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ABSTRACT

In this paper, self-centered, bi-eccentric splitting graphs are charac-
terized. Further various bounds for domination number, global domination
number and the neighborhood number of these graphs are obtained.

1. Introduction

Graphs discussed in this paper are connected, undirected and
simple. Splitting graphs were first studied by Sampathkumar
and Walikar [12] and were further developed by Patil and Thanga-
mari [7]. Swaminathan and Subramanian [11] studied the dom-
ination number of these graphs. The line splitting graph of a
graph was introduced by Kulli and Biradar [4]. For a graph G,
let V(G) and E(G) denote its vertex set and edge set respec-
tively. The degree of a vertex v in a graph G is denoted by
dege(v) or deg(v). The length of any shortest path between
any two vertices u and v of a connected graph G is called the
distance between u and v and is denoted by d(u, v) or dg(u, v).
The distance between two vertices in different componcnts of a
disconnected graph is defined to be oco. The eccentricity of a
vertex u€V(G) is defined as eg(u) = max{dg(u, v): veV(G)}.
If there is no confusion, then we simply denote the eccentricity
of vertex v in G as e(v). The minimum and maximum eccen-
tricities are the radius and diameter of G, denoted r(G) and
diam(G) respectively. When diam(G) = r(G), G is called self-
centered graph with radius r, equivalently is r-self-centered. A
vertex u is said to be an eccentric vertez of v in a graph G, if
d(u, v) = e(v). In general, u is called an eccentric vertez, if it is
an eccentric vertex of some vertex. We also denote the #* neigh-
borhood of v as N;(v) = {ueV(G) : dg(u, v) = i}. If [New)(v)|
= m, for each vertex veV(G), then G is called an m-eccentric
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vertez graph. If m = 2, we call the graph G as bi-eccentric vertez
graph. For veV(G), the neighborhood N(v) of v is the set of all
vertices adjacent to v in G. The set N[v] = N(v)U{v} is called
the closed neighborhood of v. For any set D of vertices of G,
the subgraph of G induced by D is denoted by G[D).

The concept of domination in graphs was introduced by Ore
[6]. A set D of vertices in a graph G is a dominating set, if every
vertex in V(G)- D is adjacent to some vertex in D. The domina-
tion number v(G) of G is the minimum cardinality of a domi-
nating set of G. Sampathkumar and Neeralagi [9] introduced the
concept of neighborhood number of graphs and they obtained
many bounds and relationship with some other known param-
eters.These numbers were further studied by Brigham et al [1].
Algorithmic aspects of these numbers were obtained by Chang et
al [2]. The line neighborhood number of a graph was introduced
by Sampathkumar and Neeralagi [10]. A subset S of V(G) is
a neighborhood set (written n-set) of G if G = UyepE(G[N[v]]),
where G[N[v]] is the subgraph of G induced by N[v]. The neigh-
borhood number no(G) of G is the minimum cardinality of an n-
set of G. For a graph G, let V/(G) = {v': véV(G)} be a copy of
V(G). Then the Splitting graph S(G) of G is the graph with the
vertex set V(G)UV'(G)and edge set {uv, u'v, uv’ : uveE(G)}.

In this paper, we characterize self-centered and bi-eccentric
splitting graphs and determine bounds for their global domina-
tion number and neighborhood number. For simplicity we use
deg*(v), e*(v), d*(u, v) to denote the degree of a vertex v, the
eccentricity of a vertex v and the distance between u and v in
S(G) respectively.

2. Prior Results

We use the following results.
Proposition 2.1. [12]: (i) If G is a (p, q) - graph, then S(G)
is a (2p, 3q) - graph and
(ii) For any vertex v in G, deg*(v) = 2deg(v) and deg*(v') =
deg(v).
Proposition 2.2.[12]: S(G) - E(G)= G®K,, where G@K, is
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the tensor product of G with K.

Theorem 2.1.[12]: A graph G is a splitting graph if and only
if V(G) can be partitioned into two sets Vy, V; such that there
exists a bijection f : V;—V, and N(f(v)) = N(v)nV,, for all
VGV].

Theorem 2.2.[7]: For any graph G of order p > 2, £(S(G))
= min{p, 2£(G)}, where £ is either domination number (or)
neighborhood number.

Observation 2.1.[7]: S(G) is connected if and only if G is a
non-trivial connected graph.

