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Abstract

Let N(Z) denote the set of all positive integers (integers). The
sum graph G¥(S) of a finite subset S C N(Z) is the graph (S, E)
with uv € F if and only if u+ v € S. A graph G is said to be
an (integral) sum graph if it is isomorphic to the sum graph of some
S C N(Z). The (integral) sum number o(G)(¢(G)) of G is the small-
est number of isolated vertices which when added to G result in an
(integral) sum graph. A mod (integral) sum graph is a sum graph
with § C Zn\{0} (S C Z..) and all arithmetic performed modulo m
where m 2 |S| +1 (m > |S[). The mod (integral) sum number p(G)
(¥(G)) of G is the least number p (3) of isolated vertices pK1 (¥ K1)
such that GUpK) (GUv¥ K1) is a mod (integral) sum graph. In this
paper, the mod (integral) sum numbers of K., and K,, — E(K,) are
investigated and bounded, and n-spoked wheel W, is shown to be a
mod integral sum graph.

1 Introduction

The concept of the (integral) sum graph was introduced by Harary [3]( [4]).
Let N(Z) denote the set of all positive integers (integers). The sum graph
G*(S) of a finite subset S C N(Z) is the graph (S, E) with uv € E if and
only if u+v € S. A graph G is said to be an (integral) sum graph if it is
isomorphic to the sum graph of some S C N(Z). We say that S give an
(integral) sum labelling for G. The (integral) sum number o(G)(¢(G)) is
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the smallest number of isolated vertices which when added to G result in
an (integral) sum graph.

The concept of mod sum graph was introduced by Boland et al. [1] in
1990. A mod sum graph is a sum graph with SC Z,,\{0} and all arithmetic
performed modulo m where m > |S| + 1. The mod sum number p(G) of G
is the least number p of isolated vertices pK; such that GU pK is a mod
sum graph. It is obvious that p(G) < o(G) for any graph G. Similarly
we can define the concepts of mod integral sum graph and mod integral
sum number. A mod integral sum graph is a sum graph with SC Z,, and
all arithmetic performed modulo m where m > |S]. The mod integral sum
number ¥(G) of graph G is the least number ¥ of isolated vertices 9K, such
that GU¥ K is a mod integral sum graph. It is obvious that %(G) < p(G)
for any graph G. In this paper, the mod (integral) sum numbers of the
complete bipartite graphs and the graph K,, — E(K,) are investigated and
bounded, and n-spoked wheel W,, is shown to be a mod integral sum graph.

To simplify notations, throughout this paper we may assume that the
vertices of G are identified with their labels. In addition all arithmetic are
performed modulo m if it is not pointed out specially.

2 Complete bipartite graph K, (s > r)

Let V(K,s) = (A, B) be the bipartition of K, with A = {a1,---,ar},
B = {b1,--+,bs} and S = AU B. We have known that K (s > 2) and
K2, are mod sum graphs. We can find the corresponding results in [1).
Since K1 = K, and p(K2) = 1 we only need to consider the case of
s>2r>3.

Lemma 2.1 K, is @ mod sum graph for s > 3r — 4(r > 3).

Proof. Leta;j=(r—=2+4N,i=1,.--,r, bj=(G-1)N+1,j=1,--- s,
and take the modulus m = sN, where N > 3 is an integer. It is easy to
verify that the following assertions are true.

(1) AnB=0,AuBC Z,\{0}.

(2) ai+a; ¢ S for any a;,a; € A(i # j).
(8) bi+b; ¢ S for any b;,b; € B(i # j).
(4) a;+b; € S for any a; € A and b; € B.

Thus the above labelling is a mod sum labelling of K, ; for s > 3r—4(r > 3).
(m]



Lemma 2.2 For s > 2r — 1 and s even, K, ; is a mod sum graph.

Proof. Leta;=2i-1)N,i=1,---,1, b= -1)N+1,5=1,---,5
and take the modulus m = sN, where N > 3 is an integer. It is easy to
verify that the following assertions are true.

(1) AnB=0,AU B C Z,\{0}.

(2) a; +a; €S for any aj,a; € A(t # j).

(8) bi +b; ¢S for any b;,b; € B(i # 7).

(4) ai+b; € S for any a; € A and b; € B.

Thus the above labelling is a mod sum labelling of K., for s > 2r — 1 and

§ even. ]

Lemma 2.3 K, , is a mod sum graph for %r <8< 3 —4, s odd and
dividable by 5.

Proof. Let ay; =[5(: —1)+2]N, i=1,-.,[§], ag; = [5(7 — 1) + 3]N,
i=1,..-,|5], b =(k=1)N+1, k=1,.--,s, and take the modulus
m = sN, where N > 3 is an integer. Let A = {ay|i=1,---,[§]}V
{azjli=1,---,|5i}, B={bkl k=1,--,s} and S = AU B. It is easy to
verify that the following assertions are true.

(1) AnB=0,AU B C Z,\{0}.

(2) a1i+ay; € S for any ay4,a15 € A (i # j).
(3) a2 +agj € S for any ag;, azj € A (i # 7).
(4) a1 +az; ¢ S for any ay4,a2; € A.

(8) bi +b; ¢S for any b, b; € B (i # j).

(6) ayi+bj €S for any a); € A and b; € B.
(7) a2 +bj € S for any a; € A and b; € B.

Thus the above labelling is a mod sum labelling of K, for %r < s <
3r—4, sodd and 5 | s. o

Let p = p(K,;s)(s > r > 3). We will give some properties of the
mod sum graph K, ;U pK; for s > r > 3. Let V(K,,) = (A, B) be the
bipartition of K. s, and



A= {ay,ay,-:-,0,}, where a; < as <--- < a,.
B= {bl,bg,---,bs}, where b) < by < ¢+ < b,.
S = V(K. s U pKi) and the modulus be m.

