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Abstract

Deciding whether a graph can be partitioned into k vertex-disjoint
paths is a well-known NP-complete problem. In this paper, we give
new sufficient conditions for a bipartite graph to be partitionable
into k vertex-disjoint paths. We prove the following results for a
simple bipartite graph G = (W4, Vo; E) of order n : (i) For any pos-
itive integer k, if ||V1] — |V2|| < k and de(z) + de(y) > L."fﬂ for
every pair z € V) and y € V2 of nonadjacent vertices of G, then G
can be partitioned into k vertex-disjoint paths, unless k =1, (V4| =
[Vol = 3 and G = K,,, U Kg_,,3-,, where 1 < s < 3 - 1; (ii) For
any two positive integers p) and p2 satisfying n = p, + p2, if G does
not belong to some easily recognizable classes of exceptional graphs,
[IVi| - |V2l| < 2 and de(z) + de(y) = 25 for every pair z € V; and
y € V2 of nonadjacent vertices of G, then G can be partitioned into
two vertex-disjoint paths P, and P of order p, and p2, respectively.
These results also lead to new sufficient conditions for the existence
of a Hamilton path in a bipartite graph.
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1 Introduction

We consider only undirected and simple graphs. For notation and termi-
nology not defined here, we refer the reader to [2]. Let G = (V, E) be a
graph and P a path of G. P is called a Hamilton path if P contains all
vertices of G, and G is called traceable in this case. G is called hamiltonian
if it has a Hamilton cycle, i.e., a cycle containing all vertices of G. The
order of a graph G = (V,E) is |V|. For a positive integer k, if k paths
Py, Py, -+, Py satisfy V(P)NV(P;) = 0 for any i # j, then the paths
are called vertez-disjoint or independent. G is said to be covered by the
paths Py, Py, -+, P if V(G) = V(P)UV(P)U - -+ U V(Py). If k vertex-
disjoint paths Pi, Py, ---, P cover the graph G, we say that G can be
partitioned into k vertex-disjoint paths. Let A be the set of all positive in-
tegers. For any s, t € N, K, represents a complete bipartite graph with s
vertices in one part and ¢ vertices in the other. For any two vertex-disjoint
graphs G, = (V(G,), E(G1)) and G2 = (V(Gz2), E(G2)), the union of G
and Gy is the graph G} U G2 with vertex set V(G,) U V(G2) and edge set
E(G1) U E(G2).

The question whether a given graph can be partitioned into & vertex-
disjoint paths arises in many applications in operations research, logistics
and VLSI design. For example, in a vehicle routing problem we want
to decide whether the routing network can be partitioned into k delivery
paths. It is also known as the hamiltonian completion problem, since if k
is the minimum number of paths a graph can be partitioned into, then & is
also the minimum number of edges we need to add to the graph to make it
hamiltonian. Unfortunately, thé problem is NP-complete even for fixed &
[6]. It is solvable in polynomial time, however, for some special classes of
graphs, see e.g. (1, 3, 4,7, 9, 11].

In the past, the k = 1 case, i.e., determining whether a graph has a
Hamilton path, has attracted the most attention. In 1952, Dirac gave the
first sufficient conditions for a graph to have a Hamilton cycle or Hamilton
path.

Theorem 1 [5] Let G be a graph of order n > 3 . If the minimum
degree 8(G) > %, then G is hamiltonian. Similarly, if the minimum
degree 6(G) > 25, then G contains a Hamilton path.

Ore generalized this result in 1963 by considering pairs of nonadjacent
vertices.

Theorem 2 [10] Let G be a graph of order n. > 3. If dg(x)+dg(y) 2 n for
each pair of nonadjacent vertices z, y, then G is hamiltonian. Similarly,
if dg(z) +da(y) 2 n—1 for each pair of nonadjacent vertices x, y, then
G contains a Hamilton path.
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For bipartite graphs, Moon and Moser [8] obtained the following result.

Theorem 3 [8] Let G = (Wi, Va; E) be a bipartite graph. If |V = |Vo| =m
and dg(z) + da(y) > m+1 for all vertices x € V| and y € Vs, then G
i hamiltonian.

