Determining a permutation from its set of reductions

by John Ginsburg

ABSTRACT For any positive integer n, let S, denote the set of all
permutations of the set {1,2,...,n}. We think of a permutation just as an
ordered list. For any pin S, and for any i < n, let p | ¢ be the permutation
on the set {1,2,...,n — 1} obtained from p as follows: delete i from p and
then subtract 1 in place from each of the remaining entries of p which are
larger than i. For any p in S, we let R(p) = {q € Sp-1 : ¢ =p | i for some
i < n}, the set of reductions of p. It is shown that, for n > 4, any p in S,
is determined by its set of reductions R(p).
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For any positive integer n, let S, denote the set of all permutations of
the set {1,2,...,n}. We think of a permutation just as an ordered list, and
a permutation is displayed simply by listing its entries in order, sometimes
with commas between them for clarity.

Let n > 2, and let p € S,,. For any 7 < n, let p | i be the permutation
on the set {1,2,...,n — 1} obtained from p as follows: delete ¢ from p and
then subtract 1 in place from each of the remaining entries of p which are
larger than . Thus p { 7 is an element of S,_;, which we call the ’th
reduction of p.

To illustrate, let n = 5 and let p = 53412. We then have
pd1=4231, p|l 2=4231, pl 3=4312, pl 4=4312, pl 5 = 3412,

This example shows that the reductions of a permutation are not nec-
essarily all distinct.

For any p in S, we let R(p) = {q € Sp~1 : ¢ = p | i for some i < n}.
The set R(p) is called the set of reductions of p.

For our example above, with p = 53412, we have R(p) = {4231, 4312, 3412}.

The main question we consider in this paper is the following:

Is a permutation determined by its set of reductions?

We will show that the answer is yes for n > 4, and we will describe a
simple procedure for determining p from its set of reductions R(p).

We note that this result fails for n = 4. If we let p = 3142 and ¢ = 2413,
then p and ¢q are two different permutations with the same set of reductions
R(p) = R(q) = {213,231,312,132}.
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Deleting one entry 1, in all possible ways, from a permutation on {1,2, ...,n},
to create various n — 1-permutations, is of course a very commonly used
idea. Recent papers in coding theory [7] and permutation graphs [4], [5]
use these one-element deletions. By subtracting 1 from each of the entries
which are larger than ¢, we are just creating a standardized version of the
one-element deletion, so that it becomes an n — 1-permutation on the “stan-
dard n — 1-element set” {1,2,...,n —1}. The n reductions of a permutation
on {1,2,...,n} can be thus be thought of as being the n one-element dele-
tions, up to isomorphism. This form of reduction is employed in [11], pages
85-86, in an inductive description of the Schensted correspondence.

The problem we are considering here can be viewed as a simple type
of reconstruction problem, in which one attempts to reconstruct an object
from its one-element deleted sub-objects. While this type of problem is
perhaps most familiar for graphs(see [1]) and ordered sets(see [10]), a re-
cent paper on reconstructing subsets of the plane [9] includes references to
reconstructing codes, sets of real numbers, sequences and geometries. We
refer the reader to [2], [6] and [8] for interesting recent work on reconstruct-
ing sequences from subsequences.

Before proceeding further, we emphasize that we are not considering
here the multiset of reductions of a permutation p, in which each reduction
would be included as many times as it occursin thelist p | 1,p | 1,...,p L n.

In our proof that a permutation p is determined by its set of reductions
R(p), there are two basic steps: we show that the position of the entry n
in p is determined by the set R(p), and, letting p — n denote the element of
Sn-1 obtained by deleting n from p, we show that the set of reductions of
p—n is also determined by R(p). The result then follows by induction. We
will establish these facts by means of a number of lemmas. In connection
with part (vi) of Lemma 1 below, we note that, for any p in S,, and for
any t <n, pliisan element of S;,_; and so (p | %) | j is defined for all
j £ n—1. We will usually omit the brackets in referring to this iterated
reduction, denoting it simply by plil j.

