i+1 & \text{if } i = m+2, m+4, \dots, 2m-2; \\ 3m+1 & \text{if } i = 2m-1; \\ 1 & \text{if } i = 2m; \end{cases}$$

$$\lambda(v_0v_i) = \begin{cases} 8m-i+2 & \text{if } 1 \le i \le m; \\ 8m-i & \text{if } m+1 \le i \le 2m-1; \\ 6m-1 & \text{if } i = 2m; \end{cases}$$

$$\lambda(v_iw_i) = \begin{cases} 6m-2i+2 & \text{if } 1 \le i \le m-1; \\ 7m+1 & \text{if } i = m; \\ 8m-2i-3 & \text{if } i = m+1, m+3, \dots, 2m-3; \\ 8m-2i+1 & \text{if } i = m+2, m+4, \dots, 2m-2; \\ 4m+2 & \text{if } i = 2m-1; \\ 7m & \text{if } i = 2m. \end{cases}$$

Since m is even, m+1, m+3, ..., 2m-3 and m+2, ..., 2m-2 both are arithmetic sequences with common difference 2 and so λ is well-defined. Then, λ is a super edge-magic labeling of G with edge magic number 9m+5 for m even. Finally, we consider the case where m is odd. We define a labeling $\lambda: V \cup E \to \{1, \ldots, \nu + \epsilon\}$ as follows:

$$\lambda(v_0) = m + 2;$$

$$\lambda(v_i) = \begin{cases} i + 1 & \text{if } 1 \le i \le m; \\ i + 3 & \text{if } m + 1 \le i \le 2m - 1; \\ 2m + 4 & \text{if } i = 2m; \end{cases}$$

$$\lambda(w_i) = \begin{cases} 3m+i+2 & \text{if } 1 \leq i \leq m-1; \\ m+3 & \text{if } i=m; \\ m+i+5 & \text{if } i=m+1, m+3, \dots, 2m-4; \\ m+i+1 & \text{if } i=m+2, m+4, \dots, 2m-3; \\ 3m+2 & \text{if } i=2m-2; \\ 3m & \text{if } i=2m-1; \\ 1 & \text{if } i=2m; \end{cases}$$

$$\lambda(v_0v_i) = \begin{cases} 8m-i+2 & \text{if } 1 \leq i \leq m; \\ 8m-i & \text{if } m+1 \leq i \leq 2m-1; \\ 6m-1 & \text{if } i=2m; \end{cases}$$

$$\lambda(v_iw_i) = \begin{cases} 6m-2i+2 & \text{if } 1 \leq i \leq m; \\ 8m-i & \text{if } i=2m; \end{cases}$$

$$\lambda(v_iw_i) = \begin{cases} 6m-2i+2 & \text{if } 1 \leq i \leq m-1; \\ 7m+1 & \text{if } i=m; \\ 8m-2i-3 & \text{if } i=m+1, m+3, \dots, 2m-4; \\ 8m-2i+1 & \text{if } i=m+2, m+4, \dots, 2m-3; \\ 4m+2 & \text{if } i=2m-2; \\ 4m+3 & \text{if } i=2m-1; \\ 7m & \text{if } i=2m. \end{cases}$$

Since m odd, m+1, m+3, ..., 2m-4 and m+2, ..., 2m-3 both are arithmetic sequences with common difference 2 and so λ is well-defined. Then, λ is a super edge-magic labeling of G with edge magic number 9m+5 for m odd. This completes the proof.

Acknowledgments. We wish to acknowledge the anonymous referee for suggestions leading to improvements in the presentation of the results.

References

- [1] H. Enomoto, A.S. Ilado, T. Nakamigawa, and G. Ringel, "Super edge-magic graphs," SUT J. Math. 2 (1998), 105-109.
- [2] J.Y. Park, J.H. Choi, and J.H. Bae, "On super edge-magic labeling of some graphs," preprint (2005).
- [3] W.D. Wallis, Magic Graphs, Springer-Verlag, New York, 2001.
- [4] D.B. West, An Introduction to Graph Theory, Prentice-Hall, New York, 1996.