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Abstract

In this work, we study which tubular surfaces verify that the embed-
dings of infinite, locally finite connected graphs without vertex accumu-
lation points are embeddings without edge accumulation points. Further-
more, we characterize the graphs which admit embeddings with no edge
accumulation points in the sphere with n ends in terms of forbidden sub-
graphs.

1 Introduction

Dirac and Schuster [6] proved that a countable graph is planar if and only if
each finite subgraph is planar, and Wagner [15] characterized all planar graphs.
Thus, the Kuratowski Theorem on planarity of graphs holds for infinite graphs.
However, as many authors such as Halin and Thomassen (see [8, 14]) have
pointed out, some additional properties can be, and must be, added to planarity
in the case of infinite, locally finite graphs. In particular, from a practical
point of view, accumulation points must be avoided. Thus, a graph is VAP —
free planar if it admits a planar embedding such that the vertex set has no
accumulation point in the plane. Halin [8] gave the characterization of graphs
with a VAP — free planar embedding in terms of forbidden subgraphs. Graphs
which admit embeddings with no vertex accumulation points in generalized
cylinders are characterized by Boza et al. [5, 12]. Thomassen [14] shows that
all connected VAP — free plane graphs admit locally finite plane embeddings
without accumulation points (EAP — free plane graphs in the sense of {14]),
therefore when a graph is connected, there is a VAP — free planar embedding
if and only if there is an EAP — free planar embedding. In 1994 Ayala et al.
(4] characterized EAP — free planarity by adding two new graphs to Halin’s
forbidden graphs. In section 3 of this paper we study in which tubular surfaces
is verified that there is a VAP — free embedding of infinite, locally finite,
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connected graph if and only if there is an EAP — free embedding of that graph,
extending the result given by Thomassen [14] for the sphere with r. Freudenthal
Ends and we find counter-examples to assure that the result cannot be extended
further. In section 4 we characterize the graphs which admit embeddings with
no accumulation points in the sphere with n Freudenthal Ends.

2 Preliminary

Basic notions are now explained to help in the understanding of the development
of this paper. We will consider all graphs to be undirected and without loops
nor multiple edges. We follow the standard terminology of graph theory, as
presented in [9]. When we consider infinite graphs, we use the terminology
followed by Koning [10] and the surveys of Thomassen [13] and Nash Williams
[11].

We consider infinite, locally finite graphs to be those graphs with a countable
vertex set, such that the degree of any vertex is finite.

Throughout this paper, we will talk about tubular surfaces. The first ques-
tion regards the actual meaning of the tubular surfaces of finite genus. We will
use an invariant of non-compact space, namely, Freudenthal End. Let X be a
non-compact space. Freudenthal Ends of X are the elements of the inverse
limit F(X) = hﬁ #9(X — K) where K varies throughout the family of compact
sets of X and where wo(X — K) stands for the set of connected components.
These surfaces are built from a compact surface S of a finite genus, where n
open balls are replaced by n half cylinders. S(n) represents a non-compact sur-
face of finite genus with n Freudenthal ends. For example, if S2 is the sphere
and P, is the projective plane, then 53(1) is homeomorphic to a plane, $2(2) is
homeomorphic to a cylinder and P;(1) is homeomorphic to the Mdbius band.

In addition, when G is a graph we can use a countablesequence G; C G2 C ...
of finite subgraphs to define F(G). An infinite ray in a graph G is a morphism
¢ : J — G inducing an injection on both the vertex set and the edge set, where
J represents a graph such that its underlying topological space is homeomorphic
to the positive half-line R*. Two rays in G define the same Freudenthal end
if for any finite subgraph H of G, there exist vertices of both rays in the same
component of G — H.

For example, the Euclidean halfline, R* = [0, +00) has one Freudenthal end
and the Euclidean line has two. All Euclidean spaces R® with n > 2 have,
exactly, one Freudenthal end (see Figure 1).

We say that an infinite, locally finite graph G is strongly stable if there exists
a finite subgraph H such that every component of G — H isaray. If Gis a
finite graph and W is a set of vertices of G, we denote by Gw to the strongly
stable graph built from G, each ray starting from every vertex of W (see Figure
2). Thus, a graph G’ is strongly stable if and only if there exists G such that
G’ 18 isomorphic to Gw .

