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Abstract

A graph G = (V, E) is said to be super edge-magic if there exists
a one-to-one correspondence A from VUE onto {1,2,3,...,|V|+|E|}
such that A(V) = {1,2,...,|V|} and M(z) + A(zy) + A(y) is constant
for every edge zy. In this paper, given a positive integer k (k > 6)
we use the partitions of k having three distinct parts to construct
infinitely many super edge-magic graphs without isolated vertices
with edge magic number k. Especially we use this method to find
graphs with the maximum number of edges among the super edge-
magic graphs with v vertices. In addition, we investigate whether or
not some interesting families of graphs are super edge-magic.
Key words. Edge-magic labeling, Super edge-magic graphs, Magic
number

1 Introduction

Throughout this paper, we assume that all graphs are finite, simple and
undirected. A graph G has vertex set V(G) and edge set E(G) and we let
[V(G)| = ¥(G) and |E(G)| = £(G). A general reference for graph theoretic
notions is West [4].

Given a graph G, let V = V(G), E = E(G), v(G) = v, and ¢(G) =¢. A
one-to-one correspondence A from V' U E onto the integers {1,2,...,v +¢€}
is an edge-magic labeling if there is a constant k so that for any edge Ty,

Az) + Mzy) + AM(y) = k.
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The constant k is called the edge magic number for A. An edge-magic
labeling X is called super edge-magic if A(V) = {1,2,... ,v} and ME) =
{v+1,v+2,...,v+e}. Agraph G is called edge-magic (resp. super edge-
magic) if there exists an edge-magic (resp. super edge-magic) labeling of
G.

In this paper, given a positive integer k (k > 6) we use the partitions of
k having three distinct parts to construct infinitely many super edge-magic
graphs with edge magic number k. Then we give an upper bound for the
number of edges of a super edge-magic graph with edge magic number k&
in terms of k. We show that this upper bound is sharp in infinitely many
cases by constructing a super edge-magic graph with 2n—3 edges and edge
magic number 3n for every n > 2. Also, we investigate whether several
noteworthy families of graphs are super edge-magic or not. Especially, we
focus on an (n, t)-kite consisting of a cycle of length n with a t-edge path
attached to one vertex and K3 U C,, motivated by Wallis [3] questions to
characterize edge-magic graphs among these graphs. In fact, we completely
characterize super edge-magic K2 U Cy. In addition, we show that a graph
derived from a star by adding a pendant edge to each vertex of degree 1 is
super edge-magic.

2 Constructing super edge-magic graphs without isolated
vertices by using a partition method

We observe that given a super edge-magic graph G without isolated ver-
tices and its super edge-magic labeling A with the edge magic number &,
{{A (), Mzy), \(»)} : =y € E(G)} is a set of the partitions of k with three
distinct parts satisfying the following properties:

1. Their union forms {1,2,...,m} for some positive integer m;

9. The maximum number of each partition belongs to only that parti-
tion;

3. The maximum numbers from each partition are consecutive.

Conversely, for a positive integer k (k > 6), if there is a set of e partitions
of k with three distinct parts satisfying the above three properties we can
construct a super edge-magic graph G without isolated vertices with edge
magic number k as follows: Then their union forms {1,2,...,m} for some
positive integer m by Property 1. Thenm —€+1, m—€e+2, ..., m are
the maximum numbers from each partition by properties 2 and 3. Let

V(@) ={1,2,...,m—¢}
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Figure 1: A super edge-magic graph constructed from parts {1,2,9},
{1,3,8}, {1,4,7}, {3, 4,5}, {2,4,6}.

and define the edge set by vertices 7 and j being adjacent if ¢ and j are in
the same partition.

We illustrate the above method by examples: Take k = 12. Then the
partitions of 12 having three distinct parts are as follows:

12=1+2+9
=1+3+8
=14+44+7
=14+5+46
=2+4+3+7
=2+446
=3+4+5.

