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Abstract

In this paper we compute the chirality group, the chirality in-
dex and the smallest regular coverings of the chiral Coxeter maps,
the toroidal orientably regular maps described in Coxeter and Moser
monograph [H.S.M.Coxeter and W.0.J.Moser, Generators and Re-
lations for Discrete Groups (4th ed.), Springer-Verlag, Berlin, 1984].
We also compute the greatest regular maps covered by chiral Coxeter
maps.

1 Introduction

Chirality in chemistry is unquestionable an old theme. It terms the hand-
edness, or the non-existence of a plane of symmetry, in molecular struc-
tures. These so called chiral molecules come in pairs known as right- and
left-handed enantiomers. In mathematics the combinatorial chirality phe-
nomenon is associated to quasi regular surface structures (maps) having no
reflection (orientation preserving automorphisms) [5, 6, 7, 8]. A map M
is a 2-cell decomposition of an orientable surface. It is orientably regular
if its automorphism group acts transitively on darts of M (edges endowed
with one of the two possible orientations). An orientably regular map may,
or may not, admit an automorphism reversing the global orientation of the
surface. In the first case we call it regular (reflexible in Coxeter, Moser
terminology), while an orientably regular map which does not admit an
orientation reversing automorphism will be called chiral.
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Measuring chirality is certainly new. In [3] two chirality measures in-
volving orientably regular maps and hypermaps were introduced: a qual-
itative measure called chirality group and a quantitative measure called
chirality indez. Being the later a combinatorial measure it is not related
to the familiar mathematical continuous measure introduced by Zabrodsky,
Peleg and Avnir [15] in chemistry. The definition of the chirality group is
based on the observation that each chiral map M is covered by a regular
(reflexible) map M, . Moreover, one can prove that if the group of orienta-
tion preserving automorphisms is transitive on darts of the map (which is
the case of orientably regular maps) then the least regular cover M, — M
is unique. Roughly speaking the chirality group gives a qualitative mea-
sure of the regularity deviation of an orientably regular hypermap M by
expressing this regularity deviation through a quotient group, the group
of covering transformations of M, — M, which express how M, cov-
ers M (or equivalently, how M covers the biggest regular map covered by
M). The chirality index, being the size of the chirality group, gives thus
a quantitative measure. While all orientably regular maps on the sphere
are mirror symmetric (these are the five Platonic solids, cycles with their
duals and semistars), there are three infinite families of chiral maps on the
torus: the maps {4,4}s.c, {3,6}b,c, {6,3}s,c With be(b — c) # 0 (following
the notation introduced in Coxeter and Moser [5]). The first examples of
non-toroidal chiral maps seams to be given by Sherk [10] in 1962 with an
infinite family of chiral maps of type {6, 6}, the smallest non-toroidal being
on genus 7. Later in 1969, with a map of type {9, 6}, Garbe [6] gave another
example of a chiral map of genus 7. Maps are essentially polytopes of rank
three. Higher rank abstract chiral polytopes were extensively studied by
Schulte and Weiss in [11, 12, 13].

The aim of this paper is to calculate the chirality index and the chirality
group for each toroidal chiral map M in the above families. Also, for each
such map M we identify the smallest regular (reflexible) cover of M as
well as the least regular (reflexible) map covered by M. This paper follows
[2] (see [1] as well) which classifies the chiral hypermaps up to genus 4.
Henceforth we carry the same notation into this paper and dispense lengthy
introduction on the subject.

1.1 Maps and hypermaps

A topological map is a 2-cell decomposition of an orientable surface (with-
out border). Cells of dimension 0, 1 and 2 are called vertices, edges and
faces, respectively. Darts of the map are edges of the underlying graph G
endowed with one of the two possible orientations. Fixing an orientation of
the surface, counter- or clockwise orientation, denote by R the permutation
of the darts that for each vertex v permutes cyclically (following the chosen
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orientation) all the darts incident to v. Denote by L the involutory permu-
tation interchanging oppositely directed darts sharing the same edge. Then
to each topological map there is associated a triple (D; R, L) composed of
a set D of darts, two permutations R, L acting on D, with L? = 1 and
(R, L) acting transitively on D. Such a triple M = (D; R, L) will be called
an (oriented) map. The map M* = (D; R™1L, L) is called the dual of M.
One can see that it reflects the standard notion of duality of topological
maps.

