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Abstract

We show various combinatorial identities that are generated by
tree counting arguments. In particular, we give formulas for n” and
7(Ks,:) which establishes an equivalence.
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1 Introduction

We use the standard notation and terminology which can be found, e.g,, in
[12). Let 7(G) denote the number of labelled spanning trees in a graph G.
With K, denoting the complete graph of n vertices and K, ; the complete
bipartite graph with partite sets containing s and ¢ vertices, respectively.
It is well known [1, 2, 4, 5, 6, 7, 8, 10]:

T(Ka) =02, n>2 (1)
T(Ks,) = st~ s, t > 1. (2)

We remark that (1) is often referred to as Cayley’s theorem. Let s+t = n,
where 1 < s < t. We have the following observation; apparently this was
first observed by Austin and Moon [1, 8].

Theorem 1.1. With n > 2, any spanning tree T in K, is a spanning tree
in K, for a unique pair (s,t) wherel <s<tand s+t=n.

Proof. Consider a spanning tree T in K, then T is a connected bipartite
graph and as is well known, necessarily possesses a unique bipartition. So
construct this unique bipartition by properly 2-coloring the vertex set of T
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with colors red (R) and blue (B). Let the number of red vertices be s and
the number of blue vertices be ¢, w.l.o.g. let s < t. We then have T is a
spanning tree in this K, ;. |

The converse is straightforward.

Theorem 1.2. With s+t =n any spanning tree in K, ; is a spanning tree
in K,.

Proof. This follows since K, ; is a spanning subgraph of K,. O
n-1

Theorem 1.3. 27(K,) = ¥ (3)7(Ksn-s)-
8=1

Proof. By combining Theorems 1.1 and 1.2 we see that to find 7(K,) we
can enumerate all labelled spanning trees in the possible K, ; graphs. O

We rewrite Theorem 1.3 as:

n-1

3 (") (Ko ns) = 27(Kn). 3)
s=1 s
Substituting equations (1) and (2) into (3) yields the identity:
n-1
Z (n) sn—s—l(n _ s)s—l = 9nn-2 (4)
s=1 s

An analytic proof of (4) is forthcoming (3], where we derive the RHS of
(4) from the LHS by using partial derivatives and Abel’s binomial formula.
So in this sense, knowledge of 7(Kj,,) implies (K, ), yielding an analytic
proof of Cayley’s theorem. The ideas in Theorems 1.1, 1.2 are also valid
when graphs are unlabelled, since the unique bipartition aspect is a struc-
tural property of the graph G. So, for a connected graph G, let I(G) be
the number of non-isomorphic spanning trees in G. We have:

(n/2]
Theorem 1.4. I(Ky,)= Y I(Ksn-s). m]
8=1

Observational examples of Theorem 1.4 are:
I(Ks) =6 = I(K1,5) + I(K2,4) + I(K3,3)
=142+4+3
I(K7) = 11 = I(K1,6) + I(K2,3) + I(K3,4)
=14+3+7.

Theorem 1.4 suggests a different approach to enumerating I(K,,) from
the usual approach of Polya and Otter. Since a general formula for I(K, )
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is unknown, it motivates us to research I(X,.) more deeply. In [7], we
have used the automorphism group of K, in conjunction with Burnside’s
formula to establish I(K,.) and hence I(K,), for2<n <12,s+t=n.

Getting back to equation (4), one can find a similar formula on Prof.
Lészl6 Székely’s home web-page [11], which contains information on Abel’s
binomial theorem.

n-1

(Székely) Z (:) £ n-s)"*" 1 =2(n-1)n""2 (5)

s=1

Equating (4) and (5) yields an interesting identity:

(n—1) § (:)s""’_l(n —spl= ril (’s‘) £ Y n—s)"*"L  (6)

s=1 s=1

We now derive recursive formulas for 7(K, ) and 7(Kp,) that yield cor-
responding identities. For a graph G with vertex set V(G) = {1,2,...,n},
let A; denote the set of spanning trees T in G where vertex i is a leafin T,
i.e., degp(i) = 1.

Theorem 1.5. Let s+t=mn, with2 < s <, then

.t—1
T(Kop) =) _(—1)7 s (e — )L

i=1

Proof. For the graph K., let X denote the set of s vertices in the one
partite set, Y the vertices in the ¢-set, i.e., K5 = K)|x|,|y|- Since 2 < s < ¢,
i.e., |X| £ |Y]|, observe that necessarily any spanning tree T in K, must
contain a leaf vertex y € Y. This follows since otherwise all vertices y € Y
would then have degp(y) > 2, and

e(T) =) degr(y) 2 2Y| 2 |X|+|Y|=n>n—1,
yeY
which contradicts that T is a tree with n — 1 edges. Here ¢(T') denotes
the number of edges in T. Let Y = {y1,¥2,...,%:}, then for any spanning

tree T in K, ;, we have T € A, for some y; € Y. Consequently 7(K,:) =
|[Ay, UA,, - --UA,|. By the principle of inclusion-exclusion, we have;

t—1

i-1ft i
A U+ Ayl = S0 () Ko

i=1
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Using equation (2) for 7(K,.—;) gives:

t—1

st = (K ) = Z(—l)i (:) s — )01
i=1
t—1 [t
=) (-1))s -4t
> () )

O

Since the LHS and RHS of the equation in Theorem 5 both contain the
term st—1, we obtain the identity:

t-1
fora<s<t,  tl= 3 (-1) (- (:) ()

i=1

With ¢t =7 and p = s — 1 we rewrite (7) as:

n—1
nP = Z(—l)"l(n —i)P (T:), for integers 1 <p, p<n, n>2. (8)

i=1

We remark that by using the principle of inclusion-exclusion and the for-
mula for 7(K, ;) we obtained (8). We can also use (8) to obtain 7(Kj ) by
using induction on n = s + ¢t and the inclusion-exclusion identity given in
Theorem 1.5. The equation (8) is easily derived by considering the number
of surjections from [p] to [n]. The number of surjections as an inclusion ex-
clusion formula is well-known, and (8) is produced when p < n, i.e., there
are no surjections. This establishes the equivalence of (2) and (8).
For the case of K,, with V(K,) = {1,...,n}, and again let A; be the

set of spanning trees T in K, where vertex i is a leaf in T. We have:

n=-1
Theorem 1.6. 7(K,) = ¥ (-1)""}(})(n-i)""2, n>3.

i=1
Proof. Since any spanning tree T in K, with n > 3 must contain a leaf
vertex, we have 7(K,) = |[A; U A2---U A,|. Notice that all n vertices
cannot be leafs. By the principle of inclusion-exclusion, we have;

MU0 Al = 31 (") (a = B
00 Aal = S () o= 7

Replacing 7(Kn-;) with equation (1) yields the theorem. m]
Applying equation (1) to the LHS of Theorem 1.6 gives the identity:
"2 = 'il(—l)"" (") (n—9)"2. 9)
i=1 ¢
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J.W. Moon [9] also derives (9) by an inclusion-exclusion method. It is
interesting that letting p = n—2 in (8) gives (8) = (9). This seems surprising
since the motivational arguments come from spanning trees in two different
families of graphs, namely, K,, and K, . However, the connection between
the two sets of trees, as indicated in Theorem 1.3, perhaps explains this. We
would like to derive similar decompositions for graph families other than
the complete and complete bipartite graphs (e.g., the hypercube). Also, we
would like to extend these results to g-analogues of the counts, arriving at
identities involving g-binomial coefficients.
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