As basic notation for exhibiting a permutation p € S, we will write
P(1),p(2), ...,p(n) or alternately pyps - - - pn to indicate the entries of p. In
using such notation, we thus write p(¢) = k or p~1(k) = i to express the
fact that the integer k occurs in the #’th position of p. We will also let
P°PP denote the permutation obtained by listing the entries in the opposite
order from which they are listed in p. Thus, for p = 35124 in S5, we have
poPP = 42153.
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Lemma 1. Let n > 2 and let p € S,.
(i) Let 1 € i < n. Then we have p°?P | i = (p | ©)°PP.

(i) pln=p-n.
(iii) Let 1 < 7 < n and suppose that ¢ and i + 1 occur consecutively in p.
Thenpli=pl (i+1).

(iv) Let ¢ and j be positive integers such that 4,7 <n. Thenpli=plj
if and only if the segment of p from ¢ to j (including ¢ and j) is either
an increasing sequence of consecutive integers or a decreasing sequence of
consecutive integers.

(v) Let ¢ = |{k : p(k) and p(k + 1) are consecutive integers}|. Then

|R()| =n—c.

(vi) For any positive integers 7 and j with ¢ < j < n, we have
plili=plil(i-1).

Proof: (i) and (ii) are obvious. To verify (iii), note that, if ¢ and 7 + 1 occur
consecutively in p, then both p | i = p | (i + 1) can be described as follows:
replace the pair of entries {i,7 + 1} by the single entry ¢ and then subtract
1 from all other entries which are larger than i.

The implication from right to left in (iv) follows from (iii). For the con-
verse, assume that i < j and that p | i = p | j. By part (i), it is sufficient
to consider the case when i is to the left of j in p. Suppose ¢ = p(k) and
j = p(l) where k < I. Note that the k’th entry of p | j is . Therefore the
k’th entry of p | i is i. But this latter entry is either p(k+1) or p(k+1) -1,
depending on whether or not p(k+ 1) is larger than i. Since p(k + 1) is not
i, we must have { = p(k + 1) — 1, and we see that the entry immediately
following 7 in p is ¢ + 1. Continuing in this way (or, equivalently, using
induction on the number of entries of p between ¢ and j), we see that the
segment of p from i to j consists of an increasing sequence of consecutive
integers.

To verify (v), consider the equivalence relation ~ defined on the set
{1,2,..,n} by i ~ j < the segment of p from 4 to j is either an in-
creasing sequence of consecutive integers or a decreasing sequence of con-
secutive integers. Suppose there are exactly ¢ different equivalence classes
C1,Cs,...,Cs. By (iv) we have |R(p)| =t. Let S = {k : p(k) and p(k + 1)
are consecutive integers }. For any r, the class C; contains exactly |C,| -1
elements of S. Summing over r gives the size of S, namely n —¢.

(vi) Suppose i < j. By part (i), it is sufficient to consider the case
when ¢ is to the left of j in p. In the following illustrations, we will let
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z1,%2 and z3 denote integers which are > j, and we will let 3,72 and y3
denote integers which are between 7 and j. When the operations p | ¢ and
p | j are applied, it is only integers which are larger than > j and integers
which are between ¢ and j which are reduced. In illustrating the result of
applying two operations successively below, we consider the three segments
into which p is divided by 7 and j. In each segment, we illustrate only
entries z for which z > j and entries y for which { < y < j. Note that
any of the three segments of p may contain none or one or both types of
entries. Also note that, in each segment, any z’s and y’s which appear can
be in any relative order. For our purposes, the order in which these entries
appear is not important — it is how these entries change in place. All the
other entries of p are left in place unchanged. We will use the symbol o
to indicate an empty spot from which an entry has been deleted. In the
following illustration, we show p in the top row and then the result of first
applying | j and then | i.

N R cogn ceej oexg ceeys
li

TS B coii eeZg =1 eeetp cei0 ceezg—1 eeeyg
li

ey =2 cooyp—1 -0 ceixp =2 coeyp—=1 o0 cioxg—-2 ...y3—1

Similarly we next illustrate the result of first applying | ¢ to p and then
1 (j = 1). As we see, the result is the same.