This means that the lower bound on the degree sum sufficient to make a
balanced bipartite graph hamiltonian is only about half of the lower bound
for general graphs.

In this paper, motivated by the preceding theorems, we consider the
problem of partitioning a bipartite graph into vertex-disjoint paths and
obtain the following results.

Theorem 4 Let G = (V},Va; E) be a simple balanced bipartite graph of n
vertices. If G is connected and dc(z) + dg(y) > & for every pair z € V)
and y € Vo of nonadjacent verlices, then G contains a Hamilton path.

Theorem 5 Let G = (W1, Va; £) be a simple bipariite graph of order n
satisfying ||V1| — |Va|| < k, where k < n is a positive integer. If do(z) +
do(y) > "-;é‘i]- Jor every pair x € V) and y € V2 of nonadjacent vertices,
then G can be partitioned into k vertez-disjoint paths Py, Py, .-, P,
unlessk=1, |Vi|=|Vo| =3 and Ge {K;s UKz _532-5|1 <5< 21}

We shall postpone the proofs to the next section. Here we note that the
conditions in Theorem 5 are sharp. The graph Km m+s+1—¢ (s 2 k ) shows
that ||V1|—|V2|| < k cannot be relaxed. For1 < s < 25%—1, the graph K,
U Ka—k_, n+x_, cannot be partitioned into k vertex-disjoint paths, in fact,

nzk gtk g
it can be partitioned only into at least k + 1 vertex-disjoint paths. Thus it
is clear that the right hand side of the condition dg(z) + de(y) > 2=&+1
cannot be lowered by 3 either.

From Theorem 5, we can easily obtain the following corollaries, which
represent extensions of Theorem 3 and 4, respectively, for the Hamilton
path problem.

Corollary 6 Let G = (V4, Vo; E) be a simple bipartite graph of order n
satisfying ||V1| — |Vel| < 1. If dg(z) + de(y) > % for every pair z € V)
and y € Vo of nonadjacent vertices, then G contains a Hamilton paih,
unless G € {KssUKg_s3-s] 1<s< 3 -1}

Corollary 7 Let G = (V1,V2;E) be a simple bipartite graph of order
n satisfying ||Vi| — |Vall < 1. If d(s) +da(y) > B for every pair of
vertices x € Vi and y € V,, then G contains o Hamilton path, unless
G= KQ,.} 0] K.g,%.

By Theorem 5, G can be partitioned into two vertex-disjoint paths if
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dg(z) + de(y) > 251 for every pair z € Vi and y € V; of nonadjacent
vertices and ||V;| — |Vz|| < 2, but we have no information about the lengths
of these two paths. The next result answers this question for the case k = 2.

Theorem 8 Let G = (W1,V2; E) be a simple bipartite graph of order
n > 2 satisfying ||Vi] — [V2|| £ 2. Let py and pa be two positive integers
with n=p) +p2. If G# G* and G does not belong to any of the four
families G1, Go, G3 and G of exceptional graphs, and de(z)+de(y) > 25
for every pair z € Vi and y € Vo of nonadjacent vertices, then G can be
partitioned into two vertez-disjoint paths Py, P» of order pi, pa.

The exceptional graph G* is obtained from K3 by replacing every
edge in it by a path of length two. (G* is a tree with seven vertices and
six edges.) The four families Gy, G2, G3 and G4 of exceptional graphs in
Theorem 8 are defined by

Gi = {KssUK|3)-s[31-sl1 £5< 53] —1for 25 # p1,pa}
Go = {K39+1UKL"“_| s,[25d)- J1 Ss< 2 )J“'l
for 25 +1 % p1,p2}
gs = {GIGC KL;_z_)_r%g for p1,p2 even }
Gis = {G|G is obtained from Km m+1U Knr m by adding
at least one edge between the part of m vertices
and the opposing part of m’ vertices }.

In fact, Theorem 8 is a direct consequence of the following stronger
result which we will also prove in the next section.