Lemma 2.4 Ifu € S and there exists a; (1 <i<r)#u (orb; (1<j <
s) #u) such thatu+a; €S (oru+bj€ S)thenu € B (orue A).

This lemma is obvious.
Lemma 2.5 a; + b; € A for any a; € A and any b; € B.

Proof. By contradiction. If there exist a, € A and b, € B such that
ap + by € A we will prove that a, + b; € A for any b; € B.

It is obvious that a, + b; € S for any b; € B. Since a, +b, € A and
b; € B we have that (ap + bg) + bj = (ap + b;) + by € S. If ap + b; # b,
then a, + b; € A. Suppose that ap + b; = b;. We have that b; = by — a,
and there exists at most one such j. So ap + bx # by for any bx € B and
bk # bj. Thus ap + bx € A. Since by — ap, € B and ap + b, € A we have
that (ap + bx) + (bg — ap) = 2b; € S. In a similar way we obtain that
ap +2bg € S by by € B and a, + b; € A. We consider the following two
cases, respectively.

Case 1: a, = 2b,.

We have that bj = by —ap, = —b, € B and ap +by = 3by € A. Let | > 4
be the smallest integer such that lb, ¢ A. If such an integer [ exists then
(I—1)bg € A, lbg= (I —1)bg+ by € S. Notice that lbg + (=bg) = (! — 1)b,.
So lbg = —by i.e., (I +1)bg = 0. If I > 5 then a, + (ap + bg) = 2bg + 3by =
5b; € S and a, # ap + by, contradicting the fact that ap, o, + by € A.
So l = 4, 5b, = 0. We can obtain r = |A| > s by {ap, ap + b1, ap +
b, +++, ap +bj—1, ap +bj41, ++-, ap+bs} C A Thus s = r > 3.
Therefore there exists £ (1 < k < s, k # j,q ) such that a, + bx € A.
Notice that (ap + bg) + (ap + bx) = 3bg + (2bg + bx) = be. So ap + by is
adjacent to a,+ bi, contradicting the fact that ap+ by, ap+bx € A. If such
an integer ! does not exist then ib; € A for i = 2, 3, ---, contradicting the
finiteness of A.

Case 2: ap # 2b,.

Since 2b, € S and ap + 2b, € S we have that 2b, € B. By ap + by € A
we obtain that (a, + bg) + 2bg = (ap + 2bg) + bg € S and a, + 2b, # by. So
ap+2bg € A. Since bj = by —ap € B we know that (a, +2b,) + (bg — ap) =
3by € S. Thus b, is adjacent to 2b,, contradicting bg, 2b, € B.

From the above we have that a, +b; € A for any b; € B. Notice that
ap+b1,ap+ b2, -+, ap + bs, a, are distinct. Therefore, r = |A| > s+1 > r,
which is a contradiction. ]



Lemma 2.6 If there exist ap, € A and by € B such that ap + by € B, then
a; + by € B for any a; € A.

Proof. It is obvious that a; + b, € S for any a; € A. Since ap +b; € B and
a; € A we have that a; + (ap + bg) = ap + (a; + bg) € S. Thus by Lemma
2.5 we can obtain that a; + by € B. (m}

Lemma 2.7 p(K, ;) 27 forr <s<2r—1(r23) ors=2r+1(r 2 5).

Proof. If there exist a, € A and b, € B such that a, + b, ¢ B. By
Lemmas 2.5 and 2.6 we have that a; +b; € S— (AU B) for any a; € 4, i.e,,
{a1+4bg,---,ar+bg} C S—(AUB). Therefore p(K,) > r. Hence we only
need to prove that there exist ap € A and b, € B such that a, + b, € B.

Suppose that a; +b; € B for any a; € A and b; € B. Then {a;+b1,a; +
b2, ++,a;+bs} =B, i=1,2,---,r. So sa; =0,ie. m | sa;, i =1,2,---,r.
We assume that a is the maximum common factor of a;,---,a,. Then
ala;, i=1,2,---,7 and m | sa. There exists I(l < s—1) such that la <m
and ar = la. Let R = {a,2a, 34, --,la}, then A C R. Now we will aim at
proving that a, = la > (2r — 2)a.

If1 <1< 2r-3thensince ja+ (I —jla=laforj=1,2,---,[*5}] we
have that |AN {ja, (I —j)a}| < 1. Thus there are at most [{5*] elements
in R — {la} belonging to A. Sor = |A| < ['F]+1 < [ZH4]+1=r -1,
which is a contradiction. So a, > (2r —2)a, m > (2r—2)aand s=2r -1
or 2r + 1. Since m | sa we have that m = sa < (3r — 4)a. Firstly we will
give three claims.

Claim 1: |[AN{(s—=1)a,(s—2)a}| < 1.

Suppose that both (s — 1)a and (s — 2)a belong to A, then a, = (s —
1)e, ar—1 = (s — 2)a. Therefore, if we have chosen a; then a; + a, a; + 2a
cannot belong to A, ie., a;y) > a;+3e,1=1,2, ---, r—3. So ar_2 2
ar_3+3a>ar_q4+6a>--->a1+3(r—3)a > (3r—8)a. Since ar_2+a ¢ A
( otherwise a,—; = ar_2+a and a,+a,_1 = a,_2, which is a contradiction.)
we have that a,_; = (s—2)a > ar_2+2a > (3r—6)a. So sa > (3r—4)a, i.e.
s 2> 3r—4. Thus a; = a. However a1 +ar—1 =a+(s—2)a=(s—1)a = ar,
which is a contradiction.

Analogously we can obtain the following claims:

Claim 2: |[AN {a,(s —2)a}] < 1.

Claim 3: |[AN {(s —1)a,2a}| < 1.

We will consider the following three cases.

Case 1: ar = 2ra, s = (2r + 1)a.

