Construction for OGDD of Type 4⁴

Xuebin Zhang

Department of Mathematics, Nanjing Normal University Nanjing, China, 210097

Abstract For a long time we had thought that there does not exist an OGDD of type 4^4 . In this article, an OGDD of type 4^4 will be constructed.

2000 Mathematics Subject Classification: 05B05. Key words and Phrases: orthogonal, group-divisible design.

1 Introduction

A group-divisible design with block size 3(briefly, 3-GDD) $(X, \mathcal{G}, \mathcal{A})$ is a set X and a partition \mathcal{G} of X into classes (usually called groups), and a set \mathcal{A} of 3-subsets of X, so that each pair $\{x,y\}$ of elements of X appears once in a 3-subset of \mathcal{A} if x and y are from different groups, and does not appear in a 3-subset of \mathcal{A} if x and y are from the same groups.

An orthogonal group-divisible design (briefly, OGDD) $(X, \mathcal{G}, \mathcal{A}, \mathcal{B})$ is a pair of 3-GDDs $(X, \mathcal{G}, \mathcal{A})$ and $(X, \mathcal{G}, \mathcal{B})$ satisfying two orthogonality conditions:

- (i) if $\{x,y,z\} \in \mathcal{A}$ and $\{x,y,w\} \in \mathcal{B}$, then z and w are in different groups; and
- (ii) for two distinct intersecting triples $\{x, y, z\}$ and $\{u, v, z\}$ of \mathcal{A} , the triples $\{x, y, w\}$ and $\{u, v, t\}$ of \mathcal{B} satisfy $w \neq t$.

A transversal design (briefly,TD) TD(3,4) is a 3-GDD of type 43.

For the existence of OGDD of type g^u , Colbourn and Gibbons [4] have done excellent work. The following were their concluding remarks:

The main question that remains open is whether there is any value of g for which an OGDD of type g^4 exists. On the basis of the nonexistence when g=2 and g=4, one might be tempted to conjecture that the answer

is negative.

In this article, an OGDD of type 44 will be constructed by hand.

2 Construction for an OGDD of type 4⁴

Let
$$G = \{G_0, G_1, G_2, H\}$$
 and $X = G_0 \cup G_1 \cup G_2 \cup H$, where $G_0 = \{0, 3, 6, 9\}, G_1 = \{1, 4, 7, 10\}, G_2 = \{2, 5, 8, 11\}, H = \{a, b, c, d\}$.

Assume $(X, \mathcal{G}, \mathcal{A}, \mathcal{B})$ is an OGDD of type 4^4 . \mathcal{A} can be partitioned into two parts, namely, \mathcal{C} and \mathcal{D} such that the first part does not contain any point of H and the second part does.

Let

$$P_a = \{\{x, y\} : \{a, x, y\} \in \mathcal{D}\}$$

$$P_b = \{\{x, y\} : \{b, x, y\} \in \mathcal{D}\}$$

$$P_c = \{\{x, y\} : \{c, x, y\} \in \mathcal{D}\}$$

$$P_d = \{\{x, y\} : \{d, x, y\} \in \mathcal{D}\}$$

$$K = \{\{x, y\} : \{x, y, z\} \in \mathcal{C}\}$$

Similarly, \mathcal{B} can be partitioned into two parts, namely, \mathcal{E} and \mathcal{F} such that the first part does not contain any point of H and the second part does.

Let

$$\begin{split} Q_a &= \{\{x,y\} : \{a,x,y\} \in \mathcal{F}\} \\ Q_b &= \{\{x,y\} : \{b,x,y\} \in \mathcal{F}\} \\ Q_c &= \{\{x,y\} : \{c,x,y\} \in \mathcal{F}\} \\ Q_d &= \{\{x,y\} : \{d,x,y\} \in \mathcal{F}\} \\ L &= \{\{x,y\} : \{x,y,z\} \in \mathcal{E}\} \end{split}$$

It follows from the definition of OGDD that

- (i) $L = P_a \cup P_b \cup P_c \cup P_d$ and $K = Q_a \cup Q_b \cup Q_c \cup Q_d$;
- (ii) for $x \in H$, P_x is a partition of $X \setminus H$, so is Q_x ;
- (iii) $\mathcal{C} \cup \mathcal{E}$ is a TD(3,4);
- (iv) each point of $X \setminus H$ appears exactly twice in \mathcal{C} and twice in \mathcal{E} .