Theorem 9 Let G = (V1,V2; ) be a simple bzpartzte graph of order n
satisfying ||Vi| — V|| < 2. If do(z) +da(y) > 252 for every pair z € V;
and y € Vo of nonadjacent vertices, then G contams a Haemilton path
or G=G* or G belongs to one of the four families G{, G3, G3 and G
defined below

g1 = {KesUKiz)-sr31-s|1<s< 3] -1}
gé = {K513+1UK|_"_’J—5[ 'l_a| 1 S l_%l —1 }
G: = {G|G is obtained from Km m+1U Km’ s by adding

at least one edge between the part of m vertices
and the opposing part of m’ vertices }
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2 The proofs

First, we introduce some notation and terminology. We consider only bi-
partite graphs G = (Vi, Va; F) in this section, and for convenience, we call
the vertices z € V) black and the vertices y € Vo white. For any vertex
z € V(G), we denote its neighborhood by N(z) = {y € V(G)|zy € E(G)}.
Let S C V(G), the set of neighbors of z in S is defined by Ng(z) = {y €
S|zy € E(G)}. We also define the degree function in S by ds(z) = [Ns(z)|.
If Plug, up) := uouy - - - up is a path or a cycle (if up = u, ) of the graph G,
we denote by P the path or cycle with the orientation from wp to up, and
by_? the path or cycle with the reverse orientation. If 0 < 7 < 7 < p, then
u; Puj denotes the consecutlve vertices or the subpath of P from u; to u; in
the direction spg:nﬁed by P. The same vertices or subpath in reverse order
are given by u; Pu;. We use ut to denote the successor of u on P and u-
to denote its predecessor. For any path or cycle P with a given orientation
and S C V(P),let St = {z*|z € S} and S~ = {z~|z € S}. Since it is con-
venient to use P both for a path and the vertices V(P) = {uo, 41, -+ ,up}
on it, we will use the short notation dp(x) for dy(py(z).

We start with the following lemma.

Lemma 1 Let G = (V},V2; E) be a bipartite graph and P = z1zo---
ZTom—1Tom a path in G. If dp(zy) + dp(zam) 2 m+ 1, then the subgraph
G[P] induced by V(P) is hamiltonian.

Proof. Suppose z1zo, ¢ E. Give an orientation PtoP by directing it
from z; to z2,,. Then we get

m+1 dp(z1) + dp(zom)

[Np(z1)| + |Np(z2m)|

INp(z1)~| + [Np(z2m)|

INp(z1)™ U Np(z2m)| + | Np(z1)™ N Np(z2m)l

{z1, 3, , Zam-3, T2m~1}| + |[Np(z1)™ N Np(z2m)|
m+ |Np(z1)™ 0 Np(Zom),

BIA I HIA

which leads to |Np(z1)™ N Np(zom)| 2 1, i.e., there exists an integer
ie{l,2,:..- ,m} such tha.t Z2i—1Tm, Z2iT1 € E. So G|P] has the Hamilton

cycle C =z, P T2i—1T2m P Z9;T), i.e., G[P] is hamiltonian.
=

The proof of Theorem 4

Assume, contrary to the theorem, that G has no Hamllton path. Extend
G into the balanced bipartite graph G’ = (V;,V; E’) by letting V;, =
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Viu{z'}, V, = U {y'} and E' = EU {z'yly € Vo} U {zy/|z € 1},
where z/,y' ¢ V1 U V5. It is easy to see that G’ satisfies the conditions of
Theorem 3, and thus it is hamiltonian. Deleting z’ and %’ from a Hamilton
cycle of G’, we obtain a partition of G into two even paths P} = z1y;...Tkyk
and P = uyv...uv;. We can assume without loss of generality that P, is
the longest possible among such partitions and z;,u; € V3. Since G is not
traceable by assumption, we have P, 3 0.

The induced subgraph G[P,] is not hamiltonian, since otherwise, using
the fact that G is connected, we could easily find a path partition P,,Pz
where P1 is longer than P;. Therefore, z1yx ¢ E and dp, (z1)+dp, (yx) < k,
by applying Lemma 1 to G[P,]. It also follows from the assumption of
maximality for Py that dp,(z1) = dp,(yx) = 0. Adding the inequality to
this, we get do(z1) + de(yk) = dp,(z1) + dp,(z1) + dp, (yk) + dp, (y) <
k < %, a contradiction.