3. Main Results

In the following, we characterize the graphs G with r(G) =1
for which S(G) is self-centered with radius 2.
Theorem 3.1: Let G be any graph with at least three vertices
and r(G) = 1. Then S(G) is self-centered with radius 2 if and
only if G has no pendant vertices.
Proof: Let G be any graph with at least three vertices and r(G)
= 1. Assume G has no pendant vertices. Since r(G) = 1, each
vertex of G lies on a triangle. Then for every v; and v; in V(G),

(a) d*( vi, v;4) d*(vi, vj) = 1, if vyv; €E(G)

2, if ViV; ¢E(G)
(b) d*( vi, vi) d*(vi,v;) = 2.
Thus, it follows that, e*(v;) = 2 and e(v{) = 2, for all v;e V(G).
Hence S(G) is self-centered with radius 2.
Conversely, assume S(G) is self-centered with radius 2 and §(G)
= 1. Let veV(G) be such that deg(v) = 1. Since r(G) = 1,
there exists a vertex ueV(G) such that deg(u) = |V(G)| - 1.
Then d*(u/, v') = 3, since v’ v u v’ is a geodesic in S(G), which

is a contradiction and hence §(G) > 2. O
Corollary 3.1.1: If r(G) = 1 and G has pendant vertices, then
S(G) is bi-eccentric with radius 2. O

Next, we characterize the self-centered graphs G with radius
2 for which S(G) is also self-centered.
Theorem 3.2: Let G be a self-centered graph with radius 2.

213



Then S(G) is also self-centered with radius 2 if and only if for
every pair of adjacent vertices u, v in G, Ng(u)NN¢g(v)# ¢.
Proof: Let G be self-centered with radius 2. Assume for every
pair of adjacent vertices u, v in G, Ng(u)NNg(v)# ¢. Let v;,
v;€V(G).

Then d*(v;, v;) = d*(vi, v) 1, if viv; € E(G);

2, if ViVj ¢ E(G), and

d*(vi, vi) = 2, for all v;eV(G). Hence, e*(v;) = 2. Also by the
assumption, for every pair of adjacent vertices v; and v; in V(G),
there exists a vertex vi in V(G) adjacent to both v; and v, and
hence d*(v}, vj) = 2. Thus, e*(v;) = 2, for all v; €V(G). Hence
S(G) is self-centered with radius 2.

Conversely, assume that there exists a pair of adjacent vertices
vi, vj in G for which Ng(vi)NNg(v;) = é. Then d*(v'y, v/;) =3,
since v/; v; v; V'; is a geodesic in S(G). This is a contradiction,
since S(G) is self-centered with radius 2. O
Corollary 3.2.1: Let G be sell-centercd with radius 2. If there
exists a pair of adjacent vertices v;, v; in G with Ng(vi)NNg(v;)
= ¢, then, S(G) is bi-eccentric with radius 2.

Proof: This follows from the proof of the converse part of Theo-
rem 3.2. O
Lemma 3.1: Let G be any connected graph. If ueV(G) is such
that eg(u) = m, for m > 3, then e*(u) = e*(u') = m.

Proof: Let ueV(G) be such that eg(u) = m, m > 3. Then
there exists a vertex veV(G) with deg(u, v) = m. Let the short-
est path joining u and v be

P(u, v): uu; Up--+ Upeg Um (= V), where u;€V(G),i =1, 2,
-++, m-1. Then,

(a) d*(u, w;) =d*(u,u)) =d*(v, w)=i,i=1,2,---, m
(b) d*(u,u') =2

(c) d*(u’,u})) =2 (or) 3; and

(d) d*(v',u}) =1i,i=2,3,---,m.

From (a), (b), (c) and (d), it follows that, e*(u) =e*(v’) =m, m
> 3. 0O
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Next, we characterize graphs G for which S(G) is bi-eccentric
with radius 2.
Theorem 3.3: For any connected graph G, S(G) is bi-eccentric
with radius 2 if and only if G is one of the following graphs.
(1) r(G) = 1 and G has pendant vertices.
(2) G is self-centered with radius 2 and there exists at least one
pair of vertices u, v in G such that Ng(u)NNg(v) = ¢.
(3) G is bi-eccentric with radius 2.
Proof: Let G be any connected graph. Assume G is one of the
graphs given above. If r(G) = 1 and G has pendant vertices,
then by Corollary 3.1.1., it follows that S(G) is bi-eccentric with
radius 2. If G is as in (2), then by Corollary 3.2.1., S(G) is
bi-eccentric with radius 2. Let G be bi-eccentric with radius 2.
(i) If v;eV(G) is such that e(v;) = 3, then by Lemma 3.1, e*(v;)
=e*(v;) = 3.
(ii) If e(v;) = 2, then e*(v;) = 2 and e*(v}) = 2 (or) 3. Hence,
S(G) is bi-eccentric with radius 2.
Conversely, for a connected graph G, assume S(G) is bi-eccentric
with radius 2.
(a) If r(G) > 3, then by Lemma 3.1, r(S(G)) > 3, which is not
possible and hence r(G) < 2.
(b) If r(G) = 1 and G has no pendant vertices then by Theorem
3.1, S(G) is self-centered with radius 2, which is a contradiction.
Thus, if r(G) = 1, then G has pendant vertices.
(c) If r(G) = 2 and diam(G) = 4, then S(G) also has diameter
4, by Lemma 3.1.
(d) If G is self-centered with radius 2 and for every pair of ad-
jacent vertices u, v in G, Ng(u)NNg(v)# ¢ , then S(G) is self-
centered with radius 2.
Hence G is one of the graphs given in (1), (2) and (3). g
Remark 3.1: If G is any graph with radius r (r > 2) and di-
ameter d, then S(G) is G-eccentricity preserving.
Theorem 3.4: r(S(G)) = max{2, r(G)}
Proof: Follows from Theorem 3.1., 3.2., Lemma 3.1 and Theo-
rem 3.3. a