We will now construct an OGDD of type 4^4 .

It is easy to see that there are only two non-isomorphic Latin squares of side 4, so there are only two non-isomorphic TD(3,4).

We choose one TD(3,4) as follows:

When $\{0,1,2\}$ and $\{0,4,5\}$ are put into C, the blocks of the TD(3,4) can uniquely be partitioned into two parts with the condition (iv):

$$\mathcal{C} = \{\{0,1,2\},\{0,4,5\},\{3,7,11\},\{3,10,8\},\{6,1,8\},\{6,4,11\},\\ \{9,7,5\},\{9,10,2\}\} \text{ and }$$

$$\mathcal{E} = \{\{0,7,8\},\{0,10,11\},\{3,1,5\},\{3,4,2\},\{6,7,2\},\{6,10,5\},\\ \{9,1,11\},\{9,4,8\}\}.$$

Hence we have K and L as follows:

$$L = \{\{7,8\}, \{10,11\}, \{1,5\}, \{4,2\}, \{7,2\}, \{10,5\}, \{1,11\}, \{4,8\}\}, \{0,7\}, \{0,8\}, \{0,10\}, \{0,11\}, \{3,1\}, \{3,5\}, \{3,4\}, \{3,2\}\}, \{6,7\}, \{6,2\}, \{6,10\}, \{6,5\}, \{9,1\}, \{9,11\}, \{9,4\}, \{9,8\}\}.$$

$$K = \{\{1,2\}, \{4,5\}, \{7,11\}, \{10,8\}, \{1,8\}, \{4,11\}, \{7,5\}, \{10,2\}\}, \{0,1\}, \{0,2\}, \{0,4\}, \{0,5\}, \{3,7\}, \{3,11\}, \{3,10\}, \{3,8\}\}, \{6,1\}, \{6,8\}, \{6,4\}, \{6,11\}, \{9,7\}, \{9,5\}, \{9,10\}, \{9,2\}\}.$$

Now we want to arrange P_x and Q_x for $x \in H$ such that the conditions (i), (ii), (a) and (b) hold.

We first arrange the pairs of points of G_1 and G_2 .

When $\{1,2\}$ is put into Q_a , $\{4,5\}$ can not be put into Q_a , and $\{7,11\}$ is put into Q_a ; and this forces $\{10,5\}$ and $\{4,8\}$ in P_a . $\{4,5\}$ and $\{10,8\}$ are put into Q_b and this forces $\{1,11\}$ and $\{7,2\}$ in P_b . Thus we have

$$Q_a = \{\{1, 2\}, \{7, 11\}, \{0, -\}, \{3, -\}, \{6, -\}, \{9, -\}\}\}$$

$$P_a = \{\{10, 5\}, \{4, 8\}, \{0, -\}, \{3, -\}, \{6, -\}, \{9, -\}\}\}$$

$$Q_b = \{\{4, 5\}, \{10, 8\}, \{0, -\}, \{3, -\}, \{6, -\}, \{9, -\}\}\}$$

$$P_b = \{\{1, 11\}, \{7, 2\}, \{0, -\}, \{3, -\}, \{6, -\}, \{9, -\}\}\}$$

$$Q_c = \{\{1, 8\}, \{7, 5\}, \{0, -\}, \{3, -\}, \{6, -\}, \{9, -\}\}\}$$

$$P_c = \{\{4, 2\}, \{10, 11\}, \{0, -\}, \{3, -\}, \{6, -\}, \{9, -\}\}\}$$

$$Q_d = \{\{4, 11\}, \{10, 2\}, \{0, -\}, \{3, -\}, \{6, -\}, \{9, -\}\}\}$$

$$P_d = \{\{1, 5\}, \{7, 8\}, \{0, -\}, \{3, -\}, \{6, -\}, \{9, -\}\}\}$$

Note

$$\{1,2,7,11\} \cap \{4,5,8,10\} = \emptyset, \{1,8,7,5\} \cap \{4,11,10,2\} = \emptyset.$$

Based on this observation, it is easy to see the following arrangement: Q_a and Q_b contain $\{0, x\}, \{3, y\}, \{6, z\}, \{9, t\}$ with $x, y \in G_1$ and $z, t \in G_2$; Q_c and Q_d contain $\{0, x\}, \{3, y\}, \{6, z\}, \{9, t\}$ with $x, y \in G_2$ and $z, t \in G_1$; P_a and P_b contain $\{0, x\}, \{3, y\}, \{6, z\}, \{9, t\}$ with $x, y \in G_2$ and $z, t \in G_1$; P_c and P_d contain $\{0, x\}, \{3, y\}, \{6, z\}, \{9, t\}$ with $x, y \in G_1$ and $z, t \in G_2$.