We have that (s—2)a = (2r—1)a € A (by Claim 1), ra ¢ A ( otherwise
(r —1)a,(r +1)a ¢ A. Since ja+(2r—-jla=2rafor j=1,2,--.,r -2 we



have that [A N ({ja} U {(2r — j)a})| < 1. Hence there exists exactly one
which belongs to A between ja and (2r—j)a (7 =1,2,---,7—2). Ifjac A
for 1 <j<r-—2andj# § then wehavethatra+1a¢Abyra€ A
Since ja + (ra — ]a) =ra and J # % we have that ra — ja & A. However
(re+ja)+(re—ja ) = 2re, contradicting the fact that there exists exactly
one which belongs to A between ja and (2r - j)a (j =1,2,---,7r—1).
So we have that ja ¢ Aforany 1 < j<r—2andj # 5 Ifrlsoddthen
AC {ra, (r+2)a, (r+3)a, -+, (2r —2)a, 2ra} and |A| <r-1, which is
impossible. If 7 is even then A = {§a, ra, (r +2)a, ---, (2r—2)a, 2ra}.
We have that 7 +3 < 2r — 2 and (r + 3)a € A by r > 5. However
(r+3)a+2ra = (r+2)a and (r + 3)a # 2ra, which is a contradiction.),
and exactly one of ja and (2r — j)a(= (s -1 -j)a) (j = 1,2,-++,7 = 1)
belongs to A. By claims 1 and 3 we have that 2a, (s — 2)a ¢ A. Thus
a, (s—3)a€ A If (r+1)a € A then (r +2)a € A. Thus (r - 2)a € A.
However (s ~ 3)a+ (r+1)a = (r — 2)a and (s — 3)a # (r + 1)a, which is a
contradiction. Analogously, the assumption that (r + 1)a & A provides the
same contradiction.

Case 2: a, = (2r —1)a, s= (2r + 1)a.

We have that a ¢ A ( by Claim 2 ) and exactly one of ja and (s — 2 —
J)a(ji=1,2 -+, r—1)belongs to A. Thus (s —3)a € A. So (s —5)a ¢
A, 3a € A. Therefore 5a, 6a, (s —6)a & A, (s —T7)a, (s —8)a, 4a € A.
If r > 6 then (s — 7)a # 4a, which is a contradiction. If r = 5 then
{3a, 4a, 8a, 9a} C A and a, 5a, 6a ¢ A. Since 4a + 9a = 2a and
3a + 4a = 7a we have that 2a, 7a € A. So A ¢ R. The result holds.

Case 3: a, = (2r — 2)a.

Since ja+ (I —jla=(2r—2)aforj=1, 2, ---, r =1 we have that
[An ({ja}u {(2r -2 - j)a})l < 1. Thus there is exactly one of ja and
(2r-2-34)a(j=1,2---,7—1) belongsto Aand (r —1)a € A. If
jo€ Afor1 <j<r—-2andj# 55 then (r —1)a+ja € A. Since
ja+[(r—1)a—ja] = (r—1)aand j # "—- we have that (r —1)a—ja & A.
However [ (r—1)a+ja]+[(r—1)a— Ja] = la, contradicting the fact that
there is exactly one of ja and (2r — 2 — j)a (J =1,2,---,7—1) belongs
to A. Sojag Afor 1<j<r—2andj+# 3.

If s = (2r+1)a then (r+2)a ¢ A( If not, noticing that (r +2)a+ (2r —
2)a= (r — 1)a and r > 5 we have that (r + 2)a # (2r — 2)a, contradicting
the fact that (r 4+ 2)a, (2r —2)a € A.). Therefore, if  is even then A =

{(r = 1)a, ra, (r +1)a, (r +3)a, -- (2r —2)a} and |A| = r — 1, which
is 1mpossnble If r is odd then A = {-—-a, (r = 1a, ra, (r+1)a, (r+
3)a, -+, (2r — 2)a}. If r = 5 then A = {2a,4a,5q,6a,8a}. However

2a+4a = 6a, whichisa cont.radiction. If » > 7 then (2r-2)a+(r+3)a =ra
and (2r — 2)a # (r + 3)a, which is also a contradiction.



If s = (2r — 1)a then ra € A( If not, noticing that ra + (2r — 2)a =
(r —1)a and r > 3 we have that ra # (2r — 2)a, contradicting the fact
that ra, (2r — 2)a € A.). Therefore, if r is even then A = {(r — 1)a,(r +
1)a,(r+2)a,- -, (2r —2)a} and |A] = r — 1, which is impossible. If r is odd
then A = {Zta, (r — 1)a, (r + 1)a, (r + 2)a,- -+, (2r — 2)a}. If 7 = 3 then
A = {a,2a,4a} and m = 5a. However 2a+4a = a, which is a contradiction.
If r > 5 then (r+2)a+(2r —2)a = (r+1)a and (2r — 2)a # (r +2)a, which
is a contradiction.

From the above we know that the lemma holds. ]

Lemma 2.8 p(K,;) <r forr <s<3r—4.

Proof. Let

a;i=({E-1)N+2 i=1,.--,7,

bjj=GF—-1N+3,j=1,---,5 -2,

b2;j=(G—1)N+5, j=1,---,min{r,s -7},

bs,j =(j_1)N+71 j= 1,"',7’,

ce=(k-1N+9 k=1,---,7,
and m = rN, where N > 18 is an integer. Let V(K,,) = (A, B) is
the bipartition of K, ;, where A = {a1,a2,-:-,a,}, B = {by,1,---,b1,5—2r,
b2,l: MY b2,min{r,s—r}: b3,1) R b3.'r}- Let C = V(rKl) = {cla €2, "1, cl'}l
S=V(K,;UrK-1)=AUBUC.

It is direct to verify that the above labelling is a mod sum labelling of
KesUrKyforr<s<3r-—4. ]

Theorem 2.1 Fors>r,

0, s>r=1l,ors=r=2,0rs>3r—-4(r 2 2), or
3r—42>s8>2r—1, sis even, or%rSsS3r—4,
sis odd and 5 | s,

T, r<s<2r—-1(r#2) ors=2r+1(r > 5),

Qorm, 2r+3$s<%r,sisodd,arg-r5353r—4,sis
odd and cannot be divided by 5.