- Ty <o PR SERREY 23 creyo -.-j ERRY ) cie¥ys

li

ceezy —1 ...yl_l cov0 coexg—1 ...y2_l ...j_l cevzg—1 ...ys_l

li=1

..z|_2 ...y]_l “.e.0 ...3;2_2 ...yz_l .Y ...33_2 ...ya_l
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Lemma 2. Let n > 5 and let p and g be elements of S, such that
R(p) = R(g). Then the entry n occurs in the same position in p as it
does in q.

Proof: Equivalently, we show that the position of n in p can be determined
from the set R(p). Let us first make some preliminary observations on the
possible positions which the entry n — 1 might occupy among the various
members of R(p). We will let Z, = {¢}(n - 1) : ¢ € R(p)}. Obviously
the set Z, is determined by the set R(p).

If p~'(n) = 1 then n — 1 is the first entry of p i for i = 1,2, ...,n - 1,
and, in p | n, the position of n — 1 is one smaller than its position in p.
So in this case we either have Z, = {1} (when n — 1 is the second entry
of p), or Z, = {1, 5} for some j > 1(when n — 1 is not the second entry of
p). Similarly, when n i$ the last entry of p, we either have Z, = {n — 1} or
Z, = {j,n — 1} for some j <n —1.

Suppose n is neither the first nor last entry of p, but occurs in position
r for some integer r such that 1 < r < n. If { is any integer which lies to
the left of n in p, then n — 1 is in position 7 — 1 in the reduction p | . If
i is any integer which lies to the right of n in p, then n — 1 is in position 7
in the reduction p | i. The position of n — 1 in p | n is either the same as
the position of n — 1 in p (when n — 1 is to the left of n in p), or one less
than that position (when n — 1 is to the right of n in p). So in this case, we
either have Z, = {r -~ 1,7} for some r with 1 <r <n, or Z, = {j,r— 1,7}
for some r with 1 < r < n and for some j distinct from both r and » — 1.

Thus for any p in S,, Z, must be one of the following sets: {1},{n —
1},{1,n—-1},{1,j} for some j with 1 < j < n—1, {j,n—1} for some j with
1<j<n-=1,{r=1,r} for somer such that 2 < r <n-1,{j,r — 1,7}
for some r with 1 < r < n and for some j distinct from both r and r — 1.
These possibilities are listed so as to be mutually exclusive. To show that
p~1(n) is determined by the set R(p), we proceed as follows: given the set
R(p), we find the corresponding set Z,. It will be one of the 7 kinds of sets
just listed. We will show that the position of n in p can be determined in
each case.

The case when Z, is a one-element set requires very little thought. If
Zp = {1} then n must be the first entry of p - if n was in any other position,
the above remarks show that Z, would have to be one of the other 6 kinds
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of sets. Similarly, if Z, = {n — 1} then n must be the last entry of p.

Next, suppose Z, has two elements. We distinguish several possibilities
here. If Z, = {1,j} for some j with 2 < j < n — 1, then n must be the
first entry of p : n could not be the last entry in p because n — 1 is not
an element of Z, and n could not occupy a position r with 1 < r < n,
since, as remarked above, in this eventuality the set Z, would contain two
consecutive integers.

If Z, = {1,2} then n could not be in any position 7 in p with r > 2.
This is clear for r = n, because n — 1 is not an element of Z,. If n were
in position r for some r such that 2 < r < n then r would be an element
of Z,. This isn’t possible, since 7 > 2. So n must be the first or second
element of p. We have to show that one of these two positions is ruled out.
Inspecting the elements of set R(p), we determine in how many of these the
entry n — 1 is in the first position. Let s denote the number of elements of
R(p) in which the entry n — 1 is in the first position. Note that s > 1.