An oriented hypermap H is a triple H = (D; R, L), where D is a set of
abstract darts (preferably finite), and R, L are permutations of D such that
the monodromy group Mon(H) = (R, L) is transitive on D. Thus maps are
hypermaps satisfying L2 = 1. As for maps, one can define a topological
counterpart of a hypermap (see for instance [14]). The type of H is the
triple (!, m, n) of integers, where ! = |R|, m = |L| and n = |RL|. Given two
hypermaps H; = (D1; Ry, L1) and Ha = (Da; Rs, L3) a covering Hy — H»
is a function ¢ : D; — Dj such that R1¢ = ¢R> and L1¢ = ¢Ls. Any
covering is necessarily onto due to the connectivity of G. If ¢ is injective the
covering is an isomorphism of hypermaps. An automorphism of a hypermap
H = (D;R, L) (also called a symmetry) is an isomorphism of H into itself;
in other words, an automorphism of H is a permutation of the dart set D
of H that commutes with R and L. The automorphism group of H acts
semiregularly on D while the monodromy group acts transitively on D.
Hence we have

|Aut(H)| < |D| < |Mon(H)]

If one of the equalities holds, that is, if Aut(H) acts transitively on D or
Mon(H) acts regularly on D, then the other equality holds as well, and H
is said to be orientably regular. If in addition H has an orientation inverting
automorphism, i.e., if there is a permutation v of D making Ry = y R~}
and Ly = L™}, then H is said to be regular. If H is orientably regular
but not regular then H will be called chiral.

Let A denote the free product

A= (ro;riiralrg =ri =13 =1).

and let A% = (ryra;rerg) be its even word subgroup. The canonical gen-
erators of A* will be denoted by p = r172 and A = rarg. Observe that the
triple U = (A™; p, A), with p and X acting on A™ by the left multiplication,
is a hypermap (clearly, an infinite one) which we will call the universal
hypermap. For any hypermap H = (D; R; L), finite or infinite, there is an
epimorphism @ : At — Mon(H) sending p to R and A to L. Consequently,
H can be identified with the hypermap (A*/H;5,X) whose darts are the
left cosets of the subgroup H < A*, H being the kernel of the epimorphism
AT — Mon(H) and 5, X the images of p and ), respectively . Thus the
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monodromy group of any oriented hypermap is a quotient A*/H. In this
context H is called a hypermap subgroup for H .

2 Chirality Group

The objective of this section is to show how to compute the chirality group
of a chiral hypermap from a presentation of its monodromy group. Given
an orientably regular hypermap H with hypermap subgroup H <At denote
by HT = H" = H™ = H"™ the conjugate of H in A. Following (3] define
the chirality group of H to be the factor group X(H) = H/H, = H “ /H,
where H, = HN H™ and H®> = HH". 1t is proved in (3] that X(H) is
isomorphic to a normal subgroup of Mon(H). In the following theorem we
identify X (H) as a subgroup of Mon(H) in a more detail.

Theorem 1 Let H be an orientably regular hypermap with monodromy
group G = Mon(H). IfG has presentation (z,y | R(z,y)) then the chirality
group X(H) is the normal closure of (R(z~!,y~1)) in G.

Proof:
The chirality group is the quotient group X(H) = H/H, = H “ /H. Since
G=A%/H and

G/X(H)= 8187, = A*/H® = (z,y| R(z,y), Rz y7h)),

by von Dyck theorem [9, page 28], X(H) = (R(z“,y‘l))c. 0
Corollary 2 If H is an orientably regular hypermap with Monodromy
group Mon(H) = (z,y | z* = y™ = (zy)" = R(z,y) = 1) then the chirality
group X(H) is the normal closure of (R(z™!,y~1)) in G.

Proof:
In fact, z7' =y~™ = (yz) ™™ = 1 in Mon(H) so we have
X(H) = @@y, (vo) ™ Ry N = (R, 7).

]

The chirality indez of H, denoted by x(H), is the size of its chirality
group. As an example of application of Theorem 1, we compute in Table 1
the chirality group of the 16 chiral maps obtained by Conder and Dobcsanyi
[4] as a result of the classification of the orientably regular maps from genus
7 up to 15.
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M  Genus Type Size X(M) k(M)

ct1 7 {69} 54 Cs 3
C12 7 {17} 56 CoxCaxC, 8
c81 8 {66 & Cr 7
C101 10 {3,8} 432 C3xCs 9
C102 10 {48} 144 CixCs 9
C103 10 {88 72 CsxCs 9
cil 11 {4,8} 160 Cs 5
cit2 11 {4,8} 160 Cs 5
c113 11 {4,12} 120 Cs 5
Cl114 11 {88} 80 Cs 5
C1ls 11 {88} 80 Cs 5
c11.6 11 {12,12} 60 Cs 5
Cc121 12 {510} 110 Cn 11
c122 12 {510} 110 Cn 11
Cl41 14 {6,6}) 156 Cis 13
C151 15 {3,132} 336 Cy 7
Table 1.