P(KT.S) =

Proof. We only need to prove the last case. Since s satisfies that » < 5 <
3r — 4 we have that p(K,;) < r by Lemma 2.8. If a; +b; ¢ S — (AU B)
for any a; € A and any b; € B then p(K-s) = 0. If there exist a, € A and
b, € B such that a, + by € S — (AU B) then by Lemmas 2.5 and 2.6 we
have that a; 4 b, € AU B for a; € A. Therefore p(K, ;) =r. a



Lemma 2.9 If there doesn’t exist some vertex with degree |V (G)|—1, then
¥(G) = p(G).

This lemma is obvious. Thus we have the following corollary.

Corollary 2.1 For complete bipartite graph K, with s > r and r + s >
3, ¥(Kr,s) = p(Krs)-

Proof. If s > r > 2 then we obtain the corollary by Lemma 2.9. If
s 2 r=1andr+s > 3 then we can obtain ¥(K, ;) = p(K,) by ¥(K;;) <
p(Kr’g) = 0- a

3 K,—E(K,)

Let A= V(Kr) = {ala a2, *°, af}a B= V(Kn)—A = {bla b?) Y bﬂ—?‘}'
If r = n it is obvious that K, — E(K,) is a mod sum graph. Since K, —
E(K,)is atree for r =n—1and K, — E(K,) = K, for » = 1 we have that
the mod sum number of K, — E(K,) is known for r =n —1 and r = 1.
Then, from now on we only need to consider the cases 2 <r <n -2,

Lemma 3.1 p(Kn — E(K;)) <t for 3 <r<n-2.

Proof. Leta;=(i—-1)N+2 i=12--,7,bj=0G(-1)N+1, j=
1,2,c-o,n—r, ek =(k-1)N+3, k=1,2,.---,7, and m = rN, where
N > 6 is an integer. Let

A=V(Kr)={a'l:aﬁ""1af}r

B= V(Kﬂ) - V(Kr) = {bl' 62’ e :bn—r},

C=V(TK1)={61,62,"‘,G,-},

S=V((Kn - E(K,))UrK )= AUBUC.
It is direct to verify that the above labelling is a mod sum labelling of
(Kn — BE(K;))UrK, for 3 <r<n-2. a

Lemma 3.2 p(K, — E(K,)) £ 2(n—r) for2<r< 3.

Proof. Leta;=(G-1)N+1,i=12,--- 7, bj=(G-1)N+3, 5=
L,2,---,n—rce=(k-1)N+4,k=1,2,--- ,n—1, di=(I-1)N+6, |l =
1,2,-.-,n—7,and m = (n —r)N, where N > 12 is an integer. Let

A= V(K") = {al,am . 'aa'f'}a

B=V(Kn) = V(K,) = {b1, b2, -, bar},
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C = V(2(n - T)K1) = {01, €2, ", Cn—r, d], d2, e, dn_.,-},

'S =V((Kn — E(K,))U2(n-71)K1)=AUBUC.
It is direct to verify that the above labelling is & mod sum labelling of
(Kn — E(K,))U2(n — 1)K, for 2 < r < %. Therefore p(K, — E(K;)) <
2n—r)for2<r< 3. O

Let p = p(Kn — E(K.))(2 < r £ n—2). We will give some prop-
erties of the mod sum graph (K, — E(K,)) U pK,. Let A = V(K;) =
{al; G2y, "y ar}, B = V(Kn) - V(Kr) = {bla b2) Tty bn-r}, where
a1 << < ap, by <by < - <by_rand § =V((Kn-E(K;))UpK1).
Suppose the modulus is m. First we consider the cases 3 <r <n -—3.

Lemma 3.3 a; + b; ¢ AU B for any a; € A and any b; € B.

Proof. We will prove that a; + b; ¢ AU B for any a; € A first.

Suppose that there exists a, € A such that a, +b; € AU B. We will
consider the following two cases.

Case1: ap+ by €B.

Suppose ap + b1 = by. Notice that by +bn_» & B and by + bp—r =
(b1 + bp—r) + ap. We will consider the following two subcases.

Subcase 1: g#n—r.

From by + bn—r = (b1 + bn—r) + a, € S we have that a; = b + bn_r.
Hence there exists at most one such a,.

Subcase 2: g=n—r.

We have that b + ap, = bg = bn—-. Hence a, = b, — b; and there
exists at most one such ap.

By 7 > 3 and the above subcases we have that if ap = b; + bn—r, then
there exists a vertex ax # bn—r £ b1 . Then by + ax € B and by + ax # ap.
Thus (by + ax) + ap = (b1 + ap) + ax = by +ax € S, contradicting the fact
that b, is adjacent to ax. So the first subcase will not occur. Therefore, by
r 2> 3 we have that if ap = bn_, — b; there exist at least two vertices ax and
a; with by + ax, by + a; ¢ B. Notice that (by + ax) +ap = (b1 +ap) + ax =
bg+ax €5, (b1 +ar) +ap = (b1 +ay)+ ar = by + a; € S and there exists
at least one of b; + ax and b; + a; which is not equal to a,, a contradiction.
Therefore a; + b; ¢ B for any a; € A. (The proof of the result is suitable
tor=n-2 23, too.)

Case 2: ap+b; € A.

Suppose ap + by = ag. Thus aq + bp—r = (b1 + bn_r) + ap € S. Since
b + bp—» & B we have that a, = by + bn—r. There exists at most one such
ap. By Case 1 we have that a; + b; ¢ B for any a; € A and a; # a,. Since
by + b2, by+bs, -+, by +bn—r &€ B (if not, suppose that by +b; = by then
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bk + a; = (b1 + a;) + b; € S, contradicting the fact that b; +a; ¢ AU B.)
and aq + b2 = (by + b2) + ap € S, we have that a, = b; + by. Thus
by +by=by +by—r. Sobp=b,_,,ie., n—r =2 contradicting n —r > 3,

From the above we have that a; + b; € AU B for any a; € A. We now
aim at proving that a; +b; ¢ AU B for any a; € A and any b; € B(j # 1).