Based on the above discussion, it is easy to obtain the following arrangement.

$$Q_a = \{\{1,2\}, \{7,11\}, \{0,4\}, \{3,10\}, \{6,8\}, \{9,5\}\}$$

$$P_a = \{\{10,5\}, \{4,8\}, \{0,11\}, \{3,2\}, \{6,7\}, \{9,1\}\}$$

$$Q_b = \{\{4,5\}, \{10,8\}, \{0,1\}, \{3,7\}, \{6,11\}, \{9,2\}\}\}$$

$$P_b = \{\{1,11\}, \{7,2\}, \{0,8\}, \{3,5\}, \{6,10\}, \{9,4\}\}\}$$

$$Q_c = \{\{1,8\}, \{7,5\}, \{0,2\}, \{3,11\}, \{6,4\}, \{9,10\}\},$$

$$P_c = \{\{4,2\}, \{10,11\}, \{0,7\}, \{3,1\}, \{6,5\}, \{9,8\}\}\}$$

$$Q_d = \{\{4,11\}, \{10,2\}, \{0,5\}, \{3,8\}, \{6,1\}, \{9,7\}\}\}$$

$$P_d = \{\{1,5\}, \{7,8\}, \{0,10\}, \{3,4\}, \{6,2\}, \{9,11\}\}\}$$
Hence an $OGDD$ of type 4^4 is constructed as follows:
$$A = \{$$

$$\{0,1,2\}, \{0,4,5\}, \{3,7,11\}, \{3,10,8\}\}$$

$$\{6,1,8\}, \{6,4,11\}, \{9,7,5\}, \{9,10,2\}\}$$

$$\{a,10,5\}, \{a,4,8\}, \{a,0,11\}, \{a,3,2\}, \{a,6,7\}, \{a,9,1\}\}$$

$$\{b,1,11\}, \{b,7,2\}, \{b,0,8\}, \{b,3,5\}, \{b,6,10\}, \{b,9,4\}\}$$

$$\{c,4,2\}, \{c,10,11\}, \{c,0,7\}, \{c,3,1\}, \{c,6,5\}, \{c,9,8\}\}$$

$$\{d,1,5\}, \{d,7,8\}, \{d,0,10\}, \{d,3,4\}, \{d,6,2\}, \{d,9,11\}\}$$

$$\mathcal{B} = \{$$

$$\{0,7,8\}, \{0,10,11\}, \{3,1,5\}, \{3,4,2\}$$

$$\{a,1,2\},\{a,7,11\},\{a,0,4\},\{a,3,10\},\{a,6,8\},\{a,9,5\}\}$$
 $\{b,4,5\},\{b,10,8\},\{b,0,1\},\{b,3,7\},\{b,6,11\},\{b,9,2\}\}$
 $\{c,1,8\},\{c,7,5\},\{c,0,2\},\{c,3,11\},\{c,6,4\},\{c,9,10\}\}$
 $\{d,4,11\},\{d,10,2\},\{d,0,5\},\{d,3,8\},\{d,6,1\},\{d,9,7\}\}$