This construction plays an important role in previous works {5, 12] as well
a3 in the works of Archdeacon et al. [1, 2] and Bonnington and Richter (3].
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a) Grid b} Euclidean line

Figure 1: a) The Grid has 1 end. b) The Euclidean line has 2 ends.
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Figure 2: G is the strongly stable graph built from G
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Figure 3: a) A non-connected graph with two components b) An embedding
VAP — free planar and non-EAP — free planar

The above-mentioned works are mainly about embeddings of infinite connected
graphs without vertex accumulation points.

The current work is about embeddings of infinite connected and not con-
nected graphs without any type of accumulation points (neither vertices neither
interior points of edges). As we have already mentioned previously, Thomassen
[14] proves that in the case of an infinite, locally finite, connected planar graph,
there exists an embedding without vertex accumulation points (VAP — free)
if and only if there exists an embedding without accumulation points (neither
vertices neither interior points of edges)(EAP — free).

For instance, we consider the following infinite, locally finite planar graph
with two connected components: an infinite grid and a subgraph homeomorphic
to Buclidean line. It is possible to give an embedding without vertex accumu-
lation points of this graph however this embedding has accumulation in the
interior points of edges (see Figure 3).

In this sense, Ayala et al. [4] find the characterization of the infinite, locally
finite planar graphs without accumulation points in terms of forbidden sub-
graphs, adding two new graphs (see Figure 5) to the Halin’s forbidden graphs
8.

In this work, we extend the result given by Thomassen [14] to the sphere with
n ends, we see that the result does not hold in general case, showing counter-
examples for the Torus with one end and Klein Bottle with one end (see Figure 7)
and finally we prove a characterization of the embeddings without accumulation
points (neither vertices neither interior points of edges) in the sphere with » ends
in terms of forbidden subgraphs.

Given an infinite, locally finite graph G, an EAP — free planar embedding
@ : G — R? is said to be a spanning embedding if all the components of
R? — »(G) are bounded. There exist obvious examples of infinite, locally finite
graphs which admit both spanning and non-spanning embeddings (see Figure
4).

Graph G is a tiling planar graph if all of its EAP — free planar embeddings
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Figure 4: a) A non-spanning embedding. b) A spanning embedding.
P(Ks)

P(K;;)

Figure 5: P(Ks) and P(Ks3)

are spanning embeddings. In 1994 Ayala et al. [4] characterized these graphs
with the following result:

Theorem 1 [{] G is a tiling planar graph if and only if G has an EAP —
free — planar embedding and it contsins a subgraph homeomorphic to P(K5)
or P(K33) (see Figure 5).

As a consequence of this result, the characterization of EAP— free planarity
was obtained [4] by adding two new graphs to Halin’s forbidden graphs.

In this context, the following definitions arise naturally.

A graph is said to be a VAP (or EAP)—free — S(n) graph if it has an
embedding without vertex accumulation points (or an embedding without ac-
cumulation points (neither vertices neither interior point of edges)) in S(n). An
embedding without accumulation points in S(n), ¢ : G — S(n) is said to be
a spanning embedding if all the components of S(n) — ¢(G) are bounded. A
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graph is a tiling graph in S(n) if all its EAP — free — S(n) embeddings are
spanning embeddings in S(r). We show the characterization of the tiling graphs
in S%(n).
Theorem 2 G is a liling graph in S?(n) if and only if G is EAP-free-S*(n) and
it contains a subgraph homeomorphic to kglP' (A:) , P*(AL) = P(Ks) and/or
P(K3,3).

Proof. By induction in » :
For n = 1, the result is proved in [4], due to S2(1) is homeomorphic to R2.
We suppose the result true for » and we show for n + 1.
Sufficient condition

5%(n+1) is homeomorphic to plane minus n points. Let (0,0) be one of this
points. We consider a compact K such that (0,0) is in the interior of (R? — {n
points}) — K.

Let G be a graph and G, = GN K, then G ~ G = G; Li Gy where, G; C
Int((R2 — {n points}) — K) y Gy in the exterior. The interior face of (R? — {n
points}} — K is homeomorphic to S?(1). As the result is true for n = 1, there
exist P(Ax) C G with A = K or K3 5. The exterior face is homeomorphic to
S?(n). Applying induction hypothesis, there exist P(A1x), P(Aak), ..., P(Ank)
such that ’_QIP(A;;;) C G, with Az = K3 or K3 5. As G, and G, are disjoints,
we have P(A;)N P(A;) = 0, for each i =1, ...,n. Therefore, we have found

P(Ax)U P(Ay) U P(Ag) U ... U P(An:) C G.