215



Theorem 3.5:

diam(S(G)) = diam(G), if diam(G) >3
= 2(or)3, ifdiam(G)=2.

Proof: Follows from Lemma 3.1. and Theorem 3.3. O
Remark 3.2: Let G be any connected graph having at least
three vertices. Then the complement S(G) of S(G) is bi-eccentric
with radius 2 if and only if r(G) = 6(G) = 1 and in all other
cases S(G) is self-centered with radius 2.

For a graph G, define $?(G) = S(S(G)), $S*(G) = S(S*~(G))
, n > 2. In the following, we see the eccentricity properties of
S*(G),n > 2.

Theorem 3.6: For any connected graph G with diameter 2,
S™(G) (n > 2) is either bi-eccentric with radius 2 or self-centered
with radius 2.

Proof: If diam(G) = 2, then r(G) =1 (or) 2.

Case (i): r(G) =1

(a) If 6(G) = 1, then S(G) is bi-eccentric with radius 2 and by
Corollary 3.1.1., S*(G) (n > 2) is bi-eccentric with radius 2.
(b) If 6(G) > 2, then S(G) is self-centered with radius 2 by The-
orem 3.1. Also each edge in S*(G) (n > 2) lies on a triangle and
hence S*(G) (n > 2) is self-centered with radius 2.

Case (ii): r(G) = 2.

Then G is self-centered with radius 2 and hence S(G) is either
self-centered with radius 2 (or) bi-eccentric with radius 2, by
Theorem 3.2 and Corollary 3.2.1. Therefore, S*(G), (n > 2) is
also either 2-self centered (or) bi-eccentric with radius 2. a
Remark 3.3: S*(G) (n > 1) is G-radius, diameter preserving
graph, if G has radius r, where r > 3.

Remark 3.4: S*(K,,), (n > 2, m > 3) is self-centered with
radius 2.

A total dominating set T of G is a dominating set such that
the induced subgraph G[T] has no isolated vertices. The total
dominating number «; of G is the minimum cardinality of a to-
tal dominating set. This concept was introduced in Cockayne,
Dawes and Hedetniemi (3].
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In the following, we give bounds on (S(G)).
Proposition 3.1: For any (p, q) graph G having no isolated
vertices,
2<7(8(G)) < p.
Proof: Since the radius of S(G) > 2, v(S(G)) > 2. Also the set,
V/(G) € V(S(G)) is a dominating set of S(G) and hence v(S(G))
< |V(G)| =p. O

The bounds are sharp, since v(S(G))= 2, if G = K, n; Ka, n
2 2 and 7(5(G)) = p, if G ® mK, m > 2.

In the following, we give an upper bound of 7(S(G))in terms
of total domination number of G.
Theorem 3.7: Let G be any graph having no isolates. Then
7(8(G)) £ %(G).
Proof: Let T be a total dominating sct of G with [T} = ~,(G).
For any ve(V(S(G) - D)NV(G), T dominates both the vertices
v and V' in S(G), since T is a dominating set of G. Also for
any weT, the corresponding vertex w’ in V/(G) is adjacent to at
least one vertex in T, since T is a total dominating set G. llence

T is a dominating set of S(G). Thus, ¥(S(G)) < 1(G). O
This bound is sharp since, when G 2 C; (or) Cs, 7(S(G)) =
7(G).

The concept of global domination was introduced by Sam-
pathkumar [8]. A set S C V is called a global dominating set
of G, if S is a dominating set in both G and its complement G.
The global domination number 7, of G is the minimum cardi-
nality of a global dominating set of G. In the following, we find
a necessary and sufficient condition for a global dominating sect
of G to be a global dominating set of S(G).

Theorem 3.8: For any graph G, 7,(S(G)) < 7,(G) if and only
if there exists a global dominating set D of G with [D| = 7,(G)
such that G[D] has no isolated vertices.