We may take parts {1,2,9}, {1,3,8}, {1,4,7}, {1,5,6} that satisfy the
above properties. From these, we construct a super edge-magic graph
as follows: the vertex set is {1,2,3,4,5}. The edge set is {{1,2},{1,3},
{1,4},{1,5}}. Thus, we obtain the graph star K; 4 with central vertex
labeled 1. Parts {1,2,9}, {1,3,8}, {1,4,7}, {2,4,6}, {3,4,5} also satisfy
the above properties and we obtain the super edge-magic graph given in
Figure 1. We note that 7 = 1 + 2 + 4 is the only partition with three
distinct parts and therefore there is no super edge-magic graph without
isolated vertices with edge magic number 7. In fact, we may show that for
every integer k > 6 other than 7, there is a super edge-magic graph without
isolated vertices with edge magic number k. For, we may construct a set of
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partitions of k satisfying the above three conditions: For k even (k > 6),

1+2+(k—3)
143+ (k—4)

k

i

14 G-1)+ (k—1)

= 1+(k/2-1)+k/2
For k odd (k 2 9),

k 142+ (k-3)

1+3+ (k—4)

14 G=1)+ (k=14

14 (k= 3)/2+ (k+1)/2
2+ (k—3)/2+ (k- 1)/2

As mentioned before, Enomoto et al. [1] showed that the following:

Lemma 1 (Enomoto et al. [1]) If a nontrivial graph G is super edge-
magic, then e < 2v - 3.

Their lemma is significant in the sense that it eliminates huge number of
graphs from being super edge-magic graphs. It is interesting to find families
of super edge-magic graphs that satisfy € = 2v — 3 as the super edge-magic
graphs satisfying this equality have the maximum number of edges among
the super edge-magic graphs with v vertices.

The following proposition gives an upper bound for the number of edges
of a super edge-magic graph with edge magic number & in terms of k.

Proposition 2 Given k, let G be a super edge-magic gmph with edge magic
number k. Then

2
< k-3
e_3k 3

proof. Since k — 3 in partition 1+ 2 + (k — 3) is the largest possible part,
it is true that k — 3 > v+ € or v < k — ¢ — 3. From this inequality and the
inequality in Lemma 1, we can derive the inequality in the proposition. O

The bound given in Proposition 2 is also sharp. The graph given in Figure 1
has edge magic number 12 and 5 edges, which satisfies both equalities in
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Lemma 1 and Proposition 2. In fact, we may show that the both bounds
are sharp if an edge magic number is a multiple of 3 (it should be a multiple
of 3 in order for the second inequality to be sharp). For k = 3n, define the
following partitions:

k 1+2+(3n-3)
1+3+(3n—-4)
243+ (3n-5)

2+4+(3n-6)

(35— 1)/2+ (35 + 1)/2 + (3n — 35)
(35— 1)/2+ (37 +3)/2+ (3n — 35 ~ 1)
(Bi+1)/2+ (37 +3)/2+ (3n— 35 — 2)
(37 +1)/2+ (35 +5)/2+ (3n — 3 — 3)
(37 +3)/2+ (37 +5)/2+ (3n — 35 — 4)
(37 +3)/2+ (3 +7)/2+ (3n — 35 — 5)

n-2)+n+(n+2)
(=1 +n+(n+1)

where j is an odd number satisfying 1 < j < (2n - 1)/3.

Then it can easily be checked that this collection of partitions satisfies
properties 1, 2, 3 and therefore it determines the following super edge-
magic graph denoted by BT,, with edge magic number &:

V(BT",) = {0111’2’ ceey ‘Un};

E(BT,) = {vivi1/1< i <n -1} U {vmquaipa [1 i < [n ; IJ}

. n—2
U {'02,"02,'4.2 | 1<i< I_TJ }

Since the number of edges of BT, is 2n — 3, the upper bound given in
Proposition 2 is achieved for BT,,. (The graph given in Figure 1 is BT}.)
The labeling A : VUE — {1,2,...,3n — 3} determined by the above
collection of partitions is as follows:
Mv)=14, for1<i<nm;
A(ivig1) =3n— (2i+1), for1<i<n-1;
, . n—1
A(v2i-1v2i41) = 3n— 44, for 1< i < '_TJ ;

Av2ivziq2) =3n — (4i +2), for I'Si < ln—;ﬁJ .
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Now we have the following proposition:

Proposition 3 For every n > 2, the graph BT, is super edge-magic with
the mazimum number of edges among the graphs with n vertices.