For convenience to the reader, we check the orthogonality as follows:

$$a: \{10,5\} - 6; \{4,8\} - 9; \{0,11\} - 10; \{3,2\} - 4; \{6,7\} - 2; \{9,1\} - 11; \\b: \{1,11\} - 9; \{7,2\} - 6; \{0,8\} - 7; \{3,5\} - 1; \{6,10\} - 5; \{9,4\} - 8; \\c: \{4,2\} - 3; \{10,11\} - 0; \{0,7\} - 8; \{3,1\} - 5; \{6,5\} - 10; \{9,8\} - 4; \\d: \{1,5\} - 3; \{7,8\} - 0; \{0,10\} - 11; \{3,4\} - 2; \{6,2\} - 7; \{9,11\} - 1; \\0: \{1,2\} - a; \{4,5\} - b; \{a,11\} - 7; \{b,8\} - 10; \{c,7\} - 5; \{d,10\} - 2; \\3: \{7,11\} - a; \{10,8\} - b; \{a,2\} - 1; \{b,5\} - 4; \{c,1\} - 8; \{d,4\} - 11; \\6: \{1,8\} - c; \{4,11\} - d; \{a,7\} - 11; \{b,10\} - 8; \{c,5\} - 7; \{d,2\} - 10; \\9: \{7,5\} - c; \{10,2\} - d; \{a,1\} - 2; \{b,4\} - 5; \{c,8\} - 1; \{d,11\} - 4; \\1: \{0,2\} - c; \{6,8\} - a; \{a,9\} - 5; \{b,11\} - 6; \{c,3\} - 11; \{d,5\} - 0; \\4: \{0,5\} - d; \{6,11\} - b; \{a,8\} - 6; \{b,9\} - 2; \{c,2\} - 0; \{d,3\} - 8; \\7: \{3,11\} - c; \{9,5\} - a; \{a,6\} - 8; \{b,2\} - 9; \{c,0\} - 2; \{d,8\} - 3; \\10: \{3,8\} - d; \{9,2\} - b; \{a,5\} - 9; \{b,6\} - 11; \{c,11\} - 3; \{d,0\} - 5; \\2: \{0,1\} - b; \{9,10\} - c; \{a,3\} - 10; \{b,7\} - 3; \{c,4\} - 6; \{d,6\} - 1; \\5: \{0,4\} - a; \{9,7\} - d; \{a,10\} - 3; \{b,3\} - 7; \{c,6\} - 4; \{d,1\} - 6; \\4$$

$$8: \{6,1\} - d; \{3,10\} - a; \{a,4\} - 0; \{b,0\} - 1; \{c,9\} - 10; \{d,7\} - 9;$$

$$11: \{3,7\} - b; \{6,4\} - c; \{a,0\} - 4; \{b,1\} - 0; \{c,10\} - 9; \{d,9\} - 7.$$

Note that

$$a: \{10,5\} - 6; \{4,8\} - 9; \{0,11\} - 10; \{3,2\} - 4; \{6,7\} - 2; \{9,1\} - 11$$

means

$$\{a,10,5\},\{a,4,8\},\{a,0,11\},\{a,3,2\},\{a,6,7\},\{a,9,1\}\in\mathcal{A}$$

and

$$\{10,5,6\}\{4,8,9\}\{0,11,10\}\{3,2,4\}\{6,7,2\}\{9,1,11\}\in\mathcal{B}.$$

It follows from 6,9,10,4,2 and 11 are distinct and in different groups with a that the condition (i) holds with

$$\{x,y\} \in \{\{10,5\},\{4,8\},\{0,11\},\{3,2\},\{6,7\},\{9,1\}\}$$

and the condition (ii) holds with z = a.

By the way, OGDDs of type 8⁴ and 12⁴ were constructed by Dukes in [2], we have no other direct construction for the case with four groups.

References

- 1. C.J.Colbourn and J.H.Dinitz, The CRC Handbook of Combinatorial Designs, Boca Raton, New York, London, CRC Press, Inc. 1996.
- 2. P.Dukes, Orthogonal 3-GDDs with four groups, Australas. J. Combin. 26(2002), 225-232.
- 3. C.J.Colbourn, P.B.Gibbons, R.Mathon, R.C.Mullin and A.Rosa, The spectrum of orthogonal Steiner triple systems, Canadian J. Math. 46(1994), 239-252.
- 4. C.J.Colbourn and P.B.Gibbons, Uniform Orthogonal Group Divisible Designs with Block Size Three, New Zealand J. Math. 27(1998), 15-33.
- 5. D.R.Stinson and L.Zhu, Orthogonal Steiner triple systems of order 6t + 3, Ars Combinatoria, 31(1991), 33-64.
- 6. Xuebin Zhang, Construction of orthogonal group divisible designs, J. of Combin. Math. and Combin. Comput., 20(1996), 121-128.