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Abstract

There are networks that can be modeled by simple graphs, where
edges are perfectly reliable but nodes are subject to failure, e.g.
hardwired computer systems. One measure of the “vulnerability”
of the network is the connectivity « of the graph. Another,
somewhat related, vulnerability parameter is the component order

connectivity x*’, i.e. the smallest number of nodes that must fail
in order to ensure that all remaining components have order less
than some value % . In this paper we present necessary and
sufficient conditions on a 4-tuple (n,%,a,b) for a graph G to exist
having 7 nodes, x = a, and x*’ = b . Sufficiency of the conditions

follows from a specific construction described in our work. Using
this construction we obtain ranges of values for the number of

edges in a graph having » nodes, x =a, and x* = b thereby
obtaining sufficient conditions on the 5-tuple (n,e,%,a,b) fora
graph to exist having 7 nodes, e edges, x =a,and x*’ =b.Ina
limited number of special cases, we show the conditions on
(n,e,k,a,b) to be necessary as well.
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0 Introduction

We consider two notions for node failure. Let G(V, E) be a simple undirected

graph where |[V/|=n nodes and |E|=e edges serving as a model for network

node failure. The more traditional model uses the parameter connectivity as
follows. When nodes fail in G(V,E) and W is the set of surviving nodes then the

surviving subgraph is (W) where (W) denotes the subgraph induced by W. We
say Wc V is an operating state iff (/%) is connected and |¥|>1; otherwise we
say W is a failure state.

Definition: The connectivity of G, denoted by « (G) or simply «x, is the
minimum |D| such that D c ¥ and (¥ - D) is a failure state, i.e., (- D) is
disconnected or trivial.

There are some inadequacies inherent in the traditional model. A failure state
occurs when the surviving subgraph is either disconnected or trivial. Thus, a
failure state can have a large component, a subset of a failure state can be an
operating state, and relatively small operating states are tolerated.

In the new model [1,2], which addresses each of these inadequacies, we say that
W V is an operating state if and only if () contains a component of order

2 k, where k is some predetermined number; otherwise we say that # is a
failure state.

Definition: Given n 2k 2 2 , the k-component connectivity or component
order connectivity of G, denoted by x*’(G) or simply x*, is the minimum

|D| such that D ¥ and (V — D) is a failure state, i.e., all components of
(V - D) have order at most k-1.

There are two ways for a failure state to occur:

(1) (¥ - D) is disconnected and all component orders are less than or equal to
k-1;

(2) (V- D) is connected but [V —D| < k-1 i.e. [D|2n—(k-1).

Since we can always create a failure state by removing n —(k — 1) nodes, it
follows that x*(G) < n —(k —1).
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The following theorem, which relates x and x*’, due to Boesch, Gross, and
Suffel is included without proof.

Theorem 0.1 [1] Let Gbe agraphonnnodesand 2<k<n.
(1) If k2 n—(k=1) then ¥ =n-(k-1).
() If x<n-k then k<M <n—k.

Although there are some inadequacies in the traditional connectivity model, it
does have a very nice routing feature. Namely, by the Menger-Whitney theorem
f3], maximizing the connectivity maximizes the number of node disjoint paths
over all pairs of non-adjacent nodes in the graph. In view of this it is both a
natural and pragmatic question as to the nature of graphs which simultaneously

maximize x and ng) [2]. One approach for obtaining such information is to

study the simultaneous realizability of x and x®*’. This is the main topic of this
work and discussed in the next section.

1 Realizability Results

Recalling Theorem 0.1, we see that two realizability questions arise:
(1) Given a = n—(k-1) does there exist a G such that |V(G)| =n,x=a,and

kP =n—(k-1)?

(2) Given 0 <a<b < n-k does there exist a Gsuch that x =a and ¥’ =5 ?
In this section, we answer these two questions in the affirmative. Furthermore,
we provide graphs in answer to (1) for all possible e > [%.I . The graphs given
in answer to (2) include a large range of values for e.

To answer (1) we need the following lemma.

Lemma 1.1 [4] There exists a graph G having n nodes, e edges, and
connectivity x = a if and only if either

(n=1)(n-2)

(1) n-1<e< +1 when a=1 or

@) [%]Sesgn——l);n—-—z-)-ﬂz when a>1.
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Theorem 1.2 The 5-tuple (n,e,k,a,b) where a2 n—k+1 isrealizable by a n-
node, e-edge graph G with x(G) =a and «*’(G) =b if and only if either

(k-1)(k-2)

() a=b=1,n=k and k~1<e< +1 or

() a22, b=n-k+1 and Irzzg]Ses-(—'L_l)ziz—)+a

Proof: If the graph G has x(G)2n—k+1 then we know from Theorem 0.1(1)
that x*’(G) = n—k+1. Therefore, we observe the result due to Lemma 1.1. u

We now present a construction to show that given 0 <a < b < n—-k , where
2 <k <n, there exists a graph G on n nodes having x =a and x*’ =5.

The Construction

We begin with the node set of our construction G, consisting of three pairwise
disjoint sets, ¥, U, and S the orders of which are to be specified.