3 Labeling some interesting families of super edge-magic
graphs

In Section 2, we suggested a way to construct infinitely many super edge-
magic graphs. In this section, we take some interesting families of graphs
to see whether or not they are super edge-magic.

3.1 (m,t)-kite

An (n,t)-kite consists of a cycle of length n with a t-edge path (the tail)
attached to one vertex. Wallis [3] posed a problem to investigate the edge-
magic properties of (n, t)-kites for general ¢. We give a necessary condition
for an (n,t)-kite being super edge-magic as follows:

Theorem 4 Suppose that the graph (n,t)-kite is super edge-magic with an
edge magic number k and a super edge-magic labeling A. Let v be the vertez
of degree 3 and w be the pendant vertex. Then the following are true:

1. n and t must have the same parity;

2. The edge magic number is either k = ﬂl’;—q +1 and A(v) — AM(w) =
—ndt o k=340 1 9 gnd Mv) - Aw) = 2.

Proof. Let G be a graph of (n, t)-kite and let v, vy, « - -, Un—1, v be a vertex
sequence of C,,. Let A(v) = @ and A(w) = . Then

knt+t)= D [Ma)+Mzy) +Aw)]
zy€E(G)
=2 ) AM2)+A) - A@)+ Y Mzw)
zeV(G) zy€E(G)
_ 2(n+t)(12ra+t+1) ta—f+ (n+t)[(n+t-;1)+(2n+2t)]
_ (n+t)[5(;l+t)+3] tap.

This implies that k = ﬂ%ﬁﬂ + i—:_-g is an integer. Since 0 < |j‘.—:_€| <l

it is true that IQ‘,'T"_%I = -and that n and ¢t must have the same parity.
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Furthermore, k = 3% 4 1 if A(v) — Mw) = — 2%, and k = 320 4 2 j¢
A(v) — Mw) = 2§, m]
It has been shown (Theorem 2.23 in [3]) that an (n,1)-kite is edge-

magic. We show that it is also super edge-magic if n is odd and that the
converse is also true.

Theorem 5 An (n,1)-kite is super edge-magic if and only if n is odd.

Proof. The ‘only if’ part immediately follows from Theorem 4. To show
the ‘if’ part, let n = 2m + 1 for a nonnegative integer m. We define a
labeling A: VUE — {1,2,3,...,4m + 4} as follows:

;) = { i/2+1 if i is even;
: m+2+ (1+1)/2 ifiisodd,
Alv) =1;
Mw)=m+2;
Avw) =4m + 3;

AMvvp—1) = 4m + 4;
Alvry) = 4m + 2;
Avivip1) =4dm+2—-ifor1<i<n-2.

It is easily seen that ) is a super edge-magic labeling of an (n, 1)-kite with
the edge magic number 5m + 6. Hence, an (n, 1)-kite is super edge-magic
graph. m]

Park et al. [2] showed that (n,2)-kite is super edge-magic for every
positive even number n. The following theorem shows that (n, 3)-kite might
not be super edge-magic even if n is odd.

Theorem 6 A (3,3)-kite is not super edge-magic.