If s =1, then n must be in position 2 of p. To see this, we just need to
show that it could not be in position 1 in p: if it were, then n — 1 would be
the first entry in every one of the reductions p | i, for ¢ < n. Since s =1,
these reductions must all be equal to one another, which implies, by part
(iii) of Lemma 1, that the last n — 1 entries of p are either in consecutive
increasing order or consecutive decreasing order. But n — 1 could not be
the last entry of p, because n — 1 is not an element of Z,, and n — 1 could
not be the second entry of p, because this would imply that Z, = {1}.

Now suppose that s > 1. Now, let us show that n must be the first entry
of p. To see this, we only need to show that n could not be the second entry
of p. Suppose it was. Well, then n — 1 could not be the first entry of p: if
p=n-—1,n,p;3,.... then, for any i ¢ {n — 1,n}, n — 1 is not the first entry
of p | 7, and so the only elements of R(p) in which n — 1 is the first entry
areplnandpln—-1 Butpln=pln-1,sincen and n — 1 are
consecutive in p. So there is only one element of R(p) with this property.
This is contrary to s > 1. So the first entry of p would be some integer m
with m # n — 1. But then the only integer i for which n — 1 is the first
entry of p | ¢ is ¢ = m, which is again contrary to s > 1.

By applying the preceding arguments to p°?? we see that the position
of n in p is also determined when Z, is {j,n — 1} for some j such that
1<j<n-2and when Z, = {n—-2,n-1}.

Let us next consider the case when Z, = {1,n — 1}. In this case, n
cannot occupy any position r in p for which 1 < r < n, since the set Z,
does not contain two consecutive integers r,7 — 1. So n is either the first
or last entry of p. This accounts for one element of the set Z,. The second
element of Z,, is the position of n — 1 in p l n = p —n. So, in order to have
Z, = {1,n — 1}, we must either have n first in p and n — 1 last in p, or
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vice-versa. We need to show that one of these(and therefore the position
of n in p) is determined by the set R(p). Clearly |R(p)| > 2. If |R(p)| > 2
then either there are 2 elements of R(p) in which n — 1 is the first entry or
2 elements of R(p) in which n — 1 is the last entry. If it is the former, then
n must be the first entry of p: the only other possibility is to have n — 1
first and n last in p. But this would imply that the only element of the set
R(p) in which n — 1 is the first entry is p | n, contrary to our assumption
that two such elements exist. Similarly, if there are 2 elements of the set
R(p) in which n — 1 is the last entry then n must be the last entry of p.
On the other hand, what if |R(p)| = 2? In this case, Lemma 1(v)
implies that n — 2 consecutive pairs of integers occur in the permuta-
tion. We know that {n — 1,n} is not one of these pairs, and so the
integers {1,2,...,n — 1} must all be consecutive. So p must be either
n,1,2,3,..,n—1 or n—1,n-2,..3,2,1,n. We can easily determine
which(and therefore the position of n) from the set R(p): if R(p) has an
element in which the entry n — 2 is last, then p must be =,1,2,3,...,n—1.

The last remaining possibility to consider when Z, is a two-element set
is when Z, = {r — 1,r} for some r such that 2 < r < n —1. In this case, n
must be in position r in p. For any position other than r, it is clear that
Z, would be a set different from {r — 1,7}.

Finally, we consider the case when Z, is a three-element set. As we saw
above, in this case we have Z, = {j,r — 1,7} for some r with 1 <7 <n
and for some j distinct from both r and 7 — 1. Here r is the position of n
in p and j is either the position of n — 1 in p (when n — 1 is to the left of n
in p), or one less than that position (when n — 1 is to the right of n in p).
So Z, is a three-element set which contains two consecutive integers and a
third integer which may or may not be consecutive with the other two. If
Z, does not consist of three consecutive integers, then the position of n in
p is easily determined: it is the larger of the two consecutive integers in Zp.
So let us assume that Z, = {i — 1,4, + 1} for some integer 7. The position
of n in p must either be 7 or i + 1. We need to show that one of these is
determined by the set R(p). If the position of n is i, p would have the form

(1) ""z’n::‘hn_la"
If the position of n is i + 1, p would have the form
(2) "’,"—1,93,71,%"'

In both cases the displayed elements denote four distinct, consecutive ele-
ments of p.