|

The proof of Theorem 5

We distinguish three cases in the proof.
Case 1. n—kiseven

Assume without loss of generality that {Vi| = (n -~ k)/2 + [ and |V2| =
(n—k)/2+ (k1) for some ! € [0, k]. Extend G into the balanced bipartite
graph G’ = (V] , Vo E') by addmg k — ! vertices to V} and ! vertices to Va,
and adding every edge from (V;\V;) to V, and from (V,\V2) to V. Then
we have dg/(z) = dg(z)+1 for z € V] and dg/(y) = de(y) +k—1 for y € V5.
Therefore, do!(z) + doi(y) = de(z) +de(y) + k > (n - k+1)/2+k =
(Vi + V2 +1)/2, which imply that de(z) + dor(y) 2 (Vi |+ [Va])/2+1
since |V | + |V, | is even and dg(z) + dg(y) is integer. So G’ satisfies the
conditions of Theorem 3. Thus G’ has a Hamiltonian cycle C. Deleting the
newly added k vertices from C yields a partition of G into k paths.

Case 2. n—kisoddand k> 1

Assume without loss of generality that |Vij| = (n — k —1)/2 4+ and
V2| =(n~k-1)/2+ (k —l+l) for some 1 € 1, k-—l] Extend G into
the balanced bipartite graph G’ (Vl, Vz,E) by adding k — [ vertices
to V1 and ! — 1 vertices to, V3, and adding every edge from (V1 \W) to
V, and from (V,\V2) to V,. Then we have dg/(z) = dg(z) + 1 —1 for
z € V) and dGl(y) dc(y) + k — 1 for y € Va. Thus, dGr(.’L‘) + do(y) =
de(2)+do(y)+h—1 2 (n—k-+1)/2+k~1 = (n+k—1)/2 = (Vi 1+1V;1)/2.
As G’ is connected by construction, it satisfies the conditions of Theorem 4.
Thus G’ has a Hamilton path P. Deleting the newly added k — 1 vertices
from P yields a partition of G into k paths.
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Case 3. n-kisoddandk=1

In this case, n must be even and thus G is a balanced bipartite graph.
If G is connected, then Theorem 4 implies that G has a Hamilton path.
If G is not connected, we can partition G = (W}, V5; E) into two vertex-
disjoint subgraphs G; = (X1, Y1; E1) and Gy = (X3, Y2; E2) with no edge
between them and satisfying V) = X; U X3 and V5 = Y} UY>. We have
Z1Yy2, Toy1 € E(G) for any z1 € Xy, z2 € Xa, y1 € Y1, y2 € Y2 and thus

3 < do(@1) +da(ve) < Y] + X

and
< de(z2) + do(w) < |Yo| + | Xl

Combining the two preceding inequalities with | X, |+ |X2|+|Y1|+|Y2| = n,
we get

N 3

n < (da(z1) +da(y2)) + (do(z2) + da(11)) < V1| + | Xz| + Yo |+ | Xi| = n.

So all inequalities hold as equalities, i.e., [Y1]| + [X2o| = [Y2| + |X1]| = 5,
which implies that Gy and G» are complete bipartite subgraphs of G. Since
G is balanced, |Xi| + | X2| = |Y1| + |Y2| = 5, and thus |X,| = |Y1| and
|X2| = |Y2|. Hence, Gy = (X1,Y1; 1) and Ga = (X2,Y2; E2) are both
complete balanced bipartite subgraphs of G(V;, Va; E), i.e., G is one of the
exceptional graphs described in our theorem.

The proof of Theorem 9

We distinguish two main cases in the proof.

Case 1 G is connected

Assume that G contains no Hamilton path. By Theorem 5, G can
be partitioned into two vertex-disjoint paths P = z1z2---zp and Q =
Y1Y2 - - Yq, Where p + g = n. We can assume without loss of generality
that g is as large as possible . We direct P from z; to z, and denote by
it P. Similarly, 5 is Q oriented from y; to y,. Let G[P] and G[Q)] be
the subgraphs of G induced by V(P) and V(Q), respectively. We shall
distinguish two subcases.