Proof. Suppose that a (3, 3)-kite denoted by G is a super edge-magic graph
with an edge magic number k. Then there is a labelling A from V(G)UE(G)
to {1,2,...,12}. Let v be the vertex of degree 3 and w be the pendant. In
addition, let E(G) = {e), e2,€3,¢€4,€5,€6}, AM(v) = o, and A(w) = B. Then,
by Theorem 4 either k = 16 and a — 8= -3 or k=17 and o — 8 = 3.
Suppose that k = 16 and a—f8 = —3. Then for each edge label, the possible
labels of its endpoints are as follows:

From Table 1, we know that the labels of the endpoints of eg are 1 and
3. For convenience, we denote by A(e;) the set of labels for endpoints of
edge e;. There are exactly three cases to consider: (i) @ = 1 and 8 = 4;
(i) a=2and B = 5; (iii) a = 3 and B = 6. Ifa=1and 8 = 4, then
A(es) # {1,4} since v and w are not adjacent. Thus A(es) = {2,3}. Since
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Ed‘;e €1 €2 €3 €4 €s €g
Edge label 7 8 9 10 11 12
Possible sets | (3,6} | {2,6} | {1,6} | {1,5} | {1,4} {1,3}
of labels of | {4,5} | {3,5} | {2,5} | {2,4} | {2,3}

endpoints {3,4}

Table 1: Possible labels for k = 16

3 is used twice for a vertex label, A(e;) = {4,5} and A(ez) = {2,6}. Since
2 is used twice, A(es) = {1,6} and A(es) = {1,5}. From the fact that
A(e;) = {4,5} and A(es) = {1,5} have a common element, we know that
edges e; and e, are adjacent and that the vertex with label 1 and that with
label 4 are at distance two. Now we reach a contradiction. If o = 2 and
B = 5, then A(es) # {2,5} since v and w are not adjacent. Since 2 is a
label for v of degree 3, 2 must be used three times. Thus A(e2) = {2,6},
A(es) = {2,4}, and A(es) = {2,3}. Since 3 is used twice, A(e1) = {4,5}.
Then edges e; and e4 are adjacent, and so the vertex with label 2 and that
with label 5 are at distance two. This is an contradiction again. If a =3
and B = 6, then A(e;) # {3,6} and so A(e1) = {4,5}. Since label 6 must
be used once, either A(ez) = {2,6} or A(es) = {1,6}. If A(es) = {1,6},
then e3 and eg are adjacent, and so the vertex with label 3 and that with
label 6 are at distance two, which is a contradiction. If A(e2) = {2,6},
then A(e3) = {3,4} and A(es) = {2,3} since 3 must be used three times.
Then edges e and e are adjacent. Thus the vertex with label 3 and that
with label 6 are at distance two and we reach a contradiction. Thus it is
impossible that £k = 16 and a — 8 = -3.

We suppose that k = 17 and & — § = 3. Then for each edge label, the
possible labels of its endpoints are as follows:

Edge e e es e es eg
Edge label 7 8 9 10 11 12
4,6} | {3,6} | {2.6} | {1,6} [ {1,5} | {L.4}
A(es) {4,5} | {3,5} | {2,5} | {2,4} | {2,3}
{3,4}

Table 2: Possible labels for k = 17

From Table 2, we know that A(e;) = {4,6}. There are exactly three cases
to consider: (i)a=4and B =1; (i) a =5and B =2; (iii)a =6and §=3.
Ifa =4 and B =1, then A(eg) # {1,4} and so A(eg) = {2,3}. Since 1 must
be used once, either A(eq) = {1,6} or A(es) = {1,5}. If A(es) = {1,6}, then
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Figure 2: A super edge-magic labeling of (5, 3)-kite.