In (1), there are at most two elements in the set R(p) in which n —2 is
to the left of n — 1, possibly p { n and p | n— 1. Similarly, in (2), there are
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at most two elements in the set R(p) in which n — 2 is to the right of n — 1.
So, if we inspect the set R(p) and find there are at least 3 elements in R(p)
in which n — 2 is to the left of n — 1, the position of n in p is determined to
be i + 1, the largest element of Z,. And if we inspect the set R(p) and find
there are at least 3 elements in R(p) in which n — 2 is to the right of n — 1,
the position of n in p is determined to be %, the middle element of Z,. If
|R(p)| > 4, one of these two will apply by the pigeonhole principle. So we
may assume that |R(p)| < 4. Now |R(p)| > 3, since |Z,| = 3. Therefore
either |R(p)| = 3 or |R(p)| = 4.

If |R(p)| = 3 then in (1) we must have y = n — 2, since otherwise the
four reductions p L z,p L n,p l y,p J n — 1 would be four distinct elements
of R(p) by part (iii) of Lemma 1. Similarly, in (2), we would have z = n—2.
So we need to see that, in this case, the set R(p) distinguishes between
a --,znn-2n-1,--- and

2y - ,n-1,n-2,n,y,---

In (1'), in two of the three elements of R(p) we have n — 1 to the left of
n—2(plzand pln—2), whereas in (2'), in two of the three elements
of R(p) we have n — 1 to the right of n — 2 (p L y and p | n — 2). So R(p)
determines the position of n accordingly.

Finally, we consider the case when |R(p)| = 4. As noted above, if R(p)
has three elements having n — 1 and n — 2 in the same relative order, then
the position of n can be determined. So we may as well suppose that n — 1
is to the left of n — 2 in two of the elements of R(p), and to the right of
n — 2 in the other two elements of R(p). This implies that (1) above could
only occur with y # n — 2. For, if y were equal to n — 2, then p | n would
be the one and only element of R(p) in which n — 1 is to the right of n — 2.
Similarly, (2) above can occur only with z # n — 2. Thus we have either
1y --,z,nyn-1,--- withy#n-2or

2 ---y,n-lz,n,y, - withz#n-2.

Since R(p) has exactly 4 elements, in both cases we have R(p) = {p ! z,p |
n,pl y,p 1 n — 1}. Reading from left to right, the positions occupied by
n — 1 in each of these four elements of R(p) are i — 1,7 + 1,4,7 in (1) and
1,4 — 1,1+ 1,7. Note that n — 1 has the smallest position only once, and
the largest position only once.

In (1) the two elements of R(p) where n—1 is to the right of n —2 must
beplnand pl n—1. Since y # n — 2, this implies that n — 2 must be
to the left of n. Now, since |R(p)] = 4, Lemma. 1(v) implies that p consists
of 4 segments of consecutive integers. Since we know that n,y and n — 1
are not adjacent to any integers consecutive to themselves, these individ-
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ual integers constitute 3 of the segments. Thus the remaining integers are
consecutive and y must be 1. It follows that there are two configurations
possible for p in (1):

(1a) [2,3,---,n=2,n,1,n-1] or (1b) [m-2,n-3,---,2,n,1,n—1]
In a similar way we see there are two configurations possible for p in (2):

(2a) [n-1,1,n,2,3,---,n—2] or (2b) [n-1,1,n,n—2,n-3,---,2].

We only need to show that R(p) distinguishes (1) from (2). To see this,
note that, since n > 4, n — 1 could never occur as the first entry in any
of the elements of R(p) if (1a) or (1b) applied, whereas it clearly does in
both (2a) and (2b). So in this case, we simply check whether 1 does or
does not belong to Z,. O

Lemma 3. Let n > 3 and let p and g be elements of S,,. Let p’ =p—-n
and let ¢’ = ¢ — n. If R(p) = R(q) then R(p') = R(¢').