Suppose that there exist a, € A and b, € B such that a, +b, € AU B.
Since b1 + (ap + bg) = (b1 + ap) + by € S we have that a, + by = b;. For a
fixed integer g there exists at most one such a,. For any a; € A and a; # a,
we have that a; + b; = a; + (ap + bg) = (@i + bg) + a, € S, contradicting
the fact that a; +b, ¢ AU B.

This completes the proof of Lemma 3.3. o

Lemma 3.4 b; + b; € B for any b;, b; € B(i # j).

Proof. Suppose that there exist b,, b, € B(p # q) such that b, + b, € B.
Since a1 + (by + bg) = (@1 + bp) + by € S we have that a; + b, € AU B,
contradicting Lemma 3.3. m]

Lemma 3.5 For 3 <r < 3 we have that b; +b; € A for any b;, b; €
B (i #3).

Proof. By the distinctness of by + by, -+, by + bn_y, bz + by, and
r < n—r we have that the above n—r vertices cannot be all contained in A.
Therefore there exist by, by € B (p # q) such that b, + b, & A. Notice that
(bi+bg)+bp = b+ (bo+by) € S for any b; € B and b; # b,y. Thus by Lemma
3.4 we have that b;+b, ¢ AUB. Since (b;+b;)+b, = (bi+bg)+b; & S and
bi+b; € S— B for any b;, b; € B — {bg} (i # j) we have that b; +b; g A.

From the above discussion we have that b; + b; ¢ A for any b;,b; €
B (i # j). 0

Lemma 3.6 For 3<r<n-3,

T, $<r<n=-3,
p(Kn—E(K,-))Z{ n-1, 3<r<3.

Proof. For 3 <r < n—3by Lemma 3.3 and the distinctness of a; +b,, a2+
b1, -, ar+b; we can obtain the result. For3 < r < 2 by Lemmas 3.3, 3.4,
3.5 and the distinctness of a; +b1,a2+b1,-:+,ar+ by, by +bg,- e, b1+ by
we know that the lemma holds. ]

Lemma 3.7 o(K, — E(K;))=r—=1forr=n-22>3.
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Proof. From the proof of Lemma 3.3 we know that b, + a; € B(i =
1,2,---,7) still holds for r = n — 2 > 3. If there exists an integer p (1 <
p <) such that by +a, € A, then (by +ap) +byr = (by + bp—r) +ap €S
and by + by € B. So ap = by + bn—r. Since there exists at most one such
ap, b +a & AUB for any a; € A and a; # ap. By the distinctness of
ay+by, -+, a,,_1+b1, Gp+1 +by,---,ar-+b1 we have that p(Kn —E(Kr)) >
r—1. So it suffices to prove that p(Kn, — E(K,)) <r—1forr=n-2>3.
Let

a=200G-1)+1, i=12--,r—1, ¢, =34, by =7, by=27.

¢;=20(i —1)+8, j=1,2,---,7—1, and m = 20(r — 1),
Let A= V(Kr) = {al,a.z, .- -,a.,-}, B= V(Kﬂ) - V(K,-) = {bl,bz}, C=
V((r —1)K1) = {e1,e2, - &1}, S = V((Kn — E(K;)) U (r — 1)K)) =
AUBUC. It is easy to verify the following assertions.

(1) Sc Zx\{0}.

(2) ai+aj & S for any a;, a; € A(i # j).

(3) bi +bj €S for any b;,b; € B(i # 7).

(4) ci+c; € S for any ¢;, cj € C(i # j).

(8) ai+c; €S for any a; € A and for any ¢; € C.
(6) bi+c; € S for any b; € B and for any c; € C.
(7) ai+b; € S for any a; € A and for any b; € B.

Thus the above labelling is a mod sum labelling of (K, — E(K;))U(r—1)K}
forr=n-22>3. o

Lemma 3.8 p(K, — E(K,;))>n—-1forr=2andn > 5.

PTOOf. Let P = P(Kn - E(Kr)): A= V(Kﬂ) = {a'laa'2s o '»a'n}, where
a) <ag < -+ <ap, V(K2) = {as,at}, S = V((Kn— E(K;))UpK}). There
exist ap, ag € A such that ap+a, € S — A (If not, then {a,,a.} = {a1,an}
and {a,+as, a1+a3, e2+a3, az+aq,---,a2+an} = {a,a2,--+,an}. Soaz =
a1 + a3, giving that a; < a; + a2 < ag, i.e., a1 + a2 & A, a contradiction.)
and |{p,q} N {s,t}| < 1. We may assume without loss of generality that
p & {s,t}. If there exists a;j € A, a; # a, and {a;, ag} # {as, a;} such that
aj+aq € Athen (aj +aq) +a, =a;+ (ap+ag) € S. So aj +ay = a,.
There exists at most one such an integer 5. We will consider the following
two cases.

Case 1: g ¢ {s,t}.

13



We have that {ai,aq} # {as,a:} for any a; € A(i # ¢). Sincen > 5
we have that there exists ax € A — {ap, a4,a;} such that ax + a5 € S — A.
Notice that ax + ap = a; + (ax + @) € S, contradicting the fact that
ax+a; € S—A. Soa;+a; € S— A for any a; € A(i # q). By the
distinctness of ay + aq,:++,a¢—1 + @q,8¢+1 + @q, -+, @ + ag We have that
p(Kn — E(K;)) 2n—1.

Case 2: g € {s,t}. We may assume without loss of generality that
q=t.