edges e; and e4 are adjacent, and so the vertex with label 1 and that with
label 4 are at distance two. This is a contradiction. Thus A(es) = {1, 5}.
Since 4 is used three times, A(ez) = {4,5}, A(eq) = {3,4}. Then edges e,
and e; are adjacent, and so so the vertex with label 1 and that with label
4 are at distance two. Thus we reach a contradiction. If « = 5 and § = 2,
then A(eq) # {2,5}. Since 5 must be used three times, A(e2) = {4, 5},
A(es) = {3,5}, and A(es) = {1,5}. Since 4 is used twice, A(es) = {2,3}.
Then edges e3 and eg are adjacent, and so vertex with label 2 and that
with label 5 are at distance two. Thus we reach a contradiction. If o = 6
and B = 3, then A(e;) # {3,6} and so A(e2) = {4,5}. Since 6 must be
used three times, A(e3) = {2,6} and A(es) = {1,6}. Since 4 is used twice,
A(eg) = {2,3}. Then edges e3 and eg are adjacent, and so the vertex
with label 3 and that with label 6 are at distance two. Thus we reach a
contradiction. Hence it is impossible that k¥ = 17 and @ — 8 = 3. This
completes the proof. ]

Except the (3, 3)-kite, an (=, 3)-kite is super edge-magic as long as n is
odd:

Theorem 7 An (n,3)-kite is super edge-magic if and only if n is an odd
integer greater than or equal to 5.

Proof. The ‘only if’ part follows from Theorems 4 and 6. To show the
‘if’ part, let v, vy,...,vn_1,79 be a vertex sequence of C, with the tail
yzw attached to vp. Since n is an odd integer greater than or equal to 5,
either n = 4m + 1 or 4m + 3 for a positive integer m. First suppose that
n = 4m + 1 for a positive integer m. A labeling of (5, 3)-kite is given in
Figure 2. '

For m > 2, we define a labeling A\: VUE — {1,2,3,...,8m + 8} as
follows:
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i/2+1

2m +6+ (i —1)/2

m+3 ifi=2m-—1;
M) =19 3m+5 ifi=2m+1;
(i—1)/2+3 ifi=2m+3,2m+5,...,4m - 1;
i/2+2m+4 ifi=2m+4,2m+6,...,4m;
My) =2m+4
AMz) =2m+5;
A(w) =2m+3;
8m+4—i f0<i<2m-3
10m+6—i ifi=2m-2,2m-1;
A(v;v.-.,.l) = 8m+5-1 ifi= 2m, 2m + 1;
8m+5 ifi=2m+2;
Sm+4—-i if2m+3<i<dm-1,
A(vamvo) =6m+6;
Mvoy) =8m+6;
AMyz) =6m+2;
Mzw) =6m+3.

ifi=0,2,...,2m + 2;
ifi=13,...,2m-3;

It is easily seen that ) is a super edge-magic labeling of (n, 3)-kite with

the edge magic number 10m + 11.

Now suppose that n = 4m + 3. We define a labeling A : VUE —

{1,2,3,...,8m + 12} as follows:

i/2+m ifi=0,2,...,2m+2;
3m+6+(i—-1)/2 ifi=13,...,2m+1;
M) =< 2m+2 ifi=2m+3;
i/24m+1 ifi=2m+4,2m+6,...,4m+2;
(i-3)/2—-m ifi=2m+52m+7,...,4dm +1;
AMy) =3m+4;
AMz) =3m+5;
AMw) =3m+3;
6m+10—i f0<i<2m+1
Mosir) = 1 Em+13 if i = 2m +2;
T 6m + 11 if i =2m+3;
10m+16—: if2m+4<i<dm+1;
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AMVam42v0) =6m + 14;

Avoy) =6m+12;
A(yz) =4m+T;
Azw) =4m+ 8.
It is easily seen that ) is a super edge-magic labeling of (n, 3)-kite with
the edge magic number 10m + 16. o

32 K,ud(C,

Wallis (3] proved that K2UCj is not edge-magic, but KoUC, is edge-magic.
Then Wallis [3] proposed the following problem: For which values of =, is
K, UC, edge-magic?

Park et al. [2] showed that Kp U C, is super edge-magic for an even
integer n # 10. They left the case n = 10 open as this case does not fit into
the formula that they found. Here we present a super edge-magic labeling
of K2UC,, to complete the case where n is even. We could find this labeling
by an exhaustive search based on the following observation:

Proposition 8 If the graph K> UC,; has a super edge-magic labeling A for
a positive even integer, then the edge magic number for A is —;—(Sn +12).