Proof: Let D be a global dominating set of G with |1)] = ~,(G)
such that G[D] has no isolated vertices. Then obviously D is a
dominating set of S(G). Since D is a global dominating set of G,
it is enough to prove D dominates v/ in §(G), for all ve V(G). For
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any vertex veD, the vertex v’ is adjacent to v in S(G). Similarly,
for any vertex ueV(G) - D, the vertex u’ in S(G) is adjacent to
at least one vertex in D, since D is a dominating set of G. Hence
D is a dominating set of S(G) and is a global dominating set of
S(G). Thus 14(S(G)) < %(G).
Conversely, assume a global dominating set D of G is also a
global dominating set of S(G) with |D| = ~,(G). If G[D] has iso-
lated vertices, then D is not a dominating set of S(G), which is a
contradiction. O

In the following, we find an upper bound for v,(5(G)).
Theorem 3.9: 7,(S(G)) < 6(G) + 2 if and only if the closed
neighborhood of the vertex of minimum degree is a dominating
set of G.
Proof: Let veV(G) be such that deg(v) = 6(G) and D = N{v}.
Assume D is a dominating set of G. Since D = N{[v}, it is a to-
tal dominating set of G and hence is a dominating set of S(G).
Let v/ be the vertex in S(G), corresponding to v in G. If D’ =
DU{v'}, then D' is a dominating set of S(G) . Hence 7v,(S(G))
< §G) + 2.
Conversely, assume v,(S(G)) < 6(G) + 2. If D = N[v] is not a
dominating set of G, then there exists a vertex weV(G) - DD, not
adjacent to any of the vertices in D and hence D is not a domi-
nating set of S(G). Hence the theorem [ollows. O

This bound is attained, if G is a path on four vertices.
Remark 3.5: If G[D - {v}] = G[N(v)] contains isolated ver-
tices, then
7(8(G)) < 6(G) + 1 and 7,(S(G)) = 6(G) +1, if G = Ky, n
> 2.

The global domination numbers of S(G) for some standard
graphs G can be easily found and are given as follows.
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(8) %(S(Ka)) = n,n>3
(b) % (S(Kin)) = 2,n>2
() %(S(Pk)) = 2n42,  ifk = 3n+2, 3n+3, 3n+4,
n=1, 2’ cee
3, ifk =3, 4.

(d) 7,(S(Cn)) 2n 4+ 2, ifk = 4n+2, 4n+3, 4n+4

VI T |
B
=]
+
&>

ifk=4n+5,n=1,2, ---
2, if k =4.
3, if k =5.

In the following, we obtain bounds for no(S(G)).
Proposition 3.2: For a graph G without isolated vertices, 2 <
1o(S(G)) < p.

Proof: Since radius of S(G) is at least 2 , ng(S(G)) > 2. Also,
the set V(G) is an n-set of S(G) and hence no(S(G)) < p. O

The bounds are sharp since, no(S(G)) = 2, if radius of G is
1 and no(S(G)) = p, if G is a regular bipartite graph.

Next, we find a necessary and sufficient condition for an n-set
of G to be an n-set of S(G).
Theorem 3.10: For any graph G without isolated vertices,
no(S(G)) < no(G) if and only if there exists an neighborhood
set D of G with |D| = ng(G) such that for every pair of adjacent
vertices u, v in G, where ueD, veV(G) - D, [Ng(u)NNg(v)]ND
# .
Proof: Let there exist a neighborhood set D of G with |D| =
no(G) such that for every pair of adjacent vertices u, v in G,
where ueD, veV(G) - D, [Ne(u)NNg(v)]JND # ¢. Since D is a
neighborhood set of G, the cdges xy in S(G), where x, yeV(G),
xy’, where x€D and yeV(G) - D and xy’, xy, where x, yeV(G)
- D belong to U,epE(G[N[u]]). Consider the edge x'y in S(G),
where x€D and yeV(G) - D. Then xy€E(G). By the assump-
tion, there exists a vertex z€D adjacent to both x, y in G and
the edges x'z, yz are in §(G). Hence, x'y€E(G[N[z]]). Hence, D
is a neighborhood set of S(G) and so no(S(G)) < ne(G).
Conversely, assume ng(S(G)) < no(G). Then any neighborhood
set of G is also a neighborhood set of S(G). Let D be a ncighbor-
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hood set of G with |D| = no(G) and there exist a pair of adja-
cent vertices u, v in G such that [Ng(u)NNg(v)]ND = ¢ , where
ueD, veV(G) - D. Then the edge u'v in S(G) does not belong to
UwepE(G[N[w]]) which contradicts the fact that D is a neighbor-
hood set of S(G). O

Now, we list the exact values of ng(S(G)) for some standard

graphs.

(a) no(S(Cn))
(b) no(S(Px))

() 10(3(Krm,n))

n,n > 4.

n, if n is even

n-1, ifnisodd,n > 2.
2 min(m, n), m,n > 1.
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