3 Chirality group and index of the toroidal
chiral maps |

3.1 The toroidal maps

As classified and described by Coxeter and Moser in [5] the orientably regu-
lar maps on the Torus are the maps {4,4}s,c, {3, 6}s,c and {6, 3}» ., where b
and c are non-negative integers. The map {4, 4}y hasn= b2 + ¢ vertices,
2n edges, n 4-gonal faces and 4n darts. It arises by directly identifying
the opposite sides of a square with corners having coordinates (0;0), (b;c),
(b~ ;b + c) and (—¢;b) in a rectangular grid defined by perpendicular
unit vectors in the euclidean plane. Write z = (RL)~! and y = L. The
monodromy group of {4,4},. has presentation '

(z,y | 2* = % = (zp)* = (zyz)’(z%y)° = 1).

The map {3, 6}, with n = b2+bc+c? vertices, 3n edges, 2n triangular faces
and 6n darts arises by directly identifying a square with corners (0; 0), (b; c),
(b—c;b+2c) and (—c; b+c) in the triangular grid generated by unit vectors
making an angle of 60 degrees. Its monodromy group has presentation

@,y | 2° =1 = (z)® = (=7 'yay)’(zyzy)° = 1),
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where, as above, z = (RL)~! and y = L. The last map {6, 3}s . is just the
dual of {3,6}s,c.

In all cases the maps are regular if and only if be(b — ¢) = 0 (see 5,
pages 104,107]). Consequently the toroidal chiral maps are the orientably
regular maps {4,4}s,c, {3, 6}s,c, {6, 3}s,c together with their mirror images
{4,4}cp, {3,6}c, {6,3}c,, Where b > ¢ > 0. Since {6,3}s,c is the dual of
{3,6}»,c both these two maps have the same chirality group.

3.2 The map {4,4}p.

The map {4,4}s has monodromy group G = (z,y | z* = 3* = (zy)* =
(zyz)®(z%y)® = 1) so by Corollary 2,

X({4,4}s0) = (@ 'y~ 1212271 ¢ = ((2y2) b (yz?) )" = ((vz?)*(zya

Theorem 3 The chirality group of {4,4}sc is cyclic generated by some
vertical translation (zyz)2¢, where d = (b, c) is the greatest common divisor
of b and c. The chirality index is given by
n
" ne®)

where n = b% + ¢2.

Proof: :

First we show that the chirality group is cyclic. Inside G we have the
equalities (yz2)° = (zyz)® and, conjugating by =71, (zyz)° = (z®y)®. Then
X({4,4}b.) = ((mym)?)° = (u?)°, by setting u = zyz and using the first
equality. Let v = u* = yz?. Then v° = w® and u° = v~? (second equality).
Let us take the conjugates u?, v? of u and v under the generators of G:

0l z | z¢ |z Y
Wl v |ut|vt|w?
v |u~l|v! u |v!

This table shows that the set {u,s~*,v,971} is a complete system of con-
jugates (i.e. it is closed under conjugation). Then

X({44he) = @®)°

= ((u0)2b’ (,00)2b>0=1 z,223,z-1,y
<u2b,,v2b) T .
(uZB,,u2c)
(,u2(b.c)>
((zyz)?®)
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So X({4,4}s,) is a cyclic group of order

e = leveEl
(lzyzl, 2(b, c))

Now we calculate the order of zyz. Fix the counterclockwise orientation
so that {4,4}s . is obtained by identifying the opposite sides of the dark
large square shown in Fig. 2. Fix also a dart § as shown in Fig. 1 (a).

|(zyz

b
@ Figure 1 ®)

Relatively to this dart the word zyz is a translation one step along a vertical
line (Fig. 2 (b)). Take one step as unit of measure and consider the system
of coordinates XOY whose axles XX and YY make an angle . Here
we consider two square grides: the smallest or finer gride, will be referred
simply as the square gride; the larger square gride where the shaded square
belongs, will be referred as the large square gride (Figure 2).

