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Abstract

In this study we are going to give new (t,k)-geodetic set definition.
This is a refinement of the geodetic set definition given in [11). With
this new definition we obtain more information about the graph.
We also give a relationship between the (t,k)-geodetic set and the
integrity of a graph. By using a (t,k)-geodetic set we give a new
proof for the upper bound of integrity of trees and unicycle graphs.

1 Introduction

The distance d(u,v) between two vertices u and v in a graph G is the length
of the shortest © — v path. A u — v path of length d(u,v) is called a u — v
geodesic. Let H(u,v) be the set of all vertices lying on some u — v geodesic
of G. Let S be a subset of V(G). We define

H(S) =UyvesH(u,v).

A set S of vertices of G is defined in [10] to be a geodetic set in G if H(S) =
V(G), and a geodetic set of minimum cardinality is a minimum geodetic
set. The cardinality of a minimum geodetic set in G is the geodetic number
9(G). For more details about a geodetic set and the geodetic number of a
graph, the interested reader may refer to [1, 2, 10, 11, 12, 13, 16, 17].

Obviously, for non-trivial graphs, any smallest geodetic set has at least two
vertices. This is clear from the definition. The path P, in fact has minimum
geodetic set of size 2. On the other hand the largest possible geodetic set
can have size n, where n is the number of vertices of the given graph. For
the complete graph K, the geodetic set has size n. The following theorem
gives an upper bound for the geodetic number of a nontrivial connected

graphs.
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Theorem 1 [10] If G is a nontrivial connected graph of order n and di-
ameter d, then

9(G) <n—-d+1.

The following theorem says that the set of end vertices of a tree is not only
a geodetic set but also has minimum size as well.

Theorem 2 [10]The geodetic number g(T) of a tree T is the number of
end-vertices in T. In fact, the set of all end-vertices of T is the unique
minimum geodetic set of T.

Harary, Chartrand, and Zhang gave the minimum geodetic subgraph def-
inition in [11). Graph F is called a minimum geodetic subgraph if there
exists a graph G containing F' as an induced subgraph such that V(F) is
a minimum geodetic set in G. They have given the following theorem to
characterize the minimum geodetic subgraph.

Theorem 3 A nontrivial graph F is a minimum geodetic subgraph if and
only if every vertex of F' has eccentricity 1 or no vertex of F has eccentricity
1.

The geodetic set and geodetic number of some well-known graphs are stud-
ied and computed in the literature that we have listed above. It has been
shown [1] that geodetic set problem is NP-complete.

The following example shows that two different graphs may have the same
geodetic number but be very different. If we look at their (2, k)-geodetic
number, then we have a better understanding between the graphs. Hence
we introduce a new geodetic set definition.

Example: Let G, be the star graph and Kj 2, and G the graph described
as follows: Take 2 copies of K,, the complete graph and add a new vertex
u. Join u to every vertices of both K,,. Let S; be geodetic set of G; for
¢ = 1,2. Assume here S; are minimum geodetic sets. By the theorem
above minimum geodetic set of star graph is |S;| = 2n. One can show that
minimum geodetic set Sz of G has size 2n. But m({S1)) = 1 where as
m({S2)) = n, where (U} indicates induced subgraph and m({U)) indicates
the maximum order of the components of induced graph (U).
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In this study we assume that graph G is a simple connected graph.

2 (t,k)-Geodetic Set

When we look at the definition of a geodetic set, all we know is that every
vertex of graph is on a shortest path between two vertices which are in the
geodetic set.

Let G be a given graph and S be a subset of V(G). We say S is a (t,k)-
geodetic set if S is a geodetic set of G with |S| = k and m((S)) = t. We
say (t,k)-geodetic set is minimum if S is a minimum geodetic set with
|S| = k. Existing studies are about mainly minimum geodetic set and
geodetic number of graphs. Here there are some interesting questions to
investigate about a (¢, k)-geodetic set:

1. Let S be a minimum geodetic set of a given graph G. What can we
say about ¢ = m((S))? Is it fixed for all minimum geodetic sets of
given graph G?

2. Find a (¢, k)-geodetic set such that G(t, k) = mingcv(c){ £ : m({S)) =
t,|S| = k}.

3. Find a (¢, k)-geodetic set such that t + (n — k) is minimum, where n
is the number of vertices of a given graph G.

It is obvious that a complete graph K, has a unique geodetic set S which
is vertex set of K,,. Hence m({S)) = n. Theorem 2 yields the following
theorem.

Theorem 4 If graph G is a tree with k > 3 end vertices, then there exist
unique(1,k)-geodetic set of G.