Necessary condition

By hypothesis :Q:P(Au,) C G. As G has an embedding without accu-

mulation points, we have that G — ':;l:P(Aik) is compact set. We consider
+1
U P(An) = 0 P(Aa) U P(Ans10).

5%(n + 1) is homeomorphic to R? minus n points, (0,0) is one of them.
Let d be distance from (0,0) to another » — 1 points. We denote by K =
B (4d) — B(}d). Then, we have (R? —{ n points}) — K = Ry Lt R; where R, is
homeomorphic to $3(1) and Ry is homeomorphic to $%(n).

By induction hypothesis,

‘QIP(A“) cover to Ry and P(An11,%) cover to Ry.

In addition, we have: KNG C G — :‘Q:P(A,h)
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Therefore, K N G is a compact and the faces contain in K NG are bounded.
As a consequence:

.QIP(Au,) U P(Ans14) U (K N G) cover to S2(n + 1).
Hence, G cover to S*(n+1). =

3 Relation between VAP — free and EAP — free
embeddings in S(n)

In this section, we establish that if an infinite, locally finite graph is connected,
then there is a VAP — free — $%(n) embedding if and only if there is an EAP —
free — S?(n) embedding, thereby obtaining an extension of the result given by
Thomassen in [14]. In addition, we show that the result does not hold in the
general case.

First of all, we prove that an infinite, locally finite, connected, VAP — free—
S%(n) graph is isomorphic to a subgraph of a triangulation of S?(r). Since an
infinite triangulation of S2(n) has no accumulation points, we obtain that there
is a;g V AP — free embedding if and only if there is an EAP — free embedding
in 8%(n).

We know that $%(n) is homeomorphic to a sphere minus n points or to a
plane minus n—1 points, therefore in a natural way, we can define a triangulation
of $%(n). An embedding A of an infinite, locally finite connected graph in S3(n)
isa triangulation if and only if A is VAP — free — S3(n) and for every vertex
u € A, there exits a cycle &, of A such that » is the unique vertex of A in the
interior of &, where u is joined by an edge to every vertex of ®,. If, in addition,
every point 2 is in $3(n) — A then we deduce z is contained in the interior of
some cycle of A.

Theorem 8 Let G be an infinite, locally finite, connected, VAP — free—S%(n)
graph. There exists a triangulation A of S?(n) such that G is isomorphic to a
subgraph of A.

Proof.
We prove the result by induction in n:

e For n =1 the result is true by Thomassen {14].

o Supposing it is true for n — 1, therefore for n:

Let G be an infinite, locally finite, connected VAP — free — S3(n) graph,
then G has an embedding in S$2(n — 1), T, with one vertex accumulation
point. Let K be a compact which isolate the vertex accumulation point,
and Iy = "N K, therefore

I' - T =TI'; UT3 such that
I'y Cint(S3(n—1)— K) and I'; C ext(S3(n —1) — K) .
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Figure 6: G is homeomorphic to the wedge of P(Kj3 3) and F,,

The exterior face of $2(n — 1) — K is homeomorphic to S%(n — 1) and
Ty i8 VAP — free — S3(n — 1) and connected, thereby applying induction
hypothesis we have that I'; is isomorphic to a subgraph of a triangulation,
A,.

The interior face of S%(n — 1) — K is homeomorphic to S*(1) and T is
VAP — free — S3(1) and connected, so I'; is isomorphic to a subgraph of
a triangulation, A;.

We have to see now in a compact K, it is a finite graph therefore it is a
subgraph of a finite triangulation.

Let zy be an edge of K which is not contained in a separating 3-cycle of
K. Let K' bea graph obtained to contract the edge Ty to a vertex z.
If A is an embedding of K, then an embedding of K is obtained from A
such that only the edges incident with x are affected. Reciprocally, if A’
is an embedding of K, then an embedding of K can be obtained from A
such that only the incident edges with z are changed and z can be adjoint
with y arbitrarily. Doing to coincide a cycle of I'; and a cycle of I'; with
the boundary cycles of A, we have that I" is isomorphic to a subgraph of
a triangulation of S%(n).

In the case that a compact has separating 3-cycles, this edges are not
contracted, deleting the interior of separating 3-cycles we obtain again a
triangulation of S?(n). After that, we put in the interior of a separating
3-cycle what we had initially and adding edges until to obtain a triangu-
lation.

As an infinite triangulation of $2(r) has not accumulation points, we obtain

the following result:

Corollary 4 Let G be an infinite, locally finite, connected and VAP — free —
S5%(n) graph. Therefore G is an EAP — free — S*(n) graph.