Since n > 5 we have that there exists ax € A - {a,, aq, a4, a;} such that
ar + ag € S — A. Notice that ax + ap = a; + (ax + a4) € S, contradicting
the fact that ax +a;, € S — A. So a; +a, € S— Afor any a; € A(i # s,9).
If there exist ap,,aq, € A and ap,,a,, ¢ {a,,a;} such that a,, + a,, €
§ — A, then a similar argument as case 1 shows that the lemma holds.
If not, ax + a; € A for any ax,a; € A(k # ) and ax,a; € {as,a:}, so
(ak + at) + ag = ar + (a1 + a,) & S, giving ax + a; = a4. There exists at
most one such an integer & for a fixed integer [, i.e., a; +a; € S — A for
any a; € A — {ax,ai,as,a4}. Since n > 5 there exists such an a;, which is

a contradiction. (u]
[ =0, r=mn, or
r=n-1(n>3),
=1, r=1,2<n<3,
=n, r=1 n>14,
Theorem 3.1 p(K,—E(K,)) { —r B<r<n-3,
=7 -1, r=n-223,
€r-1,2(n-r)], 2<r<}, n>5,
= r=2, n=4.

\ y

Proof. We only need to prove p(Ky; — E(K?2)) > 2.

a1 =az2+ay aq4 =az+as
< )

a2 =a) +as a3

Fig. 1
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Let p = p(K4 — E(K2)), A = V(Ka) = {a1,a2,03,a4}, V(K2) =
{a1,a4}, S = V((Ks— E(K2))UpK,) ( See Fig. 1). Similar to the proof of
Lemma 3.8 we see that there exists an edge sum that is an isolated vertex.
We will consider the following two cases.

Case1: ag+a3€ S - A.

We have that (a2 + a;) + a3 = (a2 + @3) +a; € S (i = 1,4). Since at
least one of az + a; and az + a4 is not equal to a3 and so it is an isolated
vertex other than a3z + az. The theorem holds.

Case 2: a;+az €S — A

We have that (a2 +a;)+a; = (a2+a1)+ai €S, i=3,4. Soay+a3 =
a4, az+aq = a; ( If not, there exists an isolated vertex that is not equal to
az+a; and the theorem holds.). Notice that (a1 +as)+a2 = (a1 +az)+a3 &
S. If a; + a3 # az then a) + a3 is an isolated vertex that is not equal to
a1 + ag, the theorem holds. If a; + a3 = a2 then a; = ax+a4 = a1 +a3+as.
Therefore a3z + a4 = 0 € S, which is a contradiction. m]

Let A= V(K;) = {a1, " ar}, B=V(Kys) = V(K;) = {b1, -+ -, bn—r}.
If r =norn—1then K, — E(K,) is a mod integral sum graph. If r =1
then K, — E(K,) = K,. Thus we only need to consider the case of n > 2.

Lemma 3.9 ! 4(K,)=0 forn >2.

Proof. Leta;=1-1, i=1,---,n, and take the modulus m = n. Let
A=V(K,) ={a1, -+,an}. It is easy to verify that the above labelling is
a mod integral sum labelling of K,(n > 2). o

Lemma 3.10 ¥(K, — E(K;))=0forr=n-22>2.

Proof. Leta;=(-1N+1,i=1,---,r, by =0, bp = N, and take
the modulus mm = 7N, where N > 3 is an integer. Let A = V(K;) =
{a1,+,ar}, B=V(K,) — V(K,) = {b1,b2}. It is easy to verify that the
following assertions are true.

(1) AUBC Z,..
(2) ai+aj¢AUBforanya.,~,ajeA(i;éj),
(3) ai+b;€ AUB for'any a; € A and any b; € B.

(4) b;+b; € AU B for any b;,b; € B (i # j).

1The same result was claimed by Slamin in his Master thesis.
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Thus the above labelling is a mod integral sum labelling of K, — E(K,)(r =
n—222). o

Lemma 3.11 ¢(K, — B(K,)) =0 forr=n-3>2.

Proof. Ifr>3,leta;=(G—-1)N+1,i=1,---,7, by =0, bp =N, bz =
(r — 1)N, and take the modulus m = rN, where N > 3 is an integer. Let
A=V(K,) ={a1,-:-,a:}, B=V(Kyn) - V(K,) = {b1,bs,b3}. It is easy
to verify that the following assertions are true.

(1) AuBC Zp.

(2) ai+a; € AUB for any ai,a; € A (i # 7).

(3) ai+bj € AUB for any a; € A and any b; € B.
(4) b;i+bj € AU B for any b;,b; € B (i # 7).

Thus the above labelling is a mod integral sum labelling of K, — E(K,)(r =
n—323).

Ifr=2,let ay =3,a9 =5,b) = 0,bs = 1, b3 = 4, and take the modulus
m=26. Let A= V(K,-) = {al,ag},B = V(Kn) -V(K,) = {bl,bz,b3}. It
is easy to verify that the above labelling is a mod integral sum labelling of
Kn - E(K. ) (r=n-3=2). m]

Lemma 3.12 ¢(K, — B(K;)) =0 forn—7 | r.

Proof. Sincen—r | r we assume that r = t(n—r). Let a; j = (j—1)N+2i—
Li=1--¢t,j=1,---,n—7r, bg=(k-1)N, k=1,.--,n—r, and take
the modulus m = (n—r)N, where N > 4t is an integer. Let A= { a;; | i =
1.0t =1, ”',n—T} = V(Kr), B= V(Kn)_V(Kr) = {bla "')bn-r}~
It is easy to verify that the following assertions are true.

(1) AUBC Zn.

(2) aij + axy € AU B for any a; j,ax: € A (aij # axs)-
(8) ai;j+bx € AUB for any a;; € A and any b, € B.
(4) bi+b; € AU B for any b, b; € B (i # j).

