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Abstract For a long time we had thought that there does not exist an
OGDD of type 4. In this article, an OGDD of type 4* will be
constructed.
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1 Introduction

A group-divisible design with block size 3(briefly, 3-GDD) (X,G, A) is a
set X and a partition G of X into classes (usually called groups), and a set
A of 3-subsets of X, so that each pair {z,y} of elements of X appears once
in a 3-subset of A if z and y are from different groups, and does not appear
in a 3-subset of A if z and y are from the same groups.

An orthogonal group-divisible design (briefly, OGDD) (X,G,A,B) is a
pair of 3-GDDs (X, G, A) and (X, G, B) satisfying two orthogonality condi-
tions:

(i) if {z,y,2} € A and {z,y,w} € B, then z and w are in different
groups; and

(ii) for two distinct intersecting triples {z,y, 2} and {u,v,z} of A, the
triples {z,y, w} and {u,v,t} of B satisfy w # t.

A transversal design (briefly, TD) TD(3,4) is a 3-GDD of type 43.

For the existence of OGDD of type g*, Colbourn and Gibbons [4] have
done excellent work. The following were their concluding remarks:

The main question that remains open is whether there is any value of

g for which an OGDD of type g* ezists. On the basis of the nonezistence
when g = 2 and g = 4, one might be tempted to conjecture that the answer
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1s negative.

In this article, an OGDD of type 4* will be constructed by hand.

2 Construction for an OGDD of type 4*

Let G= {Go,Gl,Gz,H} and X = GyUG, UGy U H, where
Go = {0, 3, 6,9},G1 = {1,4,7, 10},62 = {2, 5,8,11},H = {a, b, c,d}.

Assume (X, G, A, B) is an OGDD of type 4%. A can be partitioned into
two parts, namely, C and D such that the first part does not contain any
point of H and the second part does.

Let
P, = {{z,y}: {a,z,y} € D}

Pb = {{-’D,y} : {b:z,y} € D}
P, = {{z,y}: {c,:t:,y} € D}
Fy= {{m)y} : {d,x,y} € D}
K ={{z,y}: {z,y,2} € C}
Similarly, B can be partitioned into two parts, namely, £ and F such
that the first part does not contain any point of H and the second part does.
Let
Qa = {{z,3} : {a,z,y} € F}

Qs = {{z,y} : {b,z,9} € F}
Qc = {{z,y}: {c,2,y} € F}
Qa ={{z,y}: {d,z,y} € 7}
L={{=z,y}:{z,y,2} € £}

It follows from the definition of OGDD that
() L=P,UPRUP.UPjand K =Q,UQyUQ.UQy;
(i) for z € H, P, is a partition of X \ H, 80 is Q,;
(ili) C UE is a T'D(3,4);
(iv) each point of X \ H appears exactly twice in C and twice in £.
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We will now construct an OGDD of type 44.

It is easy to see that there are only two non-isomorphic Latin squares
of side 4, so there are only two non-isomorphic T'D(3, 4).

We choose one T'D(3, 4) as follows:

{0,1,2},{0,4,5},{0,7,8},{0, 10,11},
{3,1,5},{3,4,2},{3,7,11},{3,10,8},
{6,1,8},{6,4,11},{6,7,2}, {6, 10, 5},

{9,1,11},{9,4,8},{9,7,5}, {9, 10, 2}.

When {0,1,2} and {0,4,5} are put into C, the blocks of the TD(3,4)
can uniquely be partitioned into two parts with the condition (iv):

¢= {{0,1,2},{0,4,5},{3,7,11}, {3, 10,8}, {6, 1,8}, {6,4, 11},

{9,7,5},{9,10,2}} and

&= {{0,7,8},{0,10,11}, {3,1,5},{3,4,2}, {6, 7,2}, {6, 10, 5},

{9,1,11},{9,4,8}}.