We have just seen that in a sphere is true that there is a VAP~ free—S53(n)

embedding if and only if there is an EAP —~ free — S?(n) embedding.

We show now that in the general case this result does not hold. Hence, we

consider the following counter-example: Let G be the graph in Figure 6 and
let an embedding of G be on the Torus with one end and on the Klein Bottle
with one end (Figure 7). These embeddings are VAP — free — S(1) but are not
EAP — free — S(1), when S is a Torus or Klein Bottle.

This allows us to state the following:
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Figure 7: a)An embedding of G on the Torus with one end. b)An embedding
of G on the Klein Bottle with one end.

Remark 5 Let S be a compact surface of finite genus and the Euler charac-
teristic x(S) > O (whereby the surface is different to a sphere and a projective
plane). Let G be an infinite, locally finite graph homeomarphic to the wedge of
F, withn (P(Ks) or P(K33)). G is VAP — free — S(n) graph and G has not
EAP — free— S(n) embeddings.

Obviously G is VAP — free — S(n) and its embedding is similar to that in
Figure 7.

It remains to be proved that G has no EAP — free — S(n) embedding.
Therefore, the opposite is supposed. Let I' be an embedding of G in S(n)
without accumulation points and let K be a compact. We consider S(n) — K =
CiuCu...ucC, .

|EC N K)| < ocosince ' is EAP — free — S(n).

In S(n) ~ K, we have n P(K;) or P(Ks3) and P, and n half-cylinder C;,
i=1,...,n hence, I is not an EAP — free — 5(n) embedding since n P(Kj) or
P(K3,3) are tiling graphs in §2(n).

4 Characterization of EAP-free-5?(n) embeddings

The following is a characterization of embeddings without accumulation points
in the sphere with n ends in terms of VAP — free — S%(n) forbidden graphs.
Assuming that G contains infinite planar components C;, «reyCpy ..y We define
a(C;) =max{ r € N / C; is not VAP — free — 5%(n)} and
b(C;) =max{ r € N / C; is not EAP — free — §?(n)}.
It is clear that a(C,') < b(C,)

Lemma 6 Let G be an infinite, locally finite graph, therefore there ezists G' C
G whose ends are all strongly stable such that a(G) = a(G’).
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Figure 8: a) G with 4 ends b) G with 4 marked vertices ¢) G° is K5

Proof. We can build an infinite sequence of graphs G; CG3 C .. CG; C ..
such that U;G; = G.

Let us suppose the opposite is true, i.e. 'fggo a(Gr) < a(G) and Yk, Gi is
VAP — free — S3(a(G)) .

This implies that G = U;G; is VAP — free — S3(a(G)) which is clearly a
contradiction.

By Lemma 6 we can suppose, without any loss of generality, that all the
ends of G are strongly stable.

Let G be a strongly stable graph with nn ends. We define an n-compactification
of G as a finite graph G°¢ where the » ends of G are replaced by n vertices
v1,..., U and these vertices v;,i = 1,..,n are identified in one only vertex v in
G* (see Figure 8).

Lemma 7 Let G be a graph whose ends are all strongly stable. Therefore
G is a VAP — free — S*(k) graph if and only if there ezists a planar k —
compactification of G.

Lemma 8 Suppose that G has two infinite components Gy and Ga. If Gy is
not VAP — free — S*(ny) and G is not VAP — free — S3(ny) then G, UGy
is not VAP — free — 5%(n; + na).

Proof. If we suppose the opposite, i.e. G, UG5 i8 VAP — free — S%(n; + ng),
then there exists an (n) + n2) — compacti fication planar of G; U Gs.

If this graph had only one compactification vertex shared by two components
then we could give a VAP — free—S2%(n;) embedding of G; and a VAP — free—
5%(ng) embedding of G2 which is clearly a contradiction.

If this graph had at least two vertices of compactification in such a way that
G3 U G2 were incident therein, then both compactification vertices would be
contained in one face. The embedding of G; U G3 can be changed in such a
way that only one compactification vertex exists: one of the compactification
vertices is cut and the edges which leave from G2 for example, to the other
compactification vertex are taken, therefore G is incident in a compactification
vertex and G is incident in the other vertex. m
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Lemma 9 Let G be an infinite, locally finite graph with infinite planar compo-
nents C1,...,Cyp, ... . Therefore a(G) = Y a(C;)

Proof. We prove the result for double inequality:

Let us first check that 2(G) < Y a(C;).