Thus the above labelling is a mod integral sum labelling of K, — E(K,)(n—
r|r). o

From the above discussion we only need to consider the case of 2 < r <
n — 4 and r can not be divided by n —r.
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Let ¥ = ¥(Kn — E(K;))(2 <7 < n—4 and r can not be divided by
n —r). We will give some properties of mod integral sum graph (K, —
E(K,))UyK,. Let A=V(K,)={a1,-:-,a,}, wherea; < -+ <a,. B=
V(Kn) - V(Kr) = {bla e ‘:bn—r}, where b) < -+ < bpy. §= V((Kn -
E(K;))U9K,), and the modulus be m.

Lemma 8.13 There erists by, by € B and b, # by such that b, + b, ¢ B
for 2 <r <n—4 and r can not be divided by n —r.

Proof. 1f 0 ¢ S the lemma holds for b; + b,—r € B. If 0 € S then 0 € B
and ¢y(K, — E(K,)) = 0, i.e,, S = AU B. We will prove the lemma by
contradiction.

If not, we have that b; + b; € B for any b;,b; € B(i # j). Since 0 € B
we assume that b,_, = 0. Thus {by,b2,b1 + b2,---,b1 + bp—_r—1} = B. So
bi = by +b;—_1,1 =3,---,n—r, ie, b; = (1. -2)by + b2, =2,---,n—1.
Since by—r = 0 and n — r > 4 we have that (n —r — 2)b; + b2 = 0, i.e,
bo=[2-(n—=r))by. Sobi=[i —(n—7))b1,i=2,---,n —r. We have that
by # bpr_1 byn—7>4. Thus bg+ bn_r_y = by, i, [2—(n —7)])by +
[n—=7-1=(n-r7))by =by. So(n—r7)by =0. Therefore we have that
b =1b1,i=1,2,---,n—7. So a; + by & B for any a; € A. We have that
a;+b € A, i.e., {a1+bl,a2+b1,'--,ar+bl} = A by § = AU B and
a; +b €8. Sorby =0. Therefore, r >n—randn—r|r, whichisa
contradiction. m]

Lemma 3.14 0¢ S for 3<r <n —4 andr can not be divided by n —r.

Proof.  There exists bp,b; € B and by # by such that b, + b; & B by
Lemma 3.13. If 0 € S then S = AU B. Thus a; + b, € AU B for any
a; € A. We consider the following two cases, respectively.

Case 1: a; + b, € B.

There exists b; € B such that a; + b, = b;. Notice that b, +b, ¢ B and
bj+bq = (bp+by)+a;. If b; = by then a;+b, = b, and there exists at most
one such a;. If b; # by then by+b, = a; and there exists at most one such a;,
too. If a; € A satisfies the second case, i.e., b, + by = a;. Since r > 3 there
exists one vertex which doesn’t satisfy the above two cases. So b, +ax ¢ B
and by + ax # ai. Thus (by + ax) + ai = (bp + a:i) + ax = bj + ax € S, which
contradicting that b; is adjacent to ax. Therefore, the second case will not
occur. Since r > 3 there exist at least two vertices which don’t satisfy the
first case, i.e., bp + ar,bp + a1 € B. For by, + ax # by + a; there exists at
least one which is not equal to a;. We may assume that b, 4+ ax # a;. Then
(bp + ak) + a; = (bp + a;) + ax = bj + ax € S, which is a contradiction.
Thus a; 4 b, € B for any a; € A.
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Case 2: a; + by € A.

There exists a; € A such that a;+b, = a;. So aj+bg = (bp+bg)+a; € S.
Since by, + by, ¢ B we have that b, + by = a; and there exists at most one
such a;. By Case 1 we have that ax+b, € AUB for any ax € A and ax # a;.
Since r > 3 we know that there exists such ax, which is a contradiction. O

Lemma 3.15 0 ¢ S forr=2,n > 6.

Proof. 1f0 € S then ¥(Kn — E(K,))=0. Let A=V(K,) ={a1, --,as},
E(K3) = a,a;. So S = A,0 ¢ {a;,a:}. There exists ap,a, € A — {as, at, 0}
and ay, # a4 such that ap +a, € A — {a,,a;} by Lemma 3.13. So ap+ a4 €
{as,a;}. We may assume a, = ap + a,. Then a; + a; = (ap + a;) +
ag = (ag +at) +ap € S. Since ap + a;,aq + a; € {as,a,} we have that
ap + a¢ = aq,8q + a; = a,. So m = 2a,(where don’t take the modulus),
2a, = 2a,. We assume that ia, + aq € A1 > 2). If iap + ag = a, then
(t—1)ap +aq = 0. If iap + ag # ap then (i + 1)a, + aq € A. Therefore, by
the finiteness of A and a, + a;, = a; € 4,2ap + ag = ap + a5 € A we have
that either there exists a o > 2 such that aa, + a; = 0 or there exists a
a > 3 such that aa, = 0. We consider the following two cases, respectively.

Case 1: There exists a o > 2 such that aa, + ¢, = 0.

We have that a; = —aap. Thus ia, +a, = (i — a)a, = —(a —i)a,,i =
1,---,a—1, a; = ap + ag = —(a — 1)a,. Since ap + a; = a, we have that
ap+a; = —aay, ie, a; = —(a+1)ap. Soa; +a,=—-2aa, ¢ A. Ifa #2
then a > 3,4, = —aa, # —2¢,. So —ag, + (-2a,;) = —(a + 2)a, € A.
Since —(a—2)e, € A and {—(a—2)a,, —(a+2)a,} # {as, a:} we have that
—(a=2)ap + [—(a + 2)ay] = —2aa, € A, which is a contradiction. So r =
2,0, = —ap,aqg = —2ap,a; = —3a,, —4a, € A, -5a, € A. Thus —5a, =
ap(If ~5a, # ap then —5ap, + ap = —4a, € A, which is a contradiction.).
So 6a, = 0. Therefore a;, = 5ap,a, = 4ap,a;, = 3ap,2a, ¢ A. Byn > 6
we have that there exists a; € A — {a, aq,8,,2:,0}. So a; +ja, € A,5 =
0,1,--+,5. Since a; is not the multiple of a, we have that a; + ja, ¢
{ap,0q,05,0,0} = R,5=0,1,---,5. S0 2a; +a, € A- R,5=0,1,---,5.
If we have known that ka; + ja, € A — R(k > 2),5 = 0,1,---,5 then
(k+1)at+.7ap € A(.7 = 0»11”'t5) and (k+l)at+.7ap ¢R(] = 0,1,---,5)
(If there exists (k + 1)a; + jap, € R then there exists j' € {0,1,.--,5}
such that (k + 1)a; + j'ap = 2ap, € A, which is a contradiction.). So
ka;+ja, € A— R for any k > 1,0 < j < 5. By the finiteness of A we have
that there exist 1 < k < 1,0 < 71,2 < 5 such that ka; + jiap = la; + j2a,.
So (I = k)a; = (71 — j2)ap. Therefore ({—k)a; ¢ A— Rand [ -k > 1, which
is a contradiction.