Hence we have K and L as follows:

L ={{7,8},{10,11},{1,5}, {4,2},{7,2},{10,5}, {1, 11}, {4, 8}
{0,7},{0,8}, {0, 10}, {0, 11},{3,1}, {3,5}, {3, 4}, {3,2}

{6,7},{6,2},{6,10}, {6,5},{9,1},{9,11}, {9,4}, {9,8}}.
K = {{1,2},{4,5},{7,11},{10,8},{1,8},{4,11}, {7,5}, {10, 2}

{0,1},{0,2}, {0,4},{0,5},{3,7},{3,11}, {3,10}, {3,8}

{6,1}, {6,8},{6,4},{6,11},{9,7},{9, 5}, {9, 10}, {9,2}}.

Now we want to arrange P, and Q. for z € H such that the conditions
(i), (ii), (a) and (b) hold.
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We first arrange the pairs of points of G; and Ga.
When {1,2} is put into Qa, {4,5} can not be put into Q,, and {7,11}

is put into Q.; and this forces {10,5} and {4,8} in P,. {4,5} and {10, 8}
are put into Q; and this forces {1,11} and {7,2} in P;. Thus we have

Qa = {{1,2},{7,11},{0,-},{3,-},{6,-},{9,-}}
P, = {{10,5},{4,8},{0,-},{3,-},{6,-},{9,-}}
Qs = {{4,5},{10,8},{0,-},{3,-},{6,-}, {9,-}}
Py = {{1,11},{7,2},{0,-},{3,-}, {6, -}, {9, - }}
Q. = {{1,8},{7,5},{0,-},{3,-},{6,-},{9,-}}
Pe = {{4,2},{10,11},{0,-},{3,-},{6,-}, {9, -}}
Qa = {{4,11},{10,2},{0,-},{3,-}, {6, -}, {9, -}}

Pd = {{lv 5}) {758}1 {05 _}s {3’ _}’ {6’ —}’ {9’ —}}
Note
{1,2,7,11} N {4,5,8,10} = 0, {1,8,7,5} N {4,11,10,2} = 0.

Based on this observation, it is easy to see the following arrangement:
Q. and @; contain {0, z}, {3,y}, {6, 2}, {9,t} with z,y € G; and z,t € Gs;
Q. and Qg contain {0,z},{3,y}, {6, 2z}, {9,t} with z,y € G and z,t € Gy;
P, and P, contain {0,z}, {3,y}, {6,2},{9,t} with z,y € G; and 2,t € Gy;
P, and P; contain {0,z},{3,y}, {6,2},{9,t} with z,y € G, and 2,t € G2.

Based on the above discussion, it is easy to obtain the following arrange-
ment.

Q. = {{1,2},{7,11},{0,4},{3,10}, {6,8}, {9,5}}

P, = {{10,5},{4,8},{0,11},{3,2},{6,7},{9,1}}
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Qo = {{4,5},{10,8},{0,1}, {3, 7}, {6,11},{9,2}}
P, = {{1,11},{7,2},{0,8}, {3,5}, {6,10}, {9, 4}}
Q. = {{1,8},{7,5},{0,2}, {3,11},{6,4}, {9, 10}},
P. = {{4,2},{10,11},{0,7},{3,1}, {6,5}, {9, 8}}
Qa = {{4,11},{10,2},{0,5},{3,8},{6,1}, {9, 7}}

Py = {{1,5}, {7,8},{0,10}, {3,4}, {6,2}, {9, 11}}

Hence an OGDD of type 4* is constructed as follows:

A={
{0,1,2},{0,4,5}, {38,7,11}, {3, 10, 8}

{6,1,8},{6,4,11},{9,7,5},{9,10,2}
{a,10,5},{a, 4,8},{a,0,11}, {a,3,2}, {a,6, 7}, {a,9,1}
{b,1,11},{b,7,2},{b,0,8}, {b, 3,5}, {b, 6,10}, {b,9,4}
{c,4,2},{¢c, 10,11}, {¢,0,7}, {c, 3,1}, {c, 6,5}, {c, 9,8}