1\
A 1
YY ™\
] \
L1
-l \
1 \
Ay \
X \-o+ab;b+5)
\l
\ - A\
L~
[{ \
\
&
| GERR IS ! \
[ s s e e s e \
2 3 B2 [
3] 2 =
B 3 |~
L % 63 o -
& S \
G [ XX
Figure 2

Let I, be the line passing through the points with coordinates (nb;nc) and
(—c+ nb; b+ nc), whose equation is ¥ — nc = (X —nb)-. Choose n to be
the smallest positive integer such that !, intersects the Y'Y axle in a vertex
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of the large square gride. We note that for such n the positive integer ¥’
is the order of zyz. Let V, be the set of vertices of the large square gride
that belong to l,, that is,

Vp = {(-=mc+ nb; mb+ nc) | m € N}.

Then n is the smallest positive integer such that
O;Y)eVn & nc+ n% =mb+ nc

& n% =meN,

that is, n is the smallest positive integer such that n% is an integer. Hence

ne S
~ (be)
where (, ) stands for the greatest common divisor. Then
b2 +c?

el =Y ="
and so B2 2

2b,0)| = +e

)™= v 2o

is the chirality index of {4,4}sc. o

3.3 The map {3,6}n,c
The map {3, 6}» . has the monodromy group G = (z,y | z° = y* = (zy)® =
(z~'yzy)®(zyz—'y)¢ = 1) so by Corollary 2,
- - G
X({3,6}s.c) = ((zyz " 'y)* (=" yzy)")
Theorem 4 The chirality group of {3,6}, . is cyclic generated by some
“horizontal” translation (zyzyz)b—¢. The chirality index is given by

_ n
SN =T )

where n = b? + bc+ % and d = (b, c).

Proof:
Putting u = zyz~ !y, v = 2~ lyzy and w = zyzyz, we can write

X({3,6}5,0) = ()" .

154



In G we have (z7lyzy)® = (yzyz~!)° & v® = u~°. The following table
gives the conjugates of u, v and w by z, z~! and y.

6| z |z71]| y
w vl |w™l | !
V| w |ul | v]
wl |ut| v |w!

This shows that {u,u~!,»,97!,w,w™!} is a complete system of conjugates.
Conjugating v® = u~° by = and z~! we have w® = v¢ and u® = w~¢. Then
X({3,6}0) = (uv)°
(wh)°
(wb—c, (wz)b-c’ (wx" )b—c, (,wy)b—c)
(wb—c, ub—c, ,vb—c)
(,wb—c’ vb—c)

since wv = u = vw, the chirality group X({3,6}».) is abelian. So we have
ub—¢ = yb—cyyb—c,

Taking the clockwise orientation and starting from dart € as shown below

\VARVAR VARV
/N\N/N/\
Figure 3

the relation (z~!yzy)®(zyz—1ly)° = 1 determines the opposite sides iden-
tification of the dark square shown in Fig. 5. Consider the system of
coordinates XOY with axles making an angle % and with unit vectors e,
and ey. Relatively to the fixed dart & (Fig. 4) the elements w, u and v act
as translations one unit along < e, >, < ez > and < ez —e, >.

YY,

5 (]

AVAVAVAY.
INANANF

Figure 4
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The map {3, 6}, is obtained by identifying opposite sides of the shaded
square in Figure 5). As w, u and v are conjugate to each other, they all
have the same order.

(orSiiot)

Figure 5

The generators w®~¢ and »®~¢ are translations by b — c steps along < e, >
and < e; — e, >, respectively. The line I, passing through the points
with coordinates (nb;nc) and (—c+ bn; b+ c+ nc) has equation ¥ —nc =
(X - nb);_i:. Let n be the smallest positive integer such that !, intersects
the line X = 0 in a vertex of the square tessellation. [, intersects this line
inY = n-"’—'*i‘f'fé. Denoting by V,, = {(—kc+ nb;k(b+¢) +nc) | k € N}
the set of vertices of the square tessellation then n is the smallest positive
integer such that

2 2
(o;y)evnénb_"%+_°=k(b+c)+nc§%=kel\l.