Case 2: There exists a a > 3 such that aa, = 0.
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We have that ap,ap +aq,- -, (@ —1)ap+a,€ Aand (a —1)ap +aq =
(e = 1)ap + (ap + a;) = a;. So a; + ar = 2a4 = 2ap ¢ A. Notice that
(2ap + ag) + [(@ = 2)ap + ag] = 2a, & S. So @ =4, i.e., 4ap = 0. However
0 < 4ap, < 4m and 4a, # m(If not, 2a;, = B = a; € A, which is a
contradiction.), 4a, # 2m,4a, # 3m(where don’t take the modulus). So
4a, # 0, which is a contradiction. o

By Lemmas 3.14 and 3.15 we have that %(K,—E(K,)) = p(Kn—E(K,))
for 2 < 7 < n -4 and r can not be divided by n — . From the above
discussion we establish the following theorem.

Theorem 3.2
=0, r>n-3, orr=1,
=0, n—r|r,
Y(Kn - E(K.)S =T, 2<r<n-—4andr can not be
divided by n —r,
€En-1,2(n-7)), 2<r<}, n>6.
4 Wheels

Theorem 4.1 ¢¥(G) < ¢(G) for any graph G.

Proof. We assume S is the integral sum labelling of graph G U ((G)K}.
Let

S'={u|ueSandu>0}U{m+u|ue S and u <0},
where m is the modulus and m > 3 max { |u| | u € S}. We will prove that
S’ gives a mod integral sum labelling of G U ({(G)K,. It is easy to verify
that the following assertions are true.

(1) §'C Zp.

(2) For any u € S and any v € S(v # u) suppose that there exists w € §
such that u+v = w (where don’t take the modulus). We may assume
without loss of generality that w > v. Then if u,v > 0 we have that
w>0, u,v,w € S and u+v = w; if u,w > 0,v < 0 we have that
u,m+v,w € S and u+ (m+v) = w; if u 2 0,v,w < 0 we have that
um+v,m+we S and u+ (m+v) = (m+w); if u,v <0 we have
that w < 0, m+u,m+v,m+w € S’ and (m+u)+ (m+v) = m+w.

(8) Forany u € S and any v € S(v # u) if u+v & S (where don't take the
modulus) we may assume without loss of generality that u > v. If
u,v > 0 we have that u+v > 0, uv,v € &, and u+v ¢ S’( If not, then
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there exists w € S’ suchthat u+v=wand w g S. Sow—-me S
and u+ v = w — m(where don’t take the modulus), contradicting the
selection of m.); if u > 0,v < 0,u+v > 0 we have that u,m+v € &,
andu+(m+v)=u+v &S5’ ifu>0,v <0,u+v <0 we have that
u,m+v € §’, and u+(m+v) = u+v+m € 8’; if u, v < 0 we have that
v+v <0, m4u,m+ve S, and (m+u)+(m+v) =ut+v+m¢gSs.

From the above we know that ¥(G) < ¢(G) for any graph G. This com-
pletes the proof. m]

Theorem 4.2 For any graph G if there doesn’t exist some vertex whose
degree i3 |V(G)| — 1 or ((G) # 0 then p(G) < ¢(G).

Proof. 1f there doesn’t exist some vertex whose degree is |V(G)| — 1 then
¥(G) = p(G) and %(G) = p(G) < ¢(G) by Theorem 4.1. If {(G) # 0 then
there doesn’t exist 0 in any integral sum labelling of G U ¢(G)K;. Thus in
the proof of Theorem 4.1 $’ gives a mod sum labelling of G U ((G)K;. So

p(G) < ((G). D
Theorem 4.3 2 Wheel W, is a mod integral sum graph.

Proof. Since Wy = K3, W3 = K4 and W, is a mod sum graph we have
that they are mod integral sum graphs. Since {(W,) = 0 for n > 5 we have
that ¥(W,) = 0 by Theorem 4.1. 0

Acknowledgement The authors would like to thank the referees for their
information on this subject and the comment on the earlier version of this

paper.

References

(1] J. Boland, R. Laskar, C. Turner, G. Domke, On mod sum graphs,
Congr. Numer. 70(1990) 131-135.

[2) M.N. Ellingham, Sum graphs from trees, Ars Combinatoria 35(1993)
335-349.

(3] F. Harary, Sum graphs and difference graphs, Congr. Numer. 72 (1990)
101-108.

2The same result was claimed by Slamin in his Master thesis.

20



[4] F. Harary, Sum graphs over all the integers, Discrete Math. 124 (1994)
99-105.

(5] S. Liaw, D. Kuo, G.J. Chang, Integral sum numbers of graphs, Ars
Combinatoria 54(2000) 259-268.

(6] M. Sutton, A. Draganova, M. Miller, Mod sum number of wheels, Ars
Combinatoria 63(2002) 273-287.

[7] M. Sutton, M. Miller, J. Ryan, Slamin, Connected graphs which are
not mod sum graphs, Discrete Math. 195(1999) 287-293.

21