Here are some observations:
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a. There are some graphs that have a minimum (1, k)-geodetic set but
G is not a tree. For example, Peterson graph has a minimum (1,4)-
geodetic set.

b. If a given graph G has unique minimum geodetic set S, then it has
a minimum (¢, |S|)-geodetic set with fixed t. If geodetic set is not
unique, then the value of ¢ of (¢, |S|)-geodetic may not be unique. For
example: If G = Cy, then S; = {1,4,5} is minimum geodetic set.
Hence it yields a minimum (2, 3)-geodetic set. Also S = {1,3,5} is
also a minimum geodetic set, which yields a (1, 3)-geodetic set.

¢. The following graph G has seven different minimum geodetic sets
of size 3. These are S = {1,2,4}, S = {1,5,4}, S5 = {1,5,7},
Sy = {2,3,6} S5 = {2,4,6}, Se¢ = {3,5,7}, and S; = {3,6,7}. We
have m((S;}) =2 fori=1,2,...,7.

Graph G

For the second question given above, we have an obvious upper and lower
bounds. Specifically, ;é—l- < G(t, k) < 1, where n is the number of vertices
of given graph. The star graph K, realizes the lower bound. The complete
graph K, realizes the upper bound.

Theorem 5 Let P, be a path on n vertices. Then

aag i nis odd
P,(t, k) =

if n is even.

S

Proof: Suppose n is odd. Let S be set of every other vertices on the P,.
Obviously [S| = 2t! and S is a geodetic set and m((S)) = 1. If &' is
a set of vertices and S’ contains S but |S’| > |5, then m({S’)) > 2 and
') <n-1. 0
One can easily observe that for any given tree T with k¥ > 3 end vertices
T(t, k) < 1. The following is a realization theorem.
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Theorem 6 Let n > 3 be and integer. For any § < k <n —1 there exist
a tree with n vertices such that T(t, k) = .

Proof: Let k be given number in the stated range. There exists an integer
r such that k +r = n — 1. We construct the following tree with n vertices.

3 2

NS
/[&

s3 §2

\"
Tree T

In T, the indicated subgraph U has n — 2r vertices. Let S be set of all
end vertices. % = 1. Any other geodetic set S’ that contains S has
m((S")) > 2 0

Similar to the path, we can give the following theorem for the cycle C;,.
Theorem 7 Let C, be a cycle with n vertices. Then

2 ifnisodd
Cn(t k) =

For any tree T’ with n vertices, there exists a geodetic set S with |S| > 3.
Hence we can give the following bound.

3

if n is even.

Theorem 8 Of all trees T with n > 3 vertices, the path P, has mazimum
G(t, k). That is T(t, k) < P,(t, k).

It would be very nice to give an upper bound for any graph family. In
general this is not an easy question to answer. Here we study graphs with
a unique cycle. These graphs are known to be unicycle graphs. We fist give
the following theorem.

Graph G*
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4 e .
w3z fn=m+3is even

Theorem 9 The graph G* has G*(t,k) =
ar7  if n=m+38 is odd.

Proof: Subgraph P,, has the geodetic set S which gives the bound in The-
orem 5. So |S| = 24! if m is odd or |S| = Z if m is even. Now in the
given graph vertices a and b have to be in its geodetic set, say S’. Hence
S’ = SU{e,b}. a

Theorem 10 Let G be a any unicycle graph with |V(G)| = |V(G*)|. Then
G(t, k) < G*(t,k).

Proof: Let G be a unicycle graph with n vertices. Then G has a cycle C.
There must be an edge e = (z,y) on the cycle C such that T =G - eisa
tree. T has a geodetic set S such that T(t, k) = iy < 737 or 2 by Theorem

5. We will show that graph G has a geodetic set S’ such that [S’] < |S].

Case 1: Both z and y are not S, then S = S’ is a geodetic set of G and

m((8)) = m((§)) = 1.

Case 2: Only one of the 2 or y in the §. Then S’ = § is a geodetic set of
G and m((S)) = m((S")) = 1.

Case 3: Both z and y are in S. If there is a vertex w € S such that
d(z,w) > d(y, w), then y will be on z —w geodeticon the G. S0 §' = S —y
is a geodetic set of the G. If d(z, u) = d(y, u) for every u € S, then we have
following cases:

Case 3a: If the cycle C has at leat 5 edges as follows:

Define 8’ = § - {z,b} U {a}. In the above figure larger vertices indicates
vertices that are in a geodetic set. Obviously z is on y — a geodetic.

Case 8b: If C is a triangle, then G = G*.