Casel:
For ¢ >0 and k=2 consider »n and § satisfying

(1) k+a<n<2k+a
Q) 1< B<a+l

Then set [U|=k+a— B, |V|= B,|S| =n-(k+a), and define the edge set

E(G,) tobe {{v,s}veUUV,s e SJUE((U))UE((S)) (see Figure 1.1) where
(U) is chosen such that x((U))2a—B+1, (V) is chosen such that
E(("))=2, and E({S)) is arbitrary. Note that in the event that

n=k+a, S=@and E(G,)=E(({U)).
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V|=8 U|=k+a-p

G:
all edges all edges
IS|=n-(k+a)
Figure 1.1
Case II:

For @20 and £ >2 considernand £ satisfying

D n22k+a+1
@ 1spsa+l

Then with [U], |V], and |S| as in Case I, define the edge set E(G,) to be
{{v.5}lv e UUV,s e SJUE(W)Y)UE((S)) (see Figure 1.1) where U, (¥),
and (S) are chosen such that

o x(W))2a-B+1

o x((H)2n-2k-2a

o kP(H)2n-2k-a-p+1

. E()=02.

Theorem 1.3 The graph G, has nnodes, x(G,)=n-k—-a,and
x*(G)=n-k-8+1.

Proof: Since G, is spanned by a complete bipartite graph with parts S and
UUV any minimum disconnecting set must include either Sor U UV . In
case 1 |S|=n—k-a <k+a=|[UUV| so any disconnecting set which contains
UUV has more than n—k—a nodes. However, S itself is a disconnecting set
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so it is a minimum disconnecting set. Thus, x(G,) =n—k—« in case 1. In case
Il removal of S disconnects G, so x(G,) < n—k—a . Any disconnecting set

containing U UV must also contain at least n—2k —2a nodes from S in order
to insure that the surviving subgraph is disconnected. Thus any such
disconnecting set contains at least n—2k-2a+(k+a—-f+ B)=n—-k-a
nodes. Hence x(G,)=n—k—a in case II as well.

We define a x*’ -cut to be a set of nodes whose removal from G, creates a

surviving subgraph with all component orders less than or equal to £—1.In
turn, we define a x*’ -set to be a minimum x*’-cut.

In either of the two cases ¥ < n—k , so it follows by Theorem 0.1(2) that any
k™ -set must disconnect G, upon removal. Thus, if D is a x*’ -set then either
ScDoeUUVehD.

Suppose S < D . If [DNU|<a— B then (U-(DNU)) is connected and has at
least k nodes. Thus [DNU|2 e - B+1 and so
|D|z|pNS|+|pNU]
z2n-k-a+a-pf+1
=n—k-pf+1
in both cases I and II.

On the other hand if UUV < D then in case I
|D|2(k+a-p)+ B
=k+a
2n-k
>n-k~(8-1).
In case II |[DNS|2n~2k—a— B+1 or else removal of D leaves a component
within {(S) of order & or more. Thus
IDl=luUrj+ons|
2(k+a-p)+p+n-2k-a-p+1
=n-k-pB+1.
Hence in both cases x*'(G,)>n—k- B +1.
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Finally, in either case removal of S together with a minimum disconnecting set
of (U) isa x® -cut of order n—k—f+1 50 «¥ = n—k— B +1 inboth
cases.

|

Now recall that, in case II, we require a “special” (S) ; the question is whether
{S) always exists? We answer the question in the affirmative. Indeed, as shown
in Theorem 1.4-case | when @ 20, k22, and 1< # <a+1 are given there
exists a graph on n nodes, where k+a+1<n<2k+a,suchthat x =n—k—-a
and ) = n—k - B +1. Thus one can insert a graph obtained in this case for §

in the construction of case II to obtain all the constructions required for » where
2k +2a +1< n< 3k +2a . One proceeds in an inductive manner to obtain all the
constructions needed for values of n that satisfy ik +ia +1< n < (i + )k +ia for
i21.Indeed, for i 22 a graph obtained for
(i-Dk+(-Da+1<n<ik+(i—1ea is inserted for S in the construction of case
II to create a graph having ik +ia <n<(i+Dk+ia.

Our next concern is to fill in the remaining intervals, i.e.
ik+(i-l)a+1<n<ik+ia,for i 22 . In order to do this by using the inductive

application of case II we need to investigate an additional initial case, i.e. one
for which i =1, namely & +1<n<k+a . Werequire a graph that satisfies

n=k+j (1<j<a), x=0,and x*’ 2 j . Indeed choose a graph consisting of
a component of order j + & —1 and connectivity at least j together with an
isolated node. Then, if

2k+a+1sn<2k+2a
it follows that
k+lsn—-(k+a)sk+ea.

With n=2k+a+ j, where 1< j <a, we substitute the graph equal to the one
just described for S in the case II construction. Observe that

x((5)) =02 n—(2k+2a)
and
kP ((S))=j=n-Q2k+a)zn-2k-a-p+1.