Let C; be VAP — free — $%(a(C;) + 1) components and G = UC;.

We must have an embedding of each one of the components C; whose a(C;)+
1 ends are strongly stable . We can give an embedding of G by identifying one of
the ends of each C; in a single end , through which we obtain (G) < ¥~ a(C;)+1,
therefore a(G) < ¥ a(C;), and we thereby deduce one of the inequalities.

Let us now check that a(G) > ¥ o(C;).

We suppose that G has two components Gy and G, such that G = G; UGs.
Hence a(G) + 1 = # of vertices of compactification
a(G)+1>(m+1)+(na+1)~1=n1+ng3+1,

a(G) 2 ny +ng.
It is easy to generalize since we have n components.
]

Lemma 10 Let G = Cy U Cy be an infinite, locally finite graph and b(G) =
max{n € N / G is not EAP — free — S?(n)} such that C; is not a tiling graph
in S%(b; + 1) where b(C;) = b;, i = 1,2. Hence b(G) < b(C}) + b{(C3).

Proof. We consider an embedding of G; in S?(b; + 1) and an embedding of G,
in S?(by +1). By hypothesis, G; is not a tiling graph of S2(b; + 1), hence we can
make an end of G coincide with an end of G3. Therefore, we have by + by + 1
ends, hence we obtain an EAP — free — S?(b + b + 1) embedding of G and
since b(G) < b1 + by + 1, therefore H{(G) < b(G1) + b(G2). m

The main result is now considered:

Theorem 11 Let G be an infinite, locally finite graph and let n be a positive
integer. G is not an EAP — free — 53(n) graph if and only if for k =0,...,n ,
3 A, ..., Jy are homeomorphic to P(K;) or to P(K33), and 3 H without finite
planar components is not VAP — free — S*(n— k) such thet HU J, U ... U Jj,
is a subgraph of G.

Proof. By induction in n:

We denote b = b(G) = n and suppose by induction that if b(G) < n then
the result is verified.

Let G be a non-EAP — free — S%(n) graph and we consider G = G U Gq
where b(G,) =b<bi= 1,2.

Case 1: We suppose that G; is not a tiling graph of S2(b; + 1),i = 1,2. By
induction:

3 Ji, ..., Jk1 are homeomorphic to P(Ks) or to P(K3s) and 3 H; without
finite planar components is not VAP~ free—S2(by —k; ) which implies a(H,) >
b~k
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3 Jk141) oy Jks+ko are homeomorphic to P(K5s) or to P(K3s) and 3 Hy
without finite planar components is not VAP — free — S3(by — k2) which further
implies G(Hz) 2 bg - kg.

Therefore Ji, ..., Jk, 4%, are homeomorphic to P(Kg) or to P(K3 ) and

o(H1 U Ha) = a(Hy) + a(H2) > (b1 + ba) — (k1+ ka) 2 b— (k1 + Ka)
which implies Hy U Hy is not VAP — free — S3(b — (ky + kg)).

Case 2: We suppose that Gy is a tiling graph of S2(by + 1). By induction:

3 Jy, ..., Ji, are homeomorphic to P(Kz) or to P(K3 ) and 3 H; without
finite planar components is not VAP — free — S?(b; — k1) and since G is a
tiling graph of S%(by + 1), therefore 3 Ji, 41, -+ Ji; +b5+1 are homeomorphic to
P(K3) or to P(Kj3 s).

Claim 12 We prove thatb< by + b2+ 1.

We have an embedding of Gy with (b1 +1) ends and an embedding of G3 with
{b2+1) ends, therefore we have an embedding of G = G1U Gy with (by + b2 +2)
ends, Hence, G is EAP— free—S2(by +ba+2). Therefore b{(G) = b < by+bg+2
and also b< by + by + 1.

If, in addition, we knew that G; were not a tiling graph of S3(b;+1), ¢ = 1,2
we would deduce that b < by + by.

By applying this logic to Case 2, we conclude that 3 Jy,..., Jk 45,41 8T€
homeomorphic to P(Kj) or to P(K33) and 3 H), without finite planar compo-
nents is not VAP — free — S%(by — k1).

Hence, by — ky = (by + by + 1) — (k1 + ba + 1) > b~ (ky + ba + 1) proves that Ay
is not VAP — free — S2(b— (k1 + bz + 1)). This completes the proof. ®

As a continuation of this work we propose extending this theorem toc any
compact surface S. We are presently working on this conjecture and hope to
present this work in the near future.
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