Proof. Let G denote Ky U C,, and let vg,v;,--- ,v,—1,% be a vertex
sequence of C, and let u and w be the vertices of K,. Since n is even,
n = 2l for a positive integer !. Let k be the edge magic number for A. In
addition, let A(u) = a and A(w) = . Since v =2l + 2 and € = 2] + 1,

kRL+1) = Y [Mz)+May) + A@w)]

- zy€E(G)
=2 ) Az)-[Mw)+Aw)] + > May)
2eV(G) zy€E(G)
_2(20+2)(21 + 3) (20 + 1)[(2 + 3) + (4l + 3))]
= 5 —(a+p)+ 5

= (102 + 191 + 9) — (o + ).

Since 3 < a+8 < 4l+3, it holds that 102+15[+6 < k(2+1) < 10/2+191+6.
Since k is an integer, k = 5/ + 6 = 1(5n + 12). a]

Proposition 9 The graph K, U Cyg is super edge-magic.

Proof. A super edge-magic labeling is given in Figure 3 when an edge
magic number is 31. (]

The following theorem completely characterizes super edge-magic Ko U
Cy:
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Figure 3: An super edge-magic labeling of K3 U Cyo.

Theorem 10 The graph Ky U C, is super edge-magic if and only if n is
even.

Proof. The ‘if’ part immediately follows from the result of Park et al. [2]
and Proposition 9.

To show the ‘only if’ part, let G denote K2UC,, and let vp, vy, ,¥n—1,%
be a vertex sequence of C,, and let u and w be the vertices of K. We prove
by contradiction. Suppose that n is odd and that G has a super edge-magic
labeling A with edge magic number k. Then n = 2m + 1 for a nonnegative
integer m. Let A(uv) = a and A(w) = b. Since v=2m +3 and € =2m + 2,

kem+2)= Y [A=)+Azy)+ @)

zy€E(G)
=2 Y A@) - D@ +Mw)]+ Y May)
z€V(G) zy€ E(G)
_ 2(2m + 3;(2m +4) (a+b)+ (2m+2)[(2m -|2- 4) + (4m + 5)]
= (10m? + 29m + 21) — (a + b). (1)

Since 3 < (a + b) < 4m + 5, it follows from the equality (1) that
10m2 + 25m + 16 < k(2m + 2) < 10m? + 29m + 18.

Since k is an integer, k = 5m+-8 or 5m+9. Firstly suppose that k = 5m+-8.
For any distinct vertices x and y, since 2m + 4 < Mzy) < 4m + 5 and
Az) + Mzy) + AMy) = 5m + 8,

m+3<Mz)+Ay) £3Im+4. (2)

However, it follows from equality (1) that (5m + 8)(2m + 2) = (10m? +
20m + 21) — (a +b) and 80 a + b = A(u) + A(w) = 3m + 5. This contradicts
().
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Now suppose that & = 5m 4+ 9. Then for any distinct vertices = and y,
by a similar argument to the case k = 5m + 8, we can show that

m+4 < Az)+My) < 3m +5. (3)

However, if follows from equality (1) that AM(u) + A(w) = m + 3. This
contradicts (3). O

3.3 A graph derived from a star by adding a pendant edge to each
vertex of degree 1

It is known that the star K ,, is super edge-magic. In addition, it is known
that a graph derived from a star by adding a pendant edge to each vertex
of degree 1 is super edge-magic. The following theorem shows that graphs
derived from a star by adding a pedant edge to each vertex of degree 1
are super edge-magic. These graphs were studied while we sought a coun-
terexample to the conjecture that every tree is super edge-magic. It took
quite an effort to find a super edge-magic labelings of such a graph and this
might suggest that the conjecture seems to be rather difficult to answer.