Case la G[Q)] is hamiltonian

In this case, there is no edge between G[P] and G[Q), since otherwise
we could easily construct a partition of G into two paths with a longer g,
contradicting our assumption. This, however, contradicts the fact that G
is connected.
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Case 1b  G[Q)] is nonhamiltonian

(i) Suppose p and g are both even

In this case G must be balanced and n = p+ ¢ is even. Thus the degree
conditions of the theorem are equivalent to dg(z) + da(y) = % for every
nonadjacent pair z € V},y € V2. By Theorem 4, however, G would have a
Hamilton path, a contradiction.

(i) Suppose p and g are both odd
Note that z; and z, are of the same colour and y; and y, are also of

the same colour in this case.

(ii-1) If z; and y; are of diflerent colour, then G must be balanced,
and the same argument as in (i) leads to a contradiction. Thus this case
cannot occur.

(ii-2) If z1,zp, y1 and yq are all of the same colour, then, without loss
of generality, we may assume that they are all black. So we can obtain

the vertex pa'rt’ition 1/1 = {11,233, o Tpy Y1, Y3, -yq}, 1/2 = {I2,$4,
ve  Tp—1,Y2, Y, -+ ,Yg—1} and G C Kgizg—ﬂ’zf_gig. Therefore G € Gj.

(iii) Exactly one of {p, q} is odd

We may assume without loss of generality that both z; and y; are black.
We must have Np(y;) = Np(yq) = 0 by the maximality of Q.

(iii-1) p is even and q is odd

If there was a vertex z € Ng(zp) N No(11)~, then yqaz ylazz:p«ﬁxl
would yield a Hamilton path in G, so Ng(zp) N NQ(yl) = (. This implies
do(zp) < 9— —dg(y1)—1 (the -1 for y,). Substituting these and dp(zp) <
£, we obtam

-1 -1

da(zp) + da(y1) = dp(zp) + do(zp) + do(y1) < 5 + T = T’
which by the assumptions of the theorem means that equality must hold
everywhere, i.e, dp(zp) = p/2 and dg(zp) + dg(y1) = 9—}-1- This implies
that z, is connected to every black vertex on P, in particular z,z, € E.
If p > 2, then this means that G[P] is hamiltonian. We show next that
this is not possible: Suppose z1z, € E, then il we had a z € Np(y2)

—

this would imply the existence of the path yq(C_ngzl_’)x,,:rle‘, which is
longer than Q, contradicting the definition of @. Similarly, if we had a
z € No(z1) N No(y2)~, then we again could find a path longer than Q, so
Ng(z1) N No(y2)~ = 0. This implies dg(z1) + dg(¥2) < 9-— and

q- n-1

do(m1) +do(v) = dp(®1) + da(e1) +dalaa) < § + 15— = =5,

168



which using the assumptions of the theorem means that dp(z;) = p/2 and
do(z1) +do(y2) = 9;—’- Thus [rom every consecutive pair (yo;, y2i+1) (1 <
1 < 9;—1) exactly one must be a neighbor of z; or ys. In particular, since
Z1Yq-1 € I would again yield a path longer than Q, we must have oy, € E.

Now suppose that there is a z € Ng(z1), then xp‘lsxlz_Q*yqyg—Q»z‘ would
be a longer path than Q, so Ng(z;) = 0. As G[P] is assumed to be hamil-
tonian, the path on G[P] could start in any black vertex of P and we
could repeat the above argument for this vertex. Therefore, no black ver-
tex of P can have a nelghbor on_)Q Similarly, if we had a black vertex
z € Ng(zp), then $1?$p2quJ2 Q 2z~ would be a longer path than @, so
z, does not have a neighbor on Q either. Using again the hamiltonicity
of G[P)], this applies to every white vertex on P. This, however, contra-
dicts the assumption that G is connected, so we cannot have z;z, € E if
p > 2. Since dp(z1) = p/2 implies z1z, € E, we must have p = 2. Further-
more, if there was a vertex z € Ng(z2) N Ng(y,) ™, then zlzgzayqz'ayl
would be a Hamilton path in G, so Ng(z2) N No(y,)™ = 0. This implies
do(z2) < 9—— dq(yg) —1 (the -1 for ¥1) and from the degree conditions
of the theorem, dg(z2) + dg(y,) = %5~ This again means that from every
consecutive pair (y2i,y2i+1) (1 £ < 9;—1) of vertices exactly one must be
a neighbor of z3 or y,.