Hence
n=—
(bic)”
This integer Y is the order of w (hence of v), then

| = b2 + be + ¢?
T (b
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and so,
b2 + bc + 2

(b2 +bc+ 2, (b~—c)(b,c))

The word w®~° moves a fixed dart & along a line ! which is, in the square
shaded region, represented by several line segments. The integer (b, c) re-
flects the minimal distance between two these consecutive line segments
(Figure 5). Since (b,c) divides both b and ¢, w® and w® are elements of
(w®)), On the other hand, v* = w® s0 v° € (w®°)), Powering both sides
of the equation wv = u by b we get v* = ubw=b = w=®+9) g ((®)). Hence
the chirality group X ({3,6}.c) = (w®~¢,v%=°) is a subgroup of the cyclic
group {w(®9), so a cyclic group itself. Since a cyclic group C contains only
one subgroup of order k, for each divisor k of |C|, then (wb~°) = (1*~¢)
and hence

=] = [o4| =

X({3,6}s,c) = (wb™°).
Then the chirality index of {3, 6}y, is given by

b2 + bc+ 2

X8kl = "™l = e @ G Sm gy

4 Regular coverings

We have just computed the chirality group and the chirality index of a chiral
Coxeter map H. Yet we have said nothinAg about its smallest regular cover
H, and about the biggest regular map H~ covered by H. It follows from [3]
that if H is chiral with chirality index x then M, with hypermap subgroup
H, is the smallest regular hypermap that covers H and the covering H a —
His smootha On the other hand, the regular hypermap H* with hypermap
subgroup H" is the largest regular hypermap covered by H. The covering
H—H® may be not smooth in general. However, in our case the chirality
group X (H) of H is cyclic generated by some word w. This w is a translation
along a vertical (Theorem 3) or along a horizontal (Theorem 4) line, so
factoring out the chirality group the vertex and face valency (i.e. the type)
of H remains unaltered; in other words, the covering H — A" is smooth.
Thus both H, and H" are toroidal.

4.1 The map {4,4},.

Let H = {4,4}s,c, where b > ¢ > 0. This map has size 4n, where n = b2+4¢2.
As said above, H, and H" are toroidal. As they are regular, they must
be one of {4,4}; ¢ of size 4z% or {4,4},, of size 8y? for some integers z,
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y. Notice that the equation 4z2 = 8y? & 22 = 2y has no integer solution.
This means that if a hypermap H has size 4z then H cannot be {4,4},,
for no y, and vice-versa.

Theorem 5 Let H = {4,4}sc and d = (b,c). If Jr is odd then H, =
{4,4}ax0 and H* = {4,4}a0. If Z is even then H, = {4,4}ax,ax and
H* = {4,4}a,a.

Proof:

Notice that d? divides n, say n = d2z, and the chirality index of H is given

by Theorem 3 -

Tl @)

If z is odd then z = « and so [H, | = [H|x = 4zd?x = 4(dx)? and [H"| =
[ _ 42d® _ 442, and hence H, = {4,4}axp and H® = {4,4}a0. Ifais

even then z = 2% and so [H, | = 4zd% = 8(dx)? and [H"| = £ = 842,
and hence H, = {4,4}dx,ax and H® = {4,4}aq. o

4.2 The map {3,6}b.c

Let H = {3,6}s,c, where b > ¢ > 0. This has size 6n where n = b*+bc+ c?

and chirality index
n

"= -0d)’

where d = (b,c). As above, H, and H" lie on the torus. As they are
regular, they must be one of the maps {3, 6}x o of size 6z2, or {3,6},, of
size 18y2. Similarly, since the equation 6z2 = 18y2 & z2 = 3y? has no
integer solution, if 7 has size 622 then H cannot be {3,6},, for none y,
and vice-versa.

Theorem 6 Let H = {3, 6}1,c and let d = (b,c). If &3¢ # 0 mod 3
then H, = {3, 6}.1,;0 and H® = {3,6}ap. If 52 =0 mod 3 then H,
{3, 6}du,dn and H = {3, 6}d,d

Proof:
Let m = b—c. Thenn = m?2+43cm+3c? and d = (b, ¢) = (m+c,c) = (m,c).
As d? | n, let t = J. Then by Theorem 4,

t
7))

Let 4 = 2 and v = §. Then (,7) = 1 (hence (4%,7) = 1 as well),
d d

K=




t =p? +3yu+3y? and (¢, ) = (37, 1) = (3, ). Thus

We distinguish two cases:

Case (i) (3,4) = 1. Then ¢ = x and we get |H, | = [H|x = 6td?x = 6(dx)?
and [H°| = = & _ 642 Hence H, = {3,6}ax0 and H* = {3, 6}ap.
Case (ii) (3, ) = 3. Then ¢ = 3x and we have |H, | = 6td%x = 18(dx)? and
|H®| = &£ = 1842 Hence H, = {3,6}4n,ax and H" = {3,6}qq. o
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