Thus, the case II construction yields a graph satisfying the conditions of
Theorem 1.4 for 2k +a +1< n < 2k +2a . Continued inductive use of the case I
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construction by placing each constructed G into the node set S yields all cases
satisfying ik+(i-1)a+1<n<ik+ia.

Corollary 1.4 Given 0<a<b < n-k there exists a graph G on # nodes such
that x(G) =a and x*'(G)=b.

Proof: We construct such a graph G as follows:
set
a=n—(k+a)
to obtain
a=(n-k)-a;
set
b=n-k-pf+1
to obtain
B=(n-k)-b+l1.

1) If a <k let G be a graph obtained in the case I construction where
k+asni2k+a.

2) If a2 k+1 and a 21 then first determine whether asng.

@) If aslgj,sothat 2k+a+1<n<2k+2a, obtain G from case II

construction where (S) isa graph on a nodes with a component of
order a—1 and connectivity of the component being at least a—k .

®) Ifa> I.-;ZJ use the division algorithm to determine i such that

i(n—a) <n<(i+1)(n—a) where, of course, i22.

() If i(n-a)+1<n<i(n—a)+k make i—1 successive replacements of
the graph obtained from the case II construction beginning with the
case I construction on n—(i-1)¥n—a) nodes.

(i) If in-a)+k+1<n<(i+1)(n—a) make i—1 successive
replacements of the graph obtained from the case II construction
beginning with the graph of 2(a) on n—(i-1)(n—a) nodes.

Having made these specifications, we need only observe that
a=((n-k)~az0 since a<n-k;
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B=(n-k)-b+121 since b<n-k;and
B<a+lsince a<bh
for then G may be constructed by Theorem 1.3. nm

2 Edge Count for Construction G,

In our previous discussion we established realizability of graphs having # nodes,
k=n-k-a,and x*’ =n—k-f+1 where n2k+a+1, k22,and

0 < f-1<¢. In this discussion, we indicate the minimum and maximum
number of edges obtainable for the construction previously described.

For the scenarios of the construction G, let ¢ denote the number of edges in
G, . The maximum value of ¢, is determined by setting (U) = X,,, , and
($)=K, 4.qy- Thus

maxe, = (k+a)(n-(k+a)) +|E((S))|+[E(W))|

(n—k—a)(n-k-—a-—l)+(k+a—-ﬂ)(k+a-—ﬁ—l)

=(k+a)n-(k+a))+ > >

With a=x and b=x* we obtain

maxe, =(n-a)a_,,“(02—1)+(k+b—a—1)(k+b—a—2)

2

because k+a2=n-a and a-f+1=b-a.

Note that when a =0 max

k+b-1)(k+b-2)
6= > .

The value of min ¢, is first determined for » in the interval
k+a)sns2(k+a)
and then for successive intervals

ik+a)+1sn<(i+1)k+a), i22
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by solving a first order linear recurrence relation. The results of this analysis, the
details of which may be found in [5], are expressed in terms of », &, a = x and

b=x® as follows:

i) for n—~a<n<2(n-a)

m,(n) 2 ming =

. (n_a)a+[(k+b—a2-l)(b—a)']
e (n-a)a+(k-1) for 0<a<k and b-a=1;

. (n—a)a+[(k+b—a_l)(b—a)- +l'(a—l)(a—k).l for k+l<a$l£J and
2 2

for 0<a<k and b—a=+1;

2
b-a=#l;

. (n-a)a+k-1+|y-(-‘#-’2 for k+l<a$[§J and b-a=1;

. (n_a)a+[(k+b—a-l)(b—a)
2

o (n—-a)at+k+a-3fora=k+1 and b-a=1;forl<a<b<n-k.

-|+a—2 for a=k+1 and b—-a=1;

i) for i(n-a)+1<n<(i+1n-a), i22
(n—ay
2
where m, is given in {) and

mine =

i +[(n —2a)2 +s]i+m,(n-—(i-—l)(n—a))—(n—a)2 -5

forb—a=#1

[n-G+D(n-a)](n-a)+
s=
[n=@i+1)n-a)](n—a)+ k-1 for b-a=1

[(k+b—a)(b—a)—|
2

Remark 1 The statement given above is expressed in terms of intervals
determined by fixing n—a =a +k since our construction is developed in this
way. Perhaps a more “natural” way to arrange the results is to consider » fixed
and let @ vary over the integers 0,1,...,n—1. Indeed it is the case that

n-a<ns<2(n-a iffOSasB-J

and, for i 22
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i(n—-a)+1sn<(i+1)(n—a) iff l:an+ISas[TLnJ .
i i+l

Remark 2 Since the addition of edges to a graph cannot reduce x or x* any
edge count lying between min ¢ and max ¢, is attainable. We state the
complete result next.

Theorem 2.1 If 0<a<b<n—k and min ¢, <e<max ¢, then there exists a
G on nnodes and e edges having x =a and x® =p .

Conclusions Given any 5-tuple (n,e,k,x,x*’) , with each variable within the
range of values previously mentioned, there exists a graph having those
parameters. The condition on the 4-tuple (n,&,x,x*’) is necessary and
sufficient but the 5-tuple (n,e, &, x,x*’) condition is only sufficient.
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