Proof: Using formula (vi) of Lemma 1 we have

R(p)={t€ Sp—2 : t=p' | iforsomei<n—-1}
={t€Sp—2:t=(pln)liforsomei<n~1}
={t€Sp—2:t=(pli)ln—1forsomei<n-1}.

Since (again using formula (vi) in Lemmal)plnln-1=pln-1}n-1,
we have

R(@') = {t€Sn—2 :t=(pli)ln—1forsomei<n}

= {t € Sp—2 : t =8l n—1for some s € R(p)}

= {t€Sp—2 : t=8ln-1for somes € R(g)} = R(¢'). O

Lemma 4. Let p and ¢ be elements of Ss such that R(p) = R(g).
Then p=gq.

Proof: One can, of course, execute a simple computer program to verify
this statement, which we have done using GAP(3]). We can also argue di-
rectly. First of all, by Lemma 2, we can assume that 5 occurs in the same
position in p and ¢q. And secondly, by (i) of Lemma. 1, we can assume that
this common position is either first, second or third. Similar arguments can
be made in all three cases. We will include the details for the first two of
these cases and leave the third to the reader.

In the first case, we would have p = 5p2pspsps and g = 5g2q9394¢s, and
R(p) = R(g). This implies that papspsps € R(g) and so popspsaps = q { i for
some i < 5. If this occurs for i = 5 we are done. So we can suppose i # 5.
This implies that ¢ | 7 begins with 4 and so po = 4. Thus p = 54pspsps.
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So every element of R(p) begins with 4. Since the same must be true for
R(q), we see that go = 4, and so g = 54¢3qs4gs. If 4pspaps is equal to g ¢
for i = 4 or i = 5, this would clearly imply that p = g, so we can suppose
that 4pspsps = q | 7 for some 7 < 3. But, for any ¢ < 3, the first two entries
of ¢ | ¢ are 43, and so this implies that p3 = 3, and so p = 543psps. This
implies that every element of R(p) begins with 43. Since the same must be
true of the elements in R(q), we must also have g3 = 3. Thus ¢ = 543¢4¢s.
Finally, since R(54321) # R(54312), we infer that p = gq.

In the second case, we would have p = p5pspsps and ¢ = q15¢3494¢s,
and R(p) = R(g). As in the first case, we can assume that ppspsps =g |
for some i # 5. For any such i, either the first or second element of ¢ | 7 is
4, so either p; = 4 or p3 = 4. We consider two subcases:

(i) p = 45p3paps, and (ii) p = p154paps.

In subcase (i), every element of R(p) begins with either 3 or 4, so the same
holds for the elements of R(g). Therefore we must have ¢ = 4, and so
q = 45g3q4q5. Now we have 4pspsps = q | ¢ for some i. Since q | ¢ does
not begin with 4 for i < 4, we must have 4pgpsps = ¢ L i for ¢ = 4 or
5. This implies that p = ¢g. In the second subcase, p = p;54psps. We
cannot have ¢, = 4, because this would imply that every element of R(q)
begins with 4 or 3, which is clearly not the case for all elements of R(p).
Now R(p) has an element which begins 43. Therefore R(g) does too, and,
since ¢ # 4, this implies that g3 = 4. Thus ¢ = ¢;54¢4g5. Now we must
have pydpsps = g | 7 for some i. If ¢ = 4 or 5, this implies p = ¢ as
desired. Clearly p14paps # ¢ 4 q1, and so either py4psps = ¢ | ¢4 or
P14psps = q | ¢5. Either way, we must have py = 3. Thus p = p;543ps.
This implies that, in every element of R(p), 3 is either second or third.
Therefore the same is true of the elements of R(g). This implies that 3 can-
not be the first or the last element of ¢, and so ¢4 = 3. Thus g = ¢,543¢s.
And since R(15432) # R(25431), we infer that p=g¢q. O

Our theorem now follows directly from the preceding lemmas by induction
on n.