Theorem 11 A greph G derived from a star by adding a pedant edge to
each vertez of degree 1 is super edge-magic.

Proof. Let vy be a central vertex of K1, and vy, ..., v, be the pendant
vertices of K1 ,. Also, let w; be the pendant vertex of G adjacent to v; for
t=1, ..., n. First we consider the case where n is odd. Then n =2m +1
for some nonnegative integer m. Define a labeling A : VUE — {1,...,v+¢}
as follows:

Avo) =m +2;

i+1 ifl1<i<m;
AMy))=( i+2 ifm+1<i<2m;
2m+3 ifi=2m+1;

6m—2i+4 ifm+1<i<2m;

dm-2i+5 ifl1<i<m;
)\(w,-)=
1 ifi=2m+1;

8m—~i4+6 ifl1<i<m
Avgpi) =< 8m—i+5 ifm+1<i<2m;
6m +4 ifi=2m+1;

dm+i+3 ifm+1<i<2m;

5m+i+3 fl1<i<m;
AMviw;) =
™™m+5 ifi=2m+1.
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It can easily be seen that A is a
edge magic number 9m + 9.

super edge-magic labeling of G with the

Now we consider the case where n is even. Then n = 2m for some
positive integer m. We consider two subcases. First assume that m is even.
We define a labeling A: VUE — {1,...,v + ¢} as follows:

A(vo) =m +2;
i+1 ifl<i<m;
Mv)=(¢ i+3 ifm+1<i<2m—1;
2m+4 ifi=2m;
Im+i+2 if1<i<m-1;
m+3 ifi=m;
Aw;) = m+i+5 ifi=m+1,m+3,...,2m-3;
Y7) m4i+l ifi=m+2,m+4,...,2m—2;
Im+1 ifi=2m-1;
1 if i = 2m;
8m—-i+2 ifl<is<m;
Mvovs) =< 8m —14 ifm+1<i<2m-—1;
6m-—1 if 2 = 2m;
m—-2i+2 ifl<i<m-1;
Tm+1 ifi=m,;
oy_ ) 8m=2i-3 ifi=m+1,m+3,...,2m-3;
Muw) =4 gm_92i41 ifi=m+2,m+4,...,2m—2;
4dm +2 ifi=2m-1,
m ifi=2m.

Since m is even, m + 1, m + 3,

.., 2m—-3and m+2, ..., 2m — 2 both

are arithmetic sequences with common difference 2 and so A is well-defined.
Then, A is a super edge-magic labeling of G with edge magic number 9m 45
for m even. Finally, we consider the case where m is odd. We define a
labeling A: VUE — {1,...,v +¢€} as follows:

A(vo) =m+2;

i+1
i+3

Mwvi) = {

2m+4

ifl<i<m;
fm+1<i<2m-1;
if i = 2m;
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([ 3m+i4+2 f1<i<m-1;

m+3 ifi=m,;

m+i+5 ifi=m+1lm+3,...,2m—4;
Mw))=¢ m+i+1 ifi=m+2,m+4,...,2m-3;
3m+2 ifit=2m-2;

3m ifi=2m-1;

1 if i = 2m;

\
8m—i+2 fi<i<m;

Alvov;) =< 8m —1 fm+1<i<2m-—1;
6m-—1 if i = 2m;

’

bm—-2i+2 f1<i<m-1;

™m+1 ifi=m;

8m—-2i-3 ifi=m+1,m+3,...,2m—4;
)‘(viw,-)=ﬁ 8m-~2i+1 ifi=m+2,m+4,...,2m-3;

dm +2 ifi=2m-2;
dm+3 ifi=2m-1;
m if i =2m.

\

Sincemodd, m+1,m+3,...,2m—4and m+2, ..., 2m — 3 both are
arithmetic sequences with common difference 2 and so A is well-defined.
Then, A is a super edge-magic labeling of G with edge magic number 9m+5
for m odd. This completes the proof. a
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