Now suppose S = S’. If n is odd, then ]3%7[ < 727 < 7%37- Ifnis even, then

]_317f < 2 < A Suppose |S'| = |S|—1. If n is odd, then ]'sl"'[ <2< A I

<z inm Shn S
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n is even, then 13‘7 < i n—2 < ;_—'_-2—, when n > 5. Ifn 4, then G*(t, k) = 32-
On the other hand P4(t,k) = ; and K) 3(t, k) = |
If we can find a minimum geodetic set S of a graph G. Then we we have
the following upper bound in general.

Theorem 11 Let G be graph and S be its minimum geodetic set. Then
Gt k) < 20

Let P, be a path with n vertices. If we remove r vertices, then maximum
number of components will be r 4+ 1. Maximum number of vertices in each
component is bounded by 777. We take the following function

fo)=r+ 3%

This function gets its minimum value vn + 1-1 at r = v/n + 1—1. There-
fore we can state the following theorem.

Theorem 12 Let P, be a path with n vertices. There exists a (t,k)-
geodetic set of P, such that minimum value of t + n — k is bounded by

2/n+1-

Similarly we can prove the following.

Theorem 13 Let C,, be a cycle with n vertices. There exist a (¢, k)-geodetic
set of Cy, such that minimum value of t + n — k is bounded by 2\/n — 1.

The concept of integrity in a graph theory was introduced by Barefoot,
Entringer and Swart [7] as an alternative measure of the vulnerability of
graphs to disruption caused by the removal of vertices. Formally, the in-

tegrity is
I(G) = min cv(e){ILl +m(G - L)}

where m(G — L) is the maximum order of the components of G — L.

Let G be a graph and L be subset of V(G). Then L is called I — set if
I(G) = |L| + m(G — L). 1t is obvious that S = G — L is a geodetic set of
the graph G. So if we can find (t, k)-geodetic set S such that ¢t + (n — k) is
minimum, where n is the number of vertices of the graph G. Then G — S
is I-set of the graph G.

We also refer to the following papers for the integrity and related studies
3, 4,5, 6,7, 14, 15, 18).
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3 Integrity and Geodetic Set

Barefoot, Entringer, and Swart computed integrity of trees [6]. They have
showed that among all the trees with n vertices, the path P, has the maxi-
mum integrity. Vince also proved the same theorem in [18] by using different
argument. Atici has proved in [4] that among all unicycle graphs with n
vertices, the cycle C,, has the maximum integrity. Here is the integrities of
path P, and cycle C,,:

I(Pn) = [2v/n+1] -2
I(Cn) = [2vn] -1

We give new proofs for those two integrity by using (¢, k)-geodetic set of
graph G. First let us prove the following lemmas.

Lemma 14 Let Ty and Ty be two trees with n vertices. Suppose T; has
(t:, k)-geodetic sets for i = 1,2. If the number of end vertices of Ty is less
than the number of end-vertices of Tz, then t; > t,.

Proof: Let S; be (t;, k)-geodetic set of T; for i = 1,2. S, contains all the
end-vertices of T> and T5 has more end-vertices that T;. Hence S; contains
at least one or more vertices that are not end-vertices of T;. Hence t; > 5.
a

Similarly we can show the following for unicycle graphs.

Lemma 15 Let G be a unicycle graph with n vertices. Suppose G and C,,
have (t;, k)-geodetic and (to, k)-geodetic sets, respectively. Then t, < ta.

Theorem 16 Among all trees with n vertices, the path P, has mazimum
integrity.

Proof: Let T be a tree with n vertices. T has a (¢, k)-geodetic set S such
that T — S is I-set of T. Suppose the path P, has (t/,k)-geodetic set.
Then Lemma 14, ¢’ > t. Hence I(T) =t+n—-k <t +n—k. Let S be
(%, k)-geodetic set of P, such that P, — S is an I—set of P,. By Theorem
12, t =vn+1—-1and k =n—-+vn+1+1. We will show that T has
(%1, k1)-geodetic set such that ) < ¢ and ky > k.

Case 1: If T has more than k or equal end-vertices, then take S as all end-
vertices of T. Hence k; > k and m((S)) = 1. Therefore 1 +n—k; < I(P,).

Case 2: If T has less than k = n—+/n + 141 end-vertices. Then take S set
of all end-vertices and some other vertices such that |S|=n—-vn+1+1.
So S is a (t1,n — vn+1 + 1)-geodetic set of T. By Lemma 14, ¢; < ¢.
Hence I(T) <t +vn+1-1<I(P)=t+n—k. ]
Similarly one can show the following:
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Theorem 17 Among all unicycle graph with n vertices, the cycle C,, has
the mazimal integrity.
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