Theorem. Let n > 5. Then any p € S, is determined by its set of
reductions R(p). Equivalently, if p and g are elements of S,, and

R(p) = R(q), then p=gq.

The proof of our theorem leads to a straightforward recursive proce-
dure for reconstructing a permutation p from its set of reductions R(p). At
the bottom, we tabulate the 120 different sets R(p) corresponding to the
elements p in S5. The GAP program (3] is very well-suited to this task.



For any n > 5, if we are given the set R(p) for some p € Sy, we first ap-
ply the method used in the proof of Lemma 2 to find the position of n in
p. Then, as in the proof of Lemma 3, letting ¢ = p — n, we find the set
R(g) =R(p—n)={t € Sp—2 : t =35l n-1for some s € R(p)}. From
this set we reconstruct g. We then insert n into ¢ so that it occupies the
position it must occupy.

Example. Here is an illustration for n = 7. Suppose we are given that
the set of reductions for p is R = {536412, 542631, 543612, 546312, 653412}.
The set of positions of n — 1 = 6 in the reductions is then Z, = {1,3,4}.
Since the three elements in Z, are not all consecutive, the proof of Lemma
2 shows that the position of 7 in p must be the larger of the consecutive pair
in Z,, namely 4. We now let g be p— 7. The set of reductions of q is the set
{t€Ss : t=5]6 for some s € R(p)} = {s—6 : s € R(p)}. So we simply
delete 6 from each of the permutations belonging to R. We get the set
R’ = {54231,53412, 54312}. To find the position of the entry 6 in ¢, we ap-
ply the method in the proof of Lemma 2 to the set R’. The set of positions
of 6 — 1 =5 in the reductions belonging to R' is Z, = {1}. Thus (as in the
proof of Lemma 2) 6 must be the first entry of g. Now, let r = ¢ — 6. The
set of reductions of r is found simply by deleting 5 from each of the permu-
tations belonging to R'. We get the set R" = {3412,4231,4312}. From the
example at the beginning of this paper, r is given by r = 53412. We insert 6
into r to form g so that 6 is the first entry. We get ¢ = 653412. Finally, we
insert 7 into q to find p, so that 7 is the fourth entry. We get p = 6537412. O

To conclude, we would like to suggest two possible directions for fu-
ture work related to our theorem. In recent work on reconstructing an
n-sequence s from its multiset of k-subsequences, significant progress has
been made in finding a function f(n), having as small an order as possible,
so that s can be reconstructed from its k-subsequences as long as k > f(n).
We refer the reader to [2], [6] and [8]. Analogously, it would be interesting
to know how many reductions of a permutation are needed to reconstruct
it. Can we find a non-trivial function f(n) so that, for n sufficiently large,
if I is any subset of {1,2,...,n} with |I| > f(n), then any permutation p
in Sy, can be reconstructed from the set of reductions relative to I, that is,
from the set R/(p) = {g € Sn—1 : ¢ =p | i for some i € I} ? We have
made no useful progress on this question.

Secondly, one can consider variations on the notion of “reduction”.
After one entry 7 of a permutation on {1, 2, ...,n} is deleted from it, there are
many natural ways to view the result as a permutation on {1,2,...,n — 1}.
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Instead of reducing by 1, in place, all entries of p which are larger than i,
we could instead, for ¢ # n, replace the entry n by i. This gives another
type of “reduction”, and one can again consider the set of all such reduc-
tions over all i < n. Can p be reconstructed from this set of reductions? A
more general inquiry may be useful. One might attempt to define a general
notion of “reduction” along the following lines. Let P,_; denote the set of
all n — 1-permutations of the n-element set {1,2,...,n}. For any p € S,, and
i < n, let p—1 be the element of P,_; obtained by deleting ¢ from p. Then
any function F': P,_; — S,_; gives rise to a type of “reduction set” for p,
namely the set Rp(p) = {F(p—1) : i =1,2,...,n}. Is there a large, natu-
ral class of functions F for which p can always be reconstructed from Rr(p)?
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