{d,1,5},{d,7,8},{d, 0,10}, {d, 3,4}, {d, 6,2}, {d,9,11}}
B={

{0,7,8},{0,10,11}, {3,1,5},{3,4,2}

{6,7,2}, {6,10,5}, {9,1,11}, {9,4, 8}
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{a,1,2},{a,7,11},{a,0,4}, {a, 3,10}, {a, 6,8}, {a,9, 5}
{ba 41 5}’ {b: 101 8}» {b: 0: 1}1 {b’ 3' 7}’ {ba 6) 11}’ {b’ 9, 2}
{c,1,8},{¢,7,5},{c,0,2},{c, 3,11}, {c, 6,4}, {c, 9, 10}

{d,4,11},{d, 10,2}, {d, 0,5}, {d, 3,8}, {d, 6,1},{d,9,7}}

For convenience to the reader, we check the orthogonality as follows:

a

b:

C:

4:

7:

: {10,5} — 6; {4,8) — 9;{0,11} — 10;{3,2} — 4; {6, 7} — 2; {9, 1} — 11;

{17 11} -9 {71 2} - 6; {0)8} -7 {3) 5} - 1; {61 10} - 5; {9, 4} -8

{4,2} - 3;{10,11} - 0;{0, 7} — &; {3,1} - 5; {6, 5} — 10; {9,8} — 4;

:{1,5} - 3;{7,8} — 0;{0,10} — 11; {3,4} — 2;{6,2} — 7;{9, 11} — 1;
: {1,2} - 0;{4,5} — b; {a, 11} — 7; {b,8} — 10; {c, 7} — 5; {d, 10} — 2;
: {7,11} — ¢; {10,8} — b; {a,2} — 1;{b, 5} — 4; {c, 1} — 8; {d, 4} — 11;
: {1,8} — ¢; {4,11} — d; {a, 7} — 11;{b, 10} — 8; {c, 5} — 7; {d, 2} — 10;
: {7,5} — ¢; {10,2} — d; {a, 1} — 2; {b,4} — 5; {c, 8} — 1;{d, 11} — 4;

:{0,2} — ¢; {6,8} — a; {a,9} - 5; {b,11} — 6; {c, 3} — 11;{d, 5} - 0;

{0’5} - d; {6$ 11} - b; {a’: 8} - 6; {b! 9} - 2; {6)2} - 0; {d: 3} - 8;

{3,11} - ¢;{9,5} — a; {a,6} — 8; {b,2} — 9; {c,0} — 2;{d, 8} - 3;

10: {318} - d; {9, 2} - b; {at 5} -9 {by 6} - 15 {cl 11} - 3; {dr 0} - 5;

2:

5:

{0,1} - 5;{9,10} - ¢; {a,3} — 10; {b, 7} — 3; {c,4} — 6;{d,6} — 1;

{0,4} - a;{9,7} — d; {a, 10} - 3; {,3} — 7; {c, 6} — 4; {d, 1} — 6;
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8:{6,1} — d; {3,10} — a; {a,4} — 0;{b,0} — 1;{c,9} — 10; {d, 7} - 9;

11: {31 7} -b {674} -G {0'70} -4 {b7 1} -0; {c: 10} -9 {dag} -7

Note that
a:{10,5} — 6;{4,8} — 9;{0,11} — 10;{3,2} — 4; {6,7} — 2; {9,1} - 11
means
{a,10,5}, {a,4,8},{a,0,11}, {a, 3,2}, {a,6,7},{a,9,1} € A
and
{10,5,6}{4,8,9}{0,11,10}{3,2,4}{6,7,2}{9,1,11} € B.

It follows from 6,9,10,4,2 and 11 are distinct and in different groups with
a that the condition (i) holds with

{z,y} € {{10,5},{4,8},{0,11}, {3,2}, {6,7},{9,1}}
and the condition (ii) holds with z = a.

By the way, OGDDs of type 8* and 12* were constructed by Dukes in
[2], we have no other direct construction for the case with four groups.
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