Suppose that z; has a neighbor on @ and let y2;41(1 < j < 9—;—3)
the first of these. Then it follows from the above observations that yo;y, ¢
E,y1y2j4+2 ¢ E. Furthermore, il § > 1 then, by the definition of j, zoy2;-1 €
E and thus Y2j-2Yq € E a(n_d y1y2; € E. This, however, yields the Hamilton

path z1Zay2;41 Quqy2;-2 QY1¥2;¥25—1, & contradiction. Therefore j = 1,

ie., z2y3 € E,y2y, € E, y1ya ¢ E. We cannot have z,y2 € FE, since this

would yield the path zoz;y2 Q Yq,» Which is longer than Q, contradlctmg its

maximality. We have z,y, ¢ E, since otherwise y1y2y3Z2T1y4 qu would

be a Hamilton path in G. Suppose that dg(x;) = 0. Then since ¥y, ¢ E,
g+1 n—1

-1
ot Sdo(m)+do(m) = 1+dolw) S 1+ 102 1=,

implying that yoys € E, unless ¢ = 5. Similarly, since y1y4 ¢ E,
q+1 n—1

-1l=—

2 2’

n_z__ <dg(z1)+do(ys) =1+do(ys) <14 ——

implying that y4y, € £. However, this yields the path z112y3y2y56yqy4,
which is longer than @, a contradiction. So we must have dg(z1) > 0. Let
k be the smallest index for which z;y2« €, E. Note that k > 2. We have

zoyak—1 ¢ E, otherwise ylaygk_lzg:z:lygk Qyq would be a Hamilton path.
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Since zoyak—1 ¢ E, we must have yox_2y, € E, but then we have the path
- —

Z1Y2k QYqY2k-2Qy1, contradicting that @ is longest possible. In summary,
zo cannot have a neighbor on @ if ¢ > 5. But this then implies

n_z___ < dg(z2) + do(y2iv1) = dp(22) + do(y2i+1) S 1+ % = Tl,
for0<i< 9;—1 Thus G[Q)] is isomorphic to Kg_;l,ql, ie, Gegy.

If ¢ <5 and dg(z2) > 0, then it is easy to see that ¢ = 3 would
yield a Hamilton path, so we must have ¢ = 5. In this case, zoy3 € F is
the only edge between z; and @. Any edge from z; to @ would yield a
contradiction with the maximality of @, so G must be isomorphic to the
exceptional graph G* of the theorem.

(iii-2) pis odd and q is even

Since we have assumed that z; is black, we have more black vertices
on P than white ones, so dp(.'cl) < 2'—1- If we had a vertex z € Ng(z;) N

No(yq)*, then :c,,lezquz le would yield a Hamilton path in G, so
Ng(z1) n Ng(yg)* = 0. This implies do(z1) < § — dg(y,). Substituting
this, we obtain
-1 q n-1

da(z1) + da(yg) = dp(z1) + do(z1) + dolye) < T te =5

By the degree conditions of the theorem, we must have equality ev-
erywhere, i.e., do(z1) + do(y,) = #. Thus every pair of consecutive po-
sitions y2;-1,32; on Q (1 < 7 < ¢/2) must contain a neighbor of z; or
a neighbor of y4, but not both. This also implies that z;y, € E, since
Y1Y¥q ¢ E. By the maximality of @, then we must have p = 1. Also note
that we can substitute 7; for z; in the argument, since z,y2 € E, so
every pair of consecutive positions y2;-1,%2; on Q (1 < j < ¢/2) also con-
tains exactly one neighbor of ¥; or one neighbor of y,. It also follows that
from every such pair of consecutive positions, ; and 4; have exactly the
same neighbors. Let s be the largest index for which z,yo; € E. We also
have y1y2; € F and yay2,—1 ¢ E(G). Note that ¥3Yq ¢ E, since other-
wise we would have the Hamilton path :r:lygylyngyqyg Qst 1. By our
above observation about consecutive positions, this implies z,y4 € F and
v1ys € E. Similarly, ysy, ¢ E, since otherwise we would have the Hamil-
ton path x1y25y4y1y235yqy55y23_1. Again, this implies z;y6 € E and
yye € E. Continuing with this argument in a similar fashion, we obtain
that yg—1yq ¢ E for 1 < j < s and y9; is a neighbor of z;, and ;.
Thus, [Ng(z1)] = |Na(y1)| = s. Since de(v1) + de(y,) = £, it follows
that dg(yq) = £ — s. Therefore, No(ys) = {¥2s+1,92543, .-, ¥g—1}. If we
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had an edge y2,+1y2, for some 1<i<s—-land s+1<j <4, then

Y2i+125 @Yq¥2i—1 QUair2tn Qy2is1 would be a Hamilton cycle in G[Q] so
none of these edges exists. Ilence for any w € {z;,y1,¥3,...,¥2s—1} and

z € {Y2s42,Y2s+4, -, Yq} We have wz ¢ E. Applying the theorem’s degree
conditions for any such w, we get 251 = £ < dg(w)+de(yg) < s+i-s= 1,
implying dg(w) = s. We can similarly get dg(z) = £ - s.

In summary, we have proved that G[{z}, 1,3, .. ws-l}U{yz, Ya oy Y25 }]
s+l,s and G[{y2s+1: crey 'yq—l} U {y23+2, <y yq}] q/2-—s,q/2-—s Thus,
G is the union of K1, and Ky/9_s,4/2—s With the additional edge y2,y25+1,
ie., Gegs.

Case 2 G is not connected

We note that it is clear that G cannot have a Hamilton path in this case,
but we have to deal with this case in order Lo obtain the claimed character-
ization of the extremal graphs in the theorem. Let Gy = (X}, Y1; E1) and

= (Xq, Ys; E3) be the partition of G into two disjoint subgraphs with
Vi = XU X3 and V, = Y, UYs. Since ||V1] - |V2|| < 2, we assume, without
loss of generality, that |V3| < V2| < [Vi] + 2.

For any verticesz € X1, y€Y),s€ Xoandt €Yo, we havezt, ys ¢ E
and thus,

IYil + 1Xa| 2 do(e) + do(t) 2 25+ 1)
and )
Xl + [Yal 2 de(y) + do(s) 2 “5— (2)

For even n, this implics

Vil + X2l 2 do(@) +da(®) 2 5, Xl + 1%l 2 do(w) + da(s) 2 3,

from which n = |X;| + |Yi| + |X2| + |Y2| 2 n. So all inequalities hold as
equalities, i.e., G1 and G2 are two complete btpartlte graphs, and |X;| +
¥l = [Yi] + | Xo| = 3

Since |V1| < |V £ |V1|+2, we get either Wl=|Vo|=For W|=%-1
and |V3| = % + 1. When |Vj| = V3] = %, we have

n
| X1l + Y| = | X1| + | X2| = V1| + | Xo] = V3| + |Y2| = >

implying that | X,| = |Y1]| and | X2| = [Y2|. S0, G = KnmUK| 3 |-m,[2]-m:
where 1 <m < |3] —1,ie, Gegy.

When |Vi| =% —1and [V = § + 1, ie, |Vo| = [V1]| + 2, we get
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n n
Xal+ |Yal = 2,15 +1Xel = 5 = L, W]+ [Xol = 5, Wl + Yl = 5 - 1,

which imply that |Y;| = |X,|+ 1 and |Y2| = [X2| + 1. So, G = Kmm+1 U
Kl 1,252 ]—m where 1 <m < ["—;—IJ —1,ie,G€Gs.

For odd n, we cannot have |Vi| = [V2] or |V,| = |V1| + 2, so we get
[Vi] = 25! and |Vo| = 242, Using (1) and (2), we can get
n—1 n-—1
|X1|+|Y2|ZT, |X1|+|X2|=—§—
and n—-1 n+1
Wil + X2 2 ——. Yi| + Yol = ——,

these imply that |Xs| < |Y2| € |X2] + 1. When |X3| = |Ya], we get G =
Kmm U K3 j-m,[23]-m; where 1 <m < |}] —1,ie., G € Gi; and when
Y2| = |X2|+l we get G = Kyt U Kln-xj [ 251 where 1 <m <

|25t -1, ie, GG

Ll—m»

This completes the proof of